

Configuration Manual

MSc Cyber Security Research Project

Rohith Satheesh Kumar Student ID: X19207611

School of Computing National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	ROHITH SATH	HEESH KUMAR								
Student ID:	X19207611									
Programme:	MSc Cyber Se	MSc Cyber Security Year: 2021-2022								
Module:	Research pro	ject								
Lecturer:	Imran Khan									
Due Date:	15/08/2022									
Project Title:	INTRUSION D	DETECTION OF KERNEL-ROOT	KITS IN NDOM FO	ANDROID DREST						
Word Count:	860 Pa	ige Count: 11								

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	ROHITH SATHEESH KUMAR
Date:	15/08/2022

Penalty Applied (if applicable):

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple								
copies)								
Attach a Moodle submission receipt of the online project								
submission, to each project (including multiple copies).								
You must ensure that you retain a HARD COPY of the project, both								
for your own reference and in case a project is lost or mislaid. It is not								
sufficient to keep a copy on computer.								
Assignments that are submitted to the Programme Coordinator Office must be placed								
into the assignment box located outside the office.								
Office Use Only								
Signature:								
Date:								

1. System Requirements

It is necessary to have the following hardware and software in order to ensure that the model processing goes well and to cut down on the amount of time it takes.

1.1. Hardware Requirements

The implementation was performed on an Lenovo legion, the configuration of the device is as follows

- 1. Processor Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz
- 2. RAM 16 GB DDR4
- 3. Hard Disk 118MB SSD, 1 TB HDD
- 4. OS Windows 10 Pro 64 bit

1.2. Software Requirements

The software requirements are listed below.

Software	Version
Python	3.7.13
Tensorflow	2.8.2
Pandas	1.3.5
Numpy	1.21.6
Scikit-learn	1.0.2
Seaborn	0.11.2

3. Data pre-processing

2.1 Importing Libraries

import numpy as np
import pandas as pd
<pre>import matplotlib.pyplot as plt</pre>
import seaborn as sns
from sklearn.manifold import Isomap
from sklearn.pipeline import Pipeline
<pre>from sklearn.model_selection import cross_val_score</pre>
<pre>from sklearn.ensemble import RandomForestClassifier</pre>
<pre>from sklearn.model_selection import GridSearchCV</pre>
<pre>from sklearn.model_selection import train_test_split</pre>
<pre>from sklearn.metrics import accuracy_score, plot_confusion_matrix</pre>
from sklearn.metrics import confusion matrix, classification report

All the necessary libraries like pandas, Matplotlib, seaborn, and NumPy for data preprocessing and visualization are imported. Sklearn packages for data splitting and data conversion. Sklearn ensembles are used to import RandomForestClassifier.

2.2 Data Loading

[]	from driv	<pre>m google.colab import drive ve.mount('<u>/content/drive</u>')</pre>								
	Driv	ve already mounted at /content/drive; to a	attempt t	o forcibl	y remount,	call drive.mount("/conten	t/drive", force_	_remount=True).		
[]	df=p df.H	pd.read_csv(' <u>/content/drive/MyDrive/DATAS</u> head()	ET/labele	d.csv')						
	/usr ex	r/local/lib/python3.7/dist-packages/IPyth xec(code_obj, self.user_global_ns, self.us	on/core/i ser_ns)	nteractiv	eshell.py:	2882: DtypeWarning: Column	s (4,7,8,11,12,1	14,25,26,28,31,32,34,35,36,40,41	,43,44,52,5	4,56,60,68,69,70,71,73,77,79
			sha256	Unnamed: 1	Unnamed: 2		sha1	md	5 ad_aware	aegislab
		00002fa57ffcba0dcd65044ff9dcfc482cb8d1e7	541dc0	NaN	NaN	577802920a4ed515fd42bb3e30	Da7c1e1c12d7ae1	92e759b8942def4f959780d97cf614		Trojan.AndroidOS.Hiddapp.C!c
		0000636f9c57d0adad87ffcfb4aa0ad71aefea91	5b4cd6	NaN	NaN	1e34142346dd890f8734b56608	8b70b46c3e8b61a	66813190742c4f5472bb3b1ceab27f6	d -1	
		000083b4f6c826b9bbad23e1bff9c7e0bd89ab2e	3c0dba	NaN	NaN	7f0ead3b75be6dd042cc83cd4	9eedb413311f92d	071140a11c4b0dc576e7e560a8f1fb	0 -1	
		0000a2a514aab2d71b529300be4c31840c7698c04	4d73a6	NaN	NaN	e5781e38481503ef532e81983	c723c6b5cc0ba19	c33a7f59fdd2562678b2c13084e7b8b	с -1	
		0000a6d452d58424a8b7613f175af5937f5900336	616b80	NaN	NaN	e1dfdec8eb4323932db8314fc	d0b38c3cacbac4e	84f5027651c33bc3bc967c7fda552b0	e -1	Adware.AndroidOS.Agent.Alc
	5 rov	ws × 100 columns								

For loading data, we must first mount the device, then load the dataset 'labeled.csv' as a pandas dataframe, and then show all columns using the data.head() function.

2.3 Label Encoding

The above code snippets show a code to convert columns into encoding, which refers to transforming labels into a numeric form in order to convert them into a machine-readable format.

2.4 Separating Features and Labels

[]	X = ne	ew_df[neu	v_df.col	umns[:-1]]																
[]																					
		sha256	sha1	md5	ad aware	aegislah	agnitum	ahnlah	ahnlah v3	alihaha	alvac	trustlook	vha32	vinre	virobot	webroot	whitearmor	vandex	zillva	zonealarm	zoner
)*		
	6	26	407053	206169	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	0
	64	322	762567	15956																	
	87	439	797780	117887																	
	131	663	333615	13354																	
	155	765	354957	26325																	
	6257	33786	306321	29017					11798			450								1091	
	6258	33789	578666	145234					5754	624							671			2087	
	6259	33797	237471	34781	1281				2291			453							11991	3351	19820
	6260	33822	488686	138183								452									3145
	6261	33836	468827			5294			1138	38304		453							14623	4293	
	14242	rows × 97	columns																		

[]	Y = n	ew_df['	class']				
[]	Y						
	6	0					
	64	0					
	87	0					
	131	0					
	155	0					
	6257	2					
	6258	2					
	6259	2					
	6260	2					
	6261	2					
	Name:	class,	Length:	14242,	dtype:	int64	

In order for the machine learning model to find this data useful, the features and target columns will need to be separated. The code that is shown above divides the last label column and then initializes it to var X and then last column i.e a class is assigned to variable Y.

2.5 Data Normalization

The normalize() method is used to standardize the data in order to avoid over fitting. The purpose of normalization is to convert the numeric value columns in the dataset to use a similar scale. This should be done without distorting the differences in the ranges of values or losing any information in the process.

2.6 Dimensionality Reduction

Isomap() is an unsupervised learning technique used to reduce dimensionality in data.

2.7 Train-Test Split

```
[ ] x_train, x_test, y_train, y_test = train_test_split(mapped_X, Y, test_size=0.3, random_state=42)
```

After the necessary preprocessing steps have been done, the data is now split into train and test sets, with a 30 percent test size and a random state of 42.

3. Model

Now that the data are prepared for training, we need to construct a model that properly represents the data and produces high accuracy.

3.1 Model Defining and Training

```
rfc=RandomForestClassifier(random_state=42)
```

As a result of putting an emphasis on the data, a decision tree-based classifier is chosen from the sklearn ensemble package. The RandomForestClassifier() function has been initialized as rfc in the preceding code.

In order to use grid search and determine the parameters that work best, different values are chosen for each param, as seen in the above image.

Now the params dictionary and the rfc model are sent on to grid search, which uses a variety of possible parameter values in conjunction with one another to derive the parameters that are the best match.

The optimal parameters from the grid search technique are once again used to initialise a RandomForestClassifier.

3.2 Model Predict

This code predicts the target values on the test (unseen) dataset.

3.3 Model Evaluation

a. Accuracy

```
[ ] score = accuracy_score(y_test,pred)
    print("Testing Score: {:.2f} %".format(score*100))
    Testing Score: 97.12 %
```

The model is evaluated on test data and it gives 97.12% accuracy.

b. Classification Report

[] pr] print(classification_report(y_test, pred))												
			precision	recall	f1-score	support							
		Ø	0.98	0.97	0.98	2475							
		1	0.67	0.67	0.67	6							
		2	0.96	0.97	0.97	1792							
	accur	racy			0.97	4273							
	macro	avg	0.87	0.87	0.87	4273							
we	ighted	avg	0.97	0.97	0.97	4273							

A high precision and recall score indicate that the model is reliably predicting true positive and true negative values. Also, the f1 score gives a single score that combines the accuracy and recall factors into a single number, making it easy to compare and analyze.

The trained random forest classifier provides stable and high values for all three metrics defined above.

c. Confusion Matrix

Predicted outcomes for the ML classification issue are summarised in the confusion matrix. It also stands for a model's sensitivity and specificity. Predicted values and real labels are shown above, along with the number of accurate and wrong predictions.

3.4 Model Pickel

The model is finally saved as a pickle file so that it can be used again in the future.