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Abstract 

In this modern world filled with technologies, the usage and growth of android 

apps has gone up in the previous years. In a recent survey conducted it was noted 

that out of 100 randomly selected people, 87 of them used mobile devices based 

on android. This shows that android users are of 87%. As the number of users 

increases the chances of being targeted for malicious activities are also high. A 

survey states that an approximate of 38,000 malwares are being created by 

malicious users to exploit android devices. It is high time that, a measure to be 

implemented to overcome the malwares. As technologies are being improved on 

the daily basis and by using reverse engineering methods, malicious users are 

generating malwares which are extremely difficult to detect. Malwares in a device 

can be broadly classified as code based malware and behaviour based malware. 

 

This paper proposes a malware detection method which is based on behaviour. 

This method is considered to be effective and agile. The proposed method is based 

on sensitive API. There are two phases in this method, which are training phase 

and testing phase. The training phase is responsible for collecting the API of 

multiple apps in a eigenvector format. This collected data are then used later on to 

find out the connection between API calls and malware, from which new 

combination of API are generated. Performance of each algorithm are tested and 

the best 3 are selected using the help of K-fold cross validation method. The 

selected models are then embedded to ensemble learning model for the evaluation 

of performance. Performance of the model is identified by its working efficiency 

and its outputs accuracy. In this paper, the algorithms used are Neighbour’s, SVM 

Classifier, Decision Tree, Naïve Bayes, Random Forest, Linear Discriminant 

Analysis and the top 3 performing algorithm along with ensemble learning model 

gave out an accuracy rate of 96%.  
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1 Introduction 
 

Mobile devices in this fast-moving world have become one of the essentials of life. It has 

become a part of a routine for all of us. Mobile devices running on android platform are being 

widely used than any other mobile device platforms. This is due to the easiness by which you 

can use the phone as well as the option given by the device to make changes to its properties 

which allows a user to customise their phone according to their wish. [1] The number of android 

users has tremendously increased, which in turn increase the number of malicious users trying 

to exploit the devices. Many malicious applications are being developed and uploaded to the 

play store and are available on the internet. User unknowingly download the applications and 

the malware gets activated in the device.  

 

The system resources are being managed by the API resources. The number of API’s differ in 

each application, in which high risk APIs are mostly seen in malicious application. By 

observing a malicious application and a genuine application, sensitive APIs are being used or 

called often in a malicious application than a genuine application. This observation can be used 

to determine whether an application is malicious or legitimate. This will not be an easy task 

ass each application will have a large number of API used to run. So, finding a set of APIs to 

keep as a standard reference for future investigations or findings for detecting malware will be 

difficult task.  

 

This paper focuses on identifying malware in an android device using behaviour-based method. 

This method consists of two phases namely, detection and training phase. This can be further 

categorised. A combinational set of 20-dimensional API are being categorised based on the 

sensitivity level from the mutual information. The output is predicted by combining the output 

of the KNN with decision tree and the results were observed to be 92% accurate.  

 

This paper focuses on detecting malware in an android device by using its sensitive APIs from 

the application. The mutual information model was taken into usage for the development of a 

refined set of sensitive API calls. Moreover, each algorithm was closely examined for their 

accuracy rate and found out that the top 3 algorithm with highest accuracy rate was found to 

be K-Neighbour’s, Decision Tree and Random Forest with an accuracy rate of 93%, 95% and 

95% respectively. These were then embedded to ensemble learning model for the purpose of 

detecting malware and was found out that the accuracy rate was around 96%. Which proved 

that detection of malware using this method was more accurate and efficient. 

 

2 Related Work 
 

Observing a literature survey, it was seen that almost three fourth of the analysis made was 

based on static analysis. There must be more work to be performed on these methods to get a 

better and efficient method for detecting malware in a device. This must be accomplished by 

obtaining a method with higher accuracy with the minimum number of features used as the 

number of features increases the time required for testing and training also increases. [2] 

 

The [3] proposed that a method in which the permissions were taken from the 

AndroidManifest.xml file. For the filtration process three levels of data pruning was performed 

which mainly focused on clearing out the extra permissions which were not required without 

affecting the accuracy. The results were as good as the accuracy rate given by google which 
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gave out the dangerous 24 permissions. The accuracy calculated was around 91.34% and a 

drawback found was that it does not work on skewed dataset optimised to 22 permissions.  

 

[4] proposed a method in which, analysis was made based on the permission in the Android 

manifest of the application and observed the most relevant 37 permissions using Chi square 

method with the help of Naïve Bayes classifier. The accuracy was observed to be 82.4%. 

 

[5] proposed a method in which for detecting malware in an application based on the traffic in 

the network. Chi square test along with Information gain were used to rank the selected 

features. Naïve bayes classifier was used for the classification in this method and the 

optimization was done to the method which reduced the feature to 9. 

 

[6] suggested a method called Mmda, which was developed on the basis of the metadata present 

in the android manifest file. 122 features were being extracted from the application and 

different classifiers were used to check the accuracy rate and finally ended up in Random Forest 

classifier which gave out 94% accuracy. Permissions, hardware feature, total declared actions 

were some of the extracted resources. 

 

[7] proposed a method in which, the detection of malware in an android device was carried out 

through the category of the application. They categorised legitimate application and malicious 

application with respect to their features. For this method they have used SVM along with 2775 

features. 

 

[8] proposed a method in which DEX string along with android manifest strings and Hashes 

are being used. Using dimensionality reduction method, they reduced around 10 million 

features to 10,000 and classified using SVM to get an outstanding accuracy of 99.91%. 

 

[9] came up with research called ScanMe by which the application will be deployed to the 

cloud platform and malware will be detected using a detection method based on cloud and a 

report will be generated about the uploaded APK file.  

 

[10] proposed a cloud-based framework which could evaluate the risks that can be caused at 

the API level called ASCAA. The evaluation was done for the permissions in the android 

manifest file. After a bit of research and study, it was concluded that ASCAA was able to 

determine whether an application was malicious or not as the failure rate was one is to eight. 

This method had an accuracy rate of 93% but was not fully reliable as one out of eight went 

wrong. 

 

[11] made analysis based on static code. The behaviour of the malware in an application were 

captured using its authorizations in the application as well as the API calls. This was carried 

out using KNN and Naïve Bayes classification model. This method gave out an accuracy rate 

around 95% with a true positive rate of around 89%. 
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[12] proposed a method by which detection of malware in an android device took place using 

static analysis along with machine learning. This method was considered to be fast as the 

proposed method was able to analyse 10,000 applications in less than 24 hours, which means 

each application took an estimated time of 750 milliseconds to run. For static analysis, the 

eigen vectors were put into join vector spaces. Although with this many advantages, this 

method lacked dynamic analysis.  

 

[13] proposed a method by which pairing of malicious profile along with similar data flow 

takes place. Mainly, two steps are being followed in this method. Firstly, malware profile and 

the information flow are being checked for matching. Secondly, the container node is being 

checked to find out whether the source node and the destination node corresponds. This method 

was only applicable on Nexus devices. On the other hand, our proposed method works perfectly 

on all the android versions as well as the devices. 

 

For finding the non-legitimate code in android application, [14] introduced a method using 

machine learning. The mostly used APIs in a legitimate and malicious applications were noted 

and ranked. More than 60,000 applications were then assessed using Random Forest classifier 

from which the top 50 genuine and malicious API were chosen using the ranking. It was seen 

that, detection rate for finding a genuine application was around 99.98%. 

 

[15] introduces a method which could overcome the limitations caused by static and dynamic 

analysis. The time-consuming process of static analysis for identifying the use of API along 

with the intent messages with time complexity of the dynamic analysis can be resolved using 

this method.  According to this method, the Dalvik bytecode was being converted in RGB files. 

Using the help of CNN method, the model was being trained for detecting malware in android 

application. It was observed that the detection of malware from an application took around 0.22 

seconds, which was very fast compared to the previous methods. This method was fast and 

gave out an accuracy rate of 93%.  

 

[16] proposed a method in which the malware which are there in the application are being 

converted into greyscale images. For extracting GIST descriptor have been used. The .DEX 

will be extracted from the android application and will get converted to the 8-bit binary format. 

These are then inputted to machine learning for training and testing the dataset. These are 

inputted to KNN, DT and RF classifiers and checked for accuracy. It was seen that, none of the 

classifier gave out an extremely good accuracy rate. 
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Author  Referenced Characteristics   Drawbacks  

[3]  Multilevel data pruning to 

optimise permission 

 

Accuracy was 91.34% 

 Does not work on 

skewed dataset 

[4]  The permission gathered were 

ranked using chi square. 

It was optimised to 37 

permissions 

Its accuracy was 82.4% 

  

[6]  Optimised to 122 features  

Accuracy was 94% 

  

[8]  Accuracy rate was 99.91%  The feature 

vector was too 

large 

[9]  Statistic and dynamic analysis 

performed by cloud based 

sandbox 

Accuracy 86% 

  

[10]  Accuracy rate was 93%  One eight of the 

results failed 

[11]  For finding the true positive 

rate the accuracy rate was 

95.1% 

 True positive rate 

accuracy was 

89% 

[12]  Lower false alarm rate 

Very quick in detecting 

malware 

 No dynamic 

analysis 

[13]    Detection of 

malware limited 

to only Nexus 

smartphone 

 

 

 

3 Research Methodology 
 
The main reason for implementing this proposed work is for achieving a method for detecting 

malware in android devices with high accuracy rate as well as with the help of minimum number 
features. This paper mainly comprises of two parts. These can be categorised into training phase 
and detection phase. Also, the learning model comprises of feature generation as well as ensemble 

learning model. The dataset has been chosen from Kaggle which comprises of 215 vector attributes 
which have been collected from more than 15,000 applications.  

 

3.1 Recursive Feature Extraction 

Recursive feature extraction is the process or the method by which the features are being 

selected so that each feature fits into a model. This is done by eliminating the features which 

are weak until reaching the specified number of features for the model. This type of feature 
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extractions is called as recursive feature elimination. This method consists of two attributes 

namely coef_ and feature importance_. Among all the features available in a model, it is 

uncertain to predict which all features are required, and which features are unnecessary. 

Recursive Feature elimination provides the model with the required features. The best 

performing arrays of features are chosen with the help of K-Fold validation and RFE.  

The cross validated test score and variability are then displayed by the RFECV visualiser. 

 

 

 
 

 

 
 
Let us take an example into consideration to understand the working of recursive feature 
elimination. Take a dataset with 25 features in it.  Out of the 25 features in the dataset, consider 
only 3 features as genuine. From the figure, the curve forms a curve by increasing while 
reaching the value 3 and then the curve descends after the value 3. This shows that those value 
are not required for the model. The cross validated portion is being represented using the shaded 
portion in the figure. 
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3.2 Optimization 

Feature optimization can be achieved to improve and increase the model’s efficiency and 

performance by keeping the features which are only required by bringing in an extraction 

method. In the base paper, the author has not mentioned anything about how accurate the 

learning models are for the process of detecting malware in an application. The paper does 

not give any information to support that the algorithms used gives out the best performance 

or accuracy. The author has randomly chosen algorithms to detect malwares and it was found 

that, this model gave out an accuracy rate of 92%. It is not necessary that, the randomly 

selected classifiers along with ensemble learning model will give out the best output accuracy 

rate for detecting malware. In-order to get the best result, all the 6 classifiers will be 

individually trained and tested to get the best output.  

 

The widely used classifiers are, Naïve bayes, Random Forest classifier, KNN, SVM, Decision 

tree and linear discriminant analysis. All the mentioned classifiers are being tested separately 

along with K-Fold validation method, and the accuracy rate of each model are compared to 

find out the 3 best performing classifiers. These are then inputted to ensemble learning model.  

 

3.3 K-Fold Cross Validation  

 

K-Fold validation method can be categorised to testing phase, training phase and then 

validation phase. This method is used as it is considered to be less biased compared to other 

methods. The number of folds to be done on the dataset in a K-Fold validation method is 

represented by the letter k. There will be a certain number of fixed turns(k-1) for the training 

set. Using the observations, the model will learn about the distribution in each fold.  The 

value of K is usually not too high or not too low, it is set somewhere between 5-10 as low 

value leads to highly biased model and high variance can be caused if the k value is too high. 

This method is termed as Leave one out CV. 
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https://www.r-bloggers.com/2019/10/evaluating-model-performance-by-building-cross-

validation-from-scratch/  

 

The average performance of the model is calculated after every iteration of the K-fold model 

made by the k value. These values are then returned back to the model. In each loop, a new 

combination of data are created as the value of the validation and training data are modified in 

each loop. The best model is noted down in each loop, this is performed using a call back 

function. The saved files are named differently in each loop in-order to prevent overwriting of 

data.  For the purpose of evaluation, weight of the model is taken into consideration. For 

evaluating the performance, the function is being inputted with the highest weight of the model. 

 

The models performance is calculated using K-Fold validation and the average is calculated. 

The best set of features will be taken for the implementation part. Ranking of the API takes 

place with respect to the malicious behaviour of the API. With respect to the reference 

standards twenty-dimensional vectors are being used. These vectors are then inputted for 

training to ensemble model. 

 

3.4 Feature Vector 

The process of creating sensitive API is a time-consuming process, to avoid this problem, for 

this research project a dataset was taken from Kaggle which comprises of application both 

malicious and legitimate with a set of APIS within them. This dataset was chosen because, the 

sensitive scores of the API are pre-recorded and placed in the dataset. From the dataset it can 

be clearly understood whether an API has been used in the application or not. For example, if 

the API has a value of 0 then that API has not been used in that application. Similarly if the 

API has a value 1 then it means that that API has been used in that application.  

 

The API present in the application are represented or displayed in the format 

[X1:Y1;X2:Y2;X3:Y3; Xi:Yi; Xn:Yn](i=1,2,3…n) which is a comma separated value file, in 

which Xi shows us the name of the API and on the other hand Yi shows us the binary value. 
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From the given 20-dimensional, twenty sensitive API will be inputted to the classifiers. After 

observing the K fold cross validation carefully, the best will be embedded to ensemble learning 

model. 

 

 

4 Design Specification 
 

 

KNN  

 

KNN can be termed as a basic machine learning technique that can be used for classification. 

This classifier method distributes data to classes which are showing similar properties. The 

performance of this classifier is mainly dependent on the k value. To archive a greater accuracy, 

the K value should be set to a higher value. The square root of the recorded observation in the 

dataset are used in-order to find the most accurate k-value 

 

 
 

SVM  

 

SVM is a form of machine learning method, that have been widely used for novelity detection, 

finding regressing and also for classification. This strategy is relatively new and is formed or 

based from the statistical learning theory. Because of its high accuracy rate, SVM has become 

famous for multi-classification problems. This method also outperforms the currenly existing 

techniques as it has a 2 dimensional description of optimal surfaces which are being derived 

from linearly separatable examples and also SVM is dependent on the principles of structural 

risk management. 

 

 

Decision Tree  

 

Decision tree algorithm is another form of classification, which is developed by closely 

studying the dataset.  The data features are being referred by sample questions which are from 

the data categorization as each question is being designated to a child node. The categorisation 

takes place from the highest rank to the lower rank. Interpretation can be seen as a better option 

in DT when compared to neural network. 

 

 

Naïve bayes    

This algorithm works with simple probability classification technique, which works on 

assumption of all features are being not dependent. The disadvantage of Naïve bayes is its 

independent data although its efficiency is comparable with neural networks and decision tree. 
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However, extending its structure will help in avoiding this problem. Mostly, this method is 

used for text classification in ML. 

 

Random forest  

 

In order to increase the classification accuracy, ensemble classification is used, which is known 

as Random Forest. When comparing to other classification, the accuracy of the results provided 

by this classification us higher as it employs many models to tackle a problem. The result for 

a problem is found out by a voting system and the final choice is being made with a prediction 

of majority votes. Because of the increased diversity, it is seen that the accuracy improves over 

the time.  

 

Linear discriminant analysis  

For the purpose of reducing the dimensionality in ML pre-processing steps and for 

classification of patterns Linear discriminant analysis is widely used. In-order to increase the 

class variance within the class LDA improves the separability of class by translating features 

into a reduced dimensional space. This can be both dependent or independent from the class. 

If the size of the dimension increases and overvalues the sample in the matrix then this method 

will become inefficient. 

 
 

5 Implementation 
 

For detecting malware in an android device in this research project all the classifiers have 

been independently checked for their accuracy rate, from which the top three performing 

algorithms have been chosen and embedded to the ensemble learning model. All the required 

information about the implementation part that have been carried out in the research are 

mentioned below.  

5.1 Environment Setup  

 

Python 

The coding for the research project model was executed in python version 3. Unlike other 

programming languages, because of its simplicity and readability this programming language 

was taken into consideration for doing the project. Moreover, even beginners can build an 

application using python language as it is simple and straightforward. This programming 

language also provides users with libraries that provides a wide range of library which helps 

users to save a lot of time.  

 

Anaconda Prompt 

The main advantage of using anaconda prompt in your application or project is that, once you 

have installed a python version in your system, this prompt lets you build a virtual environment 

that can be accessed from sites that have python in it. Anaconda prompt also gives the user a 

wide set of libraries which are prebuilt, and which helps them to develop easily. A lot of time 

gets saved by using the pre-built libraries.  

 

Tensor flow environment 

Tensor flow environment is mainly used in this project for importing the packages from python. 

Data flow graphs can be created using tensor flow with the help of the open-source AI library 
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which have been provided by the Tensor flow ecosystem. This also helps the user to create a 

huge number of neural networks along with other layers.  

 

 

 

5.2 Dataset  

 

The process of creating sensitive API is a time-consuming process, to avoid this problem, for 

this research project a dataset was taken from Kaggle which comprises of application both 

malicious and legitimate with a set of APIS within them. 

 
https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning 

 

 

The selected dataset comprises of feature vectors from the application. The dataset has been 

created by combining 15,000 applications. This combination of application includes legitimate 

apps as well as malicious one too. Out of 15,000 applications in the dataset 5560 application 

are not genuine ones, and the rest are genuine. This dataset was mainly developed for detecting 

malware in devices running on android platform.  

 

5.3 Dataset Pre-processing 

As the processing part for this project, the data is closely observed and checked to find if any 

of the values are found to be null or empty. If any values are found to be null or empty, then 

that field is being replaced with the value 0. After all the empty fields have been filled with 0, 

then the dataset is split into data and labels. Like filling empty slots with 0 value for the data, 

if any of the label field is found to be empty or null it is being replaced or places with the 

value “B”. B denotes the API is normal and S tells the user that the API is malicious.  

 

Once all the fields including the data and label have been filled and made sure that there are 

no null values, all the label values are converted to binary format. S value gets converted to 0 

and B value gets converted to 1. After these steps, once all the data present in the dataset now 

have been converted to integer type, this dataset will be converted to a NumPy array 

 

 

 

https://www.kaggle.com/shashwatwork/android-malware-dataset-for-machine-learning


 

12 

 

 

5.4 Feature Extraction using Recursive Feature Elimination (RFE) 

 

The RFE model was defined and fitted to the pre-processed data and labels. This was 

considered as the first step for feature extraction using RFE. This method then filters out all 

the unwanted elements and only the important elements were chosen. In this project, 20 

features were chosen from the dataset. 

 

5.5 Splitting data and label  

 

Splitting of the data and the label into the training set and testing set is done using the K-fold 

method. Before splitting the dataset into the above-mentioned set, the dataset is randomly 

shuffled. Once the shuffling has taken place, the dataset is being separated to k number of 

groups. From the formed groups by randomly shuffling, a set of data is taken for the purpose 

of testing and the rest is given for training. Following this, a model is being made to analyse 

the training set and are analysed on the testing set. Each time the score will be calculated and 

recorder and the model that have been analysed will be removed. Once all these steps are 

done, the score of the sample model is being used to summarize the skill of the model. 

 

5.6 Training and Testing 

 

During the training and testing phase, each of the classifiers KNN, SVM, DT, RF, NB and 

LDA have been trained using the data and the label that was there in the dataset. Once the 

training was completed by each classifier, each of the results would be saved for future 

references. After the completion of training the data, the same data would be used for testing. 

Finally, the performance and accuracy of the trained model was calculated by comparing with 

the model set by testing. 

 

5.7 Ensemble model 

 

Ensemble is a ML learning technique, which can be used to combine many base models for 

producing one optimal predictive model. After the completion of training and testing of the 

data in the dataset, now comparison of all the models is being made with their accuracy rate 

in output and the models with the most accurate outputs are being selected. In our project, the 

selected 3 classifiers were KNN, DT and RF. In-order to come up with a optimal predictive 

model, all the three classifiers were embedded to the ensemble learning model for training 

and testing. The predictions were made by the model, the dataset was being trained and tested 

and finally the performance was being calculated. It was seen that; the model gave out and 

accuracy rate of 96%.  
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6 Evaluation and Discussion 
 

For this project, an execution environment was setup for carrying out the proposed work, 

which had a computer system with 8GB RAM and more than 500 GB storage running on 

windows 7 or later. This approach was executed by coding in python programming language. 

6.1 Dataset 

The sample dataset with malicious application and legitimate applications was collected from 

Kaggle.  

6.2 Result Analysis 

In order to measure the accuracy, TN, TP, FN and FP were calculated using the formula  
 

in which True positive is represented as TP indicated all the correct samples represented as 

malware. TN represents the true negative value which are the correct samples represented 

as legitimate, FP represents false positive which means all the samples that are incorrectly 

shown as malware and finally FN which represents false negative, the number of samples 

which are shown incorrectly as legitimate apps.  
 

Accuracy= (TP+ Accuracy=(TP+TN)/(TP+TN+FN+FP)  

 
All the models were separately used for training and testing the dataset and individually 
accuracy rate of each model was being recorded. In-order to bring the optimal solution from 
ensemble learning model it was necessary that the top three performing classifiers with the 
dataset must be found. Testing and training were implemented, and the accuracy rate of each 
model are being listed below.  
 
 

 
 

 

The accuracy rate for each of the model have been shown below in a graphical representation 
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The goal of the project was successful as the base paper used 2 randomly selected classifier 

and the output accuracy obtained from the model was 93%. Our proposed method clearly shows 

that Ensemble learning model along with KNN, DT and RF have boosted up the accuracy rate 

from 93% to 96%. This shows that the predictions that was made in the starting of the project 

was correct and the proposed model was able to give out an application which can be used to 

detect malware using sensitive API with more accuracy, performance and efficiency.  

 

6.3 Discussion 

From the above representation and calculation, it is clear that ensemble learning model when 

embedded with KNN, RF and DT brings out an accuracy rate of 96%. This proposed model 

now can be used in the future for detecting malware in android devices or can also be used 

for separating applications which are malicious or legitimate. This model has a better 

accuracy rate than all the other classifiers because, each of the models were separately trained 

and tested with the dataset and accuracy rate of each models were noted down. In-order to get 

the optimal accuracy from these models, ensemble learning model was inputted with top 3 

performing classifiers. The model was then trained and tested with the dataset and the dataset 

was optimised to get a better performing accurate and reliable working model. In the base 

paper, feature elimination was not performed, in-order to boost up the efficiency and 

performance of the model, recursive feature elimination was included in this model with the 

help of K-Fold cross validation. This helped in removing the weakest features in the dataset. 
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7 Conclusion and Future Work 
 

In this modern world, the usage of smartphones and smart devices are increasing on daily 

basis. As the number of smartphone users increase, the risk of being attacked by a malicious 

user is also increasing. As the technologies grow every day, it is becoming very difficult to 

figure out whether an application is malicious or genuine. In order to save all the users from 

the malicious attacks that have been performed by attackers it is high time that a method to be 

introduced so that no more users can be trapped into the hands of a malicious user. This 

method lets the user know whether the app is safe or not and by giving the user a chance to 

decide whether to install the application or not. The main aim of this project was to build a 

software which was reliable, accurate and easy to use for detecting malware in an android 

device. For the purpose of increasing the accuracy and to get the optimal solution from 

ensemble learning model, all the classifiers were individually trained and tested using the 

dataset and the top 3 classifiers namely KNN, DT and RF were select and embedded to 

ensemble learning model. It came out to be more efficient than any of the models individually 

by giving the output with an accuracy rate of 96%. 

 

As a modification to the project in the future, the dataset containing the features were 

downloaded from the internet from publicly available open source domain  site called Kaggle. 
In-order to increase the efficiency, performance and accuracy of the model it is advised to 

extract the features manually rather than taking the dataset from the internet. 
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