

MSc Cyber Security

Research Project

Rohith Satheesh Kumar

Student ID: X19207611

School of Computing

National College of Ireland

Supervisor: Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name: ROHITH SATHEESH KUMAR

Student ID: X19207611

Programme: MSc Cyber Security Year: 2021-2022

Module: Research project

Lecturer: Imran Khan

Submission Due Date: 15/08/2022

Project Title: INTRUSION DETECTION OF KERNEL-ROOTKITS IN ANDROID

DEVICES USING MACHINE LEARNING– RANDOM FOREST

Word count: 4500 Page: 23

I hereby certify that the information contained in this (my submission) is information pertaining to

research I conducted for this project. All information other than my own contribution will be fully
referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the

Referencing Standard specified in the report template. To use other author's written or electronic
work is illegal (plagiarism) and may result in disciplinary action.

Signature: ROHITH SATHEESH KUMAR

Date:

PLEASE READ THE FOLLOWING INSTRUCTIONS

AND CHECKLIST

15/08/2022

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each

project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the

assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Abstract:

Due to the prevalence of sensitive information on Smartphones, rootkits provide a major risk. Rootkits on

Android-based smartphones have access to features that aren't accessible on PCs, such as GPS, the

battery, and the microphone and speaker. This makes them particularly dangerous. Smartphone users are

at greater danger of infection as open source and unlicensed third-party platforms and applications are

being used. A kernel-level rootkit's threat to Android's operating system is also examined in depth in this

study, as is the potential use of a system call to discriminate between calls from a regular app and those

coming from an infected one.

Automated rootkit detection is possible using random forest, an approach that relies on prior data. For the

purpose of detecting the rootkit, it takes use of datasets produced by feeding data and collecting system

calls from infected and non-infected operating systems. A root kit identification algorithm for Android-

based systems is trained using this dataset. (javatpoint, 2019)

Keywords: Kernel rootkits, Android, Random forest technique, Machine learning.

TABLE OF CONTENTS:

1. INTRODUCTION: …………………………………………………………………………………..5

2 LITERATURE REVIEW: …………………………………………………………………………..6

3 RESEARCH METHODOLOGY: ………………………………………………………………………10

4 DESIGN SPECIFICATION: …………………………………………………………………………….12

5 IMPLEMENTATION: …………………………………………………………………………………………14

6 EVALUATION: …………………………………………………………………………………………….......17

7 CONCLUSION AND FUTURE WORK: ……………………………………………………………………..19

8 VIDEO PRESENTATION LINK: …………………………………………………………………………….20

9 REFERENCES: …………………………………………………………………..20

1. INTRODUCTION:

Smartphones are one of those technological marvels whose ubiquity is only certain to grow. This

amount is predicted to climb to 7,690 million by 2027, according to Statista, which estimates that

there are now 6,259 million smartphone users worldwide.(• Smartphone subscriptions

worldwide 2027 | Statista, no date) Since more people are using smartphones, there's a higher

chance of becoming infected with malware like a rootkit or some other kind of cyber attack.

When it comes to GPS and other location-based services, smartphones have a greater number of

hardware and software implementations than do desktop or laptop computers. Customized

versions of the Linux Kernel platform are used in many Android handsets, and they comprise

millions of Java lines. There have been 50 times as many malware breakouts on Android

smartphones as there have been on iOS devices; hence the project is primarily focused on

Android. According to online statistics, 19 dangerous programmes were available for download

via Google Play. (Bojan Jovanović, 2021)

According to data from 2019 for the most frequent form of malware, Trojans accounted for

93.93% of all infections. (• Distribution of Android malware 2019 | Statista, no date)Trojan

horses utilize false or deceptive identities to fool their victims into thinking they are dealing with

something else entirely. Some of the most harmful Trojan horses are Back orifice, Rootkit, and

Beast Trojan. Hackers may use Rootkits to get access to computers and its software without

permission. An attacker with root or Administrator privileges may also install rootkits. Rootkits

come in a wide variety of forms, but Kernel rootkits operate at the very heart of the operating

system, giving them complete control. Having Rootkit as the most common Trojan horse, and

Trojan malware as the most common form of malware, both of these assaults might be quite

devastating to an Android device. Lookout's security labs recently discovered a Rooting Malware

called "AbstarctEmu," which was distributed through the Google Play store along with 19 utility

applications. When a user opens an infected programme, the virus is launched.(Lab, 2021)

Exploits like CVE-2020-0041, CVE-2020-0069 and CVE-2019-2215 are used by the malware in

order to exploit vulnerabilities. (Ranajit Singh Mehroke, 2019)

This research focuses on Android Kernel-Rootkits utilizing prior knowledge and

understanding of rootkits and the threats they bring. The Linux kernel, on which Android is

based, contains the bulk of the operating system's security measures. Driver management, power

management, memory management, device management, and resource access are all handled by

the Linux kernel. As a result, a rootkit that manages to infect the Linux kernel has complete

control over the operating system. Rootkits at the kernel level may be detected using "Random

forest," a machine learning approach that is both succinct and versatile. In order to develop a

rootkit detection method, the study takes use of datasets acquired through various system calls.

Analyzing data sets that contain both continuous and categorical variables will be done

using the Random Forest Algorithm. Using it to solve classification issues resulted in better

outcomes than other methods.

2. LITERATURE REVIEW:

This section of the paper describes how similar work was conducted in past studies; previous

publications relate to rootkit cyberattacks against the Linux-based Android operating system.

Researchers are always looking for novel approaches to detect rootkits, as seen by the

aforementioned articles. Researchers are increasingly using Machine learning and deep learning

Automation to identify Rootkits because of their high accuracy and ability to learn from the data

they acquire. Because ML-based techniques may be improved in terms of effectiveness by

tweaking their algorithms and collecting new data, they are utilized.

• Machine learning based approach:

Kernel rootkit research is heavily influenced by the latest trend in machine learning, which

allows for training and learning from the data that is presented to it. Machine learning algorithms

have been demonstrated in several experiments to automatically detect both known and unknown

malware. System calls and API calls are used in combination with machine learning research to

discover rootkit. The Levenberg-Marquardt algorithm, behavior-based algorithms, and fully

convolution neural networks are among the many machine learning and deep learning methods

they use (FCN).

(Singh et al., 2017)Malware was detected using a combination of hardware performance

counters, machine learning algorithms based on signatures, and Scikit-learning, a free open

source machine learning library for the Python programming language. According to reports, the

outcome was a resounding 98% affirmative. It was claimed that a machine learning algorithm

may be used to analyse system call times and determine the best course of action. (Luckett,

Todd McDonald and Dawson, 2016)(Levenberg Marquardt algorithm). By comparing infected

and non-infected systems and identifying the resulting system calls as abnormal or non-

anomalous, rootkits were discovered. The system correctly categorized 67.7 percent of the

system calls it was fed, and recognized 82% of them when fed a single call. Rootkit signatures

were detected using conventional machine learning techniques by (Sayadi et al., 2021)and

StealthMiner, a novel machine learning-based approach for detecting potential stealthy malware

tracks at run-time via commands based on fully convolutional neural networks. The StealthMiner

is said to be 6.52 times faster than this system, which has a detection rate of 94%. Machine

learning algorithms can be used to identify Kernel-level rootkits, according to a few

others.(Kuzminykh and Yevdokymenko, 2019; Nadim, Lee and Akopian, 2021) The

majority of methods suggested one of the following future studies proposing the use of a superior

Machine Learning technology and applying the strategy on mobile devices.

But each of these methods had some challenges. For example, the Levenberg-Marquardt

Machine Learning algorithm was used as a reasonable alternative to the signature-based

detection method. However, this algorithm will take a long time to converge if the model has

more than 10 parameters, and the process only used a small number of datasets to study rootkit

detection. Second, most of the methods are based on Windows/Desktop and use a static method

to evaluate the issue.

• Virtual Machine/Hypervisor based work:

This kind of research requires the creation of a virtual or sandbox environment in order to

discover malware. Several rootkit detection applications and memory forensics use behavior-

based algorithms and machine learning for the detection mechanism. Memory forensics is

included in the area of "digital forensics," which collects and presents digital evidence for

cybercriminal investigations. Memory forensics has been examined extensively as a method for

identifying malicious activity in the memory of a computer system.

 A proposal by (Bickford, Ganapathy and Iftode, 2012) involves the use of virtual machines

(VMs), memory forensics, machine learning methods, and rootkit detection tools such as

Patagonix (which verifies the code's integrity) and Gibraltar (which checks the integrity of the

kernel). The primary objective of this study is to be energy-conscious while using rootkit

protection measures. This paper aimed to create a balance between a strong defence strategy and

an efficient energy solution. Rootkits may be detected using a static analysis approach based on

virtual machines (VMs) running on a hypervisor (Xie and Wang, 2013)At the hypervisor level,

the suggested rootkit detection method uses deep information extraction and cross-verification.

(Tian et al., 2019) employed Virtualization and Machine learning approaches with different

Machine algorithms to compare which produces a more accurate result in identifying the Rootkit.

Additionally, VMM was used to extract the kernel module's run-time behaviours and to build the

feature vectors.

The primary concern with the suggested models above is that VMs themselves might be the

target of an assault to disrupt the detection systems. The paper by (Bickford et al., 2010;

Bickford, Ganapathy and Iftode, 2012) does not indicate the accuracy with which Rootkits

may be identified. It consisted mostly of excerpts from two separate books by various authors.

Other disadvantage from (Xie and Wang, 2013)is that it was a static technique of detection; it

also focuses on extending the idea to other hypervisors and some advanced kernel rootkits may

leverage the VM-aware ways to recognize the hardware-assisted virtualization environment.

(Tian et al., 2019)In addition, the majority of models are evaluated against the Windows

environment.

• IoT and Hardware based:

It is essential to protect IoT devices against Vulnerabilities such as Malware, since they are

becoming more widespread in a variety of settings. Before and during the epidemic, there was a

700-fold increase in IoT malware.

(Jiang, Lora and Chattopadhyay, 2020)suggested LDRDet, a Trusted Execution Environment-

based method for detecting kernel rootkits in IoT devices. This detection is based on system calls

and requires monitoring hardware events continually for abnormalities. The framework was

successfully tested against four unique kinds of malware. Another approach (Nagy et al.,

2021)was to use an IoT-based trusted execution environment (TEE) such as ARM-based

embedded boards, which are typically supported by the vast majority of IoT devices. It monitors

system call hooking and searches for irregularities. Combining external peripherals such as PCB

and JTAGa with memory forensics allowed (Guri et al., 2015) to effectively detect rootkits at

the Android kernel level. In this instance, the hardware retrieves and reconstructs a particular

area of the kernel's memory for further examination.

The disadvantage of these papers is that they only address IoT devices, and the one on Android

devices needs an additional component to be linked to the smartphone in order to detect

malware, which is neither feasible nor practical for the end user. In addition, the LKRDet

framework cannot identify kernel-level rootkits that manipulate the HPC value.

• Systems call Hooking:

 By intercepting a system call, it is possible to manipulate data sent between user-space

applications and the operating system. Following this, two investigations were conducted, one

using system call hooking in combination with a dynamic programme slicing methodology and

the other using a signature-based approach in conjunction with a conventional probing method.

The dynamic programme slicing approach took use of kernel hooks and generated a HookMap to

calculate the number of kernel hooks that may be exploited for resistance. This approach has the

problem of relying on incorrect dynamic slicing, while other linear programming methods

provide more precise dynamic slicing in an appropriate amount of space and time.(Wang et al.,

2008; Brodbeck, 2012)

Research Niche:

Related works Strengths Limitation

(Singh et al., 2017) High level of Accuracy Windows based

(Luckett, Todd McDonald and

Dawson, 2016)

Use of Neural Network and High

level of accuracy

The algorithm used was very slow to

converge and size of dataset handled

was very small

(Sayadi et al., 2021) Used various deep and machine

learning algorithm to provide high

level of accuracy

Limited to Windows based

computers

(Bickford, Ganapathy and Iftode,

2012)

Energy aware approach along with

rootkit detection

Doesn’t propose anything new with

the rootkit detection and doesn’t

state anything about the level of

accuary the model produce

(Tian et al., 2019) Uses both Virtualization and ML to

generate high level of accuracy.

Limited to Windows based

computers

(Jiang, Lora and Chattopadhyay,

2020)

Tested against four different types of

rootkits

The framework used has its own

limitation

(Nagy et al., 2021) The approach followed works best

with most the IoT based devices

Limited to IoT devices

(Guri et al., 2015) Uses external PCB to detect the

rootkits which can overcome the

disadvantage of of VMs

Uses external peripheral to be

connected with the smartphone

My Approach Uses Machine learning with

Random forest algorithm to provide

high accuracy and speed and also is

feasible with android and Linux

based devices

3. RESEARCH METHODOLOGY:

The proposed approach identifies rootkits that operate at the system's core layer using machine

learning algorithms. Random Forest is a non-parametric machine learning method that is

regarded as one of the most optimal solutions for this project since it makes decisions depending

on the data it is provided with. It categorizes samples based on the vote count. The study focuses

particularly on Android-level rootkits since the prevalence of these mobile devices and their

vulnerabilities continues to rise. 1 provides a detailed description of why Android was selected

for the project.

Setup & tools: In this project, Google colab pro was used to setup and build the whole model

using Python code in the browser. Along with COLAB, many other machine learning python

libraries like Scikit learn, seaborn, pandas, and numpy were also used.

Dataset: The dataset used in this research to train the model to detect the Android rootkit is

taken from a public source. The dataset is taken from the research paper An Analysis of Android

Malware Classification Services. The labels for this dataset are extracted from the Virus Total

report of 2.47 million Android apk hashes. The dataset is made up of Sha256, Sha1, and md5

hashes. Since Sha1 hash is more trustworthy than md5, which can be changed, the dataset is even

more trustworthy. The dataset also specifically classifies Android.rootkit and their hashes, which

are then compared to the virus total and a hash checker to determine whether they are malicious

or benign. The main source of the dataset is AndroZoo. At the time of preparing the dataset,

AndroZoo contained a little more than 13 million apps, collected from 14 different markets and

repositories, including Google Play. (GitHub - mra12/labelingDataset, no date; Rashed and

Suarez-Tangil, 2021)

Table1: List of various dataset that were used in the analysis of the current dataset.

Table 2: Heatmap for the top 10 engines in coverage. (A): eset-nod32, (B): ikarus, (C): fortinet, (D):

cat-quickheal, (E): nano-antivirus, (F): symantecmobileinsight, (G): avira, (H): cyren, (I): k7gw, (J):

F-secure. The cells with the light green edges are those that represent the single coverage for the

engines

4. DESIGN SPECIFICATION:

Algorithm: Prior studies 6 on rootkits revealed both substantial benefits and drawbacks, but

there was little or no research and design methodology that leveraged Random Forest as the

primary machine learning approach for identifying an Android rootkit. Random forest is a

supervised machine learning approach, which implies that supervised learning is the process of

providing correct input and output data to the machine learning model. The goal of a supervised

learning algorithm is to find a mapping function that moves the input variable (x) to the output

variable (y). (Sruthi, 2021)(05.08-Random-Forests.ipynb - Colaboratory, no date)

Random forest is one of the powerful algorithms with many advantages,

• Due to the simplicity of basic decision trees, learning and prediction are very quick.

Moreover, both operations are readily multithreaded since the individual trees are entirely

self-contained entities.

• Multiple trees provide statistical classification: a probability assessment is produced by a

majority choice among estimators.

• Due to the adaptability of the nonparametric model, it may perform well in circumstances

where other methods fail.

A random forest enhances the accuracy of the data set by calculating the mean of all the

subsets using separate decision trees trained on the subsets. The end outcome is decided by

the tree with the most votes. The algorithm's efficiency is proportional to the number of trees

it employs. Below is an illustration of the random forest approach in practice.

The following are the steps to be taken throughout the designing of the model:

• First a suitable dataset was selected for the project.

• Data cleansing was performed with the selected dataset.

• All the crucial libraries for the project are imported.

• Dataset was imported into the Google colab platform.

• Checking for null values and dropping the unwanted columns.

• Encoding and normalization of the data.

• Performing ISOMAP on the columns for dimensional reduction.

• Splitting the dataset into training and test data.

• Applying GridSearch with Random forest classifier.

• Estimating and calculating accuracy, precision, recall, F1-score.

• Drawing a confusion matrix with Tp,Fn,Tn,Fp.

5. IMPLEMENTATION:

➢ DATA PRE-PROCESSING:

Here, the raw data is cleaned and formatted in a way that is appropriate to the ML preferred

model. The dataset requires extensive cleansing through modification and normalization to

eliminate noise and improve precision. Steps such as data cleansing, changing the data type, and

categorical data conversion are all part of the preprocessing phase.

Data cleaning, or the elimination of duplicate or unnecessary information from the original data

set, improves the speed at which a machine learning model trains and the accuracy with which it

performs its analysis. Finding and correcting any blanks or missing data in the dataset is an

important initial step in fixing any issues that may have been discovered. One of the best ways to

clean up data is to get rid of rows that have nothing in them. In this dataset the final labels were

not classified, thus the final label classification was done manually by classifying the clean data

as 0; Rootkits as 1 and other malwares as 2.

Convert Categorical Data to Numerical: Columns with null value are checked and those

columns which are not necessary are dropped. Then, normalization and encoding operation

where performed on the records which had string values. The majority of machine learning

models need numerical representations of categorical data. However, some models are useful

only with numerical information, whereas others are effective only with categorical features.

Random forest can process both numerical and categorical data, although it is preferable to

classify the data according to the problem statement in order to enhance the processing

speed.(Significance of Data Transformation in Machine Learning |, no date)

ISOMAP, is an Unsupervised Machine Learning technique aimed at Dimensionality Reduction.

As the dataset consist of 98 columns isomap was used for dimension reduction.

DIVIDING THE DATASET INTO TWO GROUPS: TRAINING DATA AND TEST

DATA:

The pre-processed dataset can be split into training and test dataset. The training and test data

was split in ratio of 70:30 respectively.

➢ TRAINING THE DATA SET:

Using the programme scikit learn, the random forest algorithm was used in training set to get a

more precise output. For this, the RandomForestClassifier class from the sklearn.ensemble

package will be imported and used to fit the data. Before training the data, GridSearch algorithm

was used to tuning the hyper parameters. auto, sqrt, log2, gini, entropy are the parameters of the

random forest and GridSearch was used to select the best suitable parameter for the model.

The random forest method is based on the bagging principle, in which a distinct training subset is

created from sample training data via replacement, and the final output is determined by a

majority vote.

Step 1: 70% of the total 14242 records were chosen for training, and the results were evaluated.

Step 2: Independent decision trees are generated for each sample.

Step 3: An output is generated for each decision tree.

Step 4: For classification/ regression, the final result is taken into consideration based on

Majority Voting or Averaging.

A final testing score of 97.12% was achieved.

6. EVALUATION:

Skleran.metrics library was ran to calculate few evaluation metrics like accuracy, precision, F1

score and recall

• Accuracy:

The model is evaluated on test data and it gives 97.12% accuracy.

• Confusion matrix:

In this paper there are three different prediction as there are three different final labels 0,1

and 3 which denotes clean, Rootkit and other malwares respectively. Thus the confusion

matrix of this will be a 3*3 matrix.

From the figure, the value on the diagonal is the correctly predicted value of 0, 1&2. These

values can be used to calculate the precision, recall and F1 score.

• Precision: In statistics, precision is defined as the number of accurately detected

members of a class divided by the total number of times the model predicted that class to

exist. Below is an example calculation of precision for label 0.

Recall: The recall of a class is defined as the number of members of a class that were

properly recognized by the classifier divided by the total number of members in that class.

Below is an example calculation of recall for label 0.

F1 score: The F1 score is less obvious since it combines precision and recall into a single

statistic. F1 will be high if precision and recall are both high. If both are low, F1 will also be

low. F1 will be low if one is high and the other is low. F1 is a simple approach to determine

if a classifier is capable of accurately recognizing members of a class. Below is an example

calculation of F1 score for label 0.

The figure below shows the scores calculated for rest of the labels 0, 1&2.

6.5 DISCUSSION:

As was mentioned earlier, the rootkit operates as a module in Android's Linux kernel. As a

result, it has the highest level of privilege on the Android phone and can be a very powerful tool

for attackers. As a result, the rootkit based on the Android system is the primary focus of this

paper because of the potential threat it poses to Android devices. Rootkits and other forms of

malware, in addition to the model itself, were successfully identified after its implementation.

Additionally, the model closed a gap in the existing research literature by performing detection

based on Android systems using an innovative method for identifying rootkits using real-time

hashes that were included in the dataset. If only there were an efficient amount of time and

resources to spend on the study, then there are a number of different ways in which the

effectiveness of this approach may be improved. In the next part of the future work, the concept

of how the model may be improved so that it functions more effectively will be discussed.

7. CONCLUSION AND FUTURE WORK:

As previously stated, Smartphone-targeted cyber attacks are expanding daily, and the vast

majority of ordinary users, who have little awareness of cyber attacks, are very susceptible to

these sorts of assaults. Rootkits are very harmful since they conceal their existence. Therefore, it

is crucial to do research specifically on Android smartphones.

The primary reason for using machine learning as a rootkit detection vector is so that it may be

automated and learn from the datasets given. The random forest is renowned for its diversity. It

may process data without sufficient cleansing and deliver very accurate results.

The purpose of the final report was to develop a machine learning algorithm-based rootkit

detection method for Android smartphones. Therefore, it was accomplished with a great degree

of precision and Android.Rootkits and other malware were also identified (they are classified by

their labels).

In the future work, there is a great deal of research to be undertaken, which demands a great deal

of time and resources. One of the approaches I would like to see included into future work is the

creation of a Sandbox environment and the execution of the APK files of different Android-

specific applications. This allows for the identification of the harmful program's signature and

the removal of the malware from the user's environment, hence increasing security.

8. VIDEO PRESENTATION LINK:

Final presentation.mp4

9. REFERENCES:

• Distribution of Android malware 2019 | Statista (no date). Available at:

https://www.statista.com/statistics/681006/share-of-android-types-of-malware/ (Accessed: 12

August 2022).

• Smartphone subscriptions worldwide 2027 | Statista (no date). Available at:

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (Accessed:

12 August 2022).

05.08-Random-Forests.ipynb - Colaboratory (no date). Available at:

https://colab.research.google.com/github/jakevdp/PythonDataScienceHandbook/blob/master/not

ebooks/05.08-Random-Forests.ipynb#scrollTo=lnONOS7EzOiU (Accessed: 12 August 2022).

Bickford, J. et al. (2010) ‘Rootkits on smart phones: Attacks and implications’, Workshop on

Mobile Computing Systems and Applications, pp. 49–54. Available at:

http://www.cs.rutgers.edu/~vinodg/papers/technical_reports/tr654/tr654.pdf.

Bickford, J. E., Ganapathy, V. and Iftode, L. (2012) ROOTKITS ON SMART PHONES:

ATTACKS, IMPLICATIONS, AND ENERGY-AWARE DEFENSE TECHNIQUES.

Bojan Jovanović (2021) A Not-So-Common Cold: Malware Statistics in 2021 | DataProt.

Available at: https://dataprot.net/statistics/malware-statistics/ (Accessed: 12 August 2022).

Brodbeck, R. C. (2012) ‘Covert Android Rootkit Detection: Evaluating Linux Kernel Level

Rootkits on the Android Operating System’, p. 98. Available at:

http://www.dtic.mil/dtic/tr/fulltext/u2/a563041.pdf%5Cnhttp://oai.dtic.mil/oai/oai?verb=getReco

rd&metadataPrefix=html&identifier=ADA563041.

GitHub - mra12/labelingDataset (no date). Available at:

https://studentncirl-my.sharepoint.com/:v:/g/personal/x19207611_student_ncirl_ie/ES_zYR2Pp1VPpsooKyqNLnsBZLcwlT_bI9hUTB-zLb4wtA?e=69RlFe

https://github.com/mra12/labelingDataset (Accessed: 12 August 2022).

Guri, M. et al. (2015) ‘JoKER: Trusted detection of kernel rootkits in android devices via JTAG

interface’, Proceedings - 14th IEEE International Conference on Trust, Security and Privacy in

Computing and Communications, TrustCom 2015. IEEE, 1, pp. 65–73. doi:

10.1109/Trustcom.2015.358.

javatpoint (2019) ‘Supervised Machine learning - Javatpoint’. Available at:

https://www.javatpoint.com/supervised-machine-learning (Accessed: 12 August 2022).

Jiang, X., Lora, M. and Chattopadhyay, S. (2020) ‘Efficient and trusted detection of rootkit in

IoT devices via offline profiling and online monitoring’, Proceedings of the ACM Great Lakes

Symposium on VLSI, GLSVLSI, pp. 433–438. doi: 10.1145/3386263.3406939.

Kuzminykh, I. and Yevdokymenko, M. (2019) ‘Analysis of Security of Rootkit Detection

Methods’, in 2019 IEEE International Conference on Advanced Trends in Information Theory,

ATIT 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc., pp. 196–199.

doi: 10.1109/ATIT49449.2019.9030428.

Lab, L. T. (2021) Rooting Malware Makes a Comeback: Lookout Discovers Global Campaign.

Available at: https://www.lookout.com/blog/lookout-discovers-global-rooting-malware-

campaign (Accessed: 12 August 2022).

Luckett, P., Todd McDonald, J. and Dawson, J. (2016) ‘Neural Network Analysis of System Call

Timing for Rootkit Detection’, Proceedings - 2016 Cybersecurity Symposium, CYBERSEC 2016.

IEEE, pp. 1–6. doi: 10.1109/CYBERSEC.2016.008.

Nadim, M., Lee, W. and Akopian, D. (2021) ‘Characteristic features of the kernel-level rootkit

for learningbased detection model training’, IS and T International Symposium on Electronic

Imaging Science and Technology, 2021(3), pp. 1–7. doi: 10.2352/ISSN.2470-

1173.2021.3.MOBMU-034.

Nagy, R. et al. (2021) ‘Rootkit Detection on Embedded IoT Devices’, Acta Cybernetica.

University of Szeged, Institute of Informatics, 25(2), pp. 369–400. doi:

10.14232/ACTACYB.288834.

Ranajit Singh Mehroke (2019) ‘Attacks on the Android Platform’ by Ranajit Singh Mehroke.

Available at: https://repository.stcloudstate.edu/msia_etds/82/ (Accessed: 12 August 2022).

Rashed, M. and Suarez-Tangil, G. (2021) ‘An analysis of android malware classification

services’, Sensors. MDPI AG, 21(16). doi: 10.3390/S21165671.

Sayadi, H. et al. (2021) ‘Towards accurate run-time hardware-assisted stealthy malware

detection: A lightweight, yet effective time series cnn-based approach†’, Cryptography. MDPI,

5(4). doi: 10.3390/cryptography5040028.

Significance of Data Transformation in Machine Learning | (no date). Available at:

https://www.analyticsinsight.net/significance-of-data-transformation-in-machine-learning/

(Accessed: 12 August 2022).

Singh, B. et al. (2017) ‘On the detection of Kernel-level rootkits using hardware performance

counters’, in ASIA CCS 2017 - Proceedings of the 2017 ACM Asia Conference on Computer and

Communications Security. Association for Computing Machinery, Inc, pp. 483–493. doi:

10.1145/3052973.3052999.

Sruthi, E. R. (2021) Random Forest | Introduction to Random Forest Algorithm,

AnalyticsVidya.com. Available at:

https://www.analyticsvidhya.com/blog/2021/06/understanding-random-forest/ (Accessed: 12

August 2022).

Tian, D. et al. (2019) ‘A Kernel Rootkit Detection Approach Based on Virtualization and

Machine Learning’, IEEE Access. Institute of Electrical and Electronics Engineers Inc., 7, pp.

91657–91666. doi: 10.1109/ACCESS.2019.2928060.

Wang, Z. et al. (2008) ‘Countering persistent kernel rootkits through systematic hook discovery’,

in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), pp. 21–38. doi: 10.1007/978-3-540-87403-

4_2.

Xie, X. and Wang, W. (2013) ‘Rootkit detection on virtual machines through deep information

extraction at hypervisor-level’, 2013 IEEE Conference on Communications and Network

Security, CNS 2013. IEEE, pp. 498–503. doi: 10.1109/CNS.2013.6682767.

