
Configuration Manual

MSc Research Project

Cyber Security

Shiva Ramasamy
Student ID: X20135530

School of Computing

National College of Ireland

Supervisor: Ross Spelman

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shiva Ramasamy

Student ID: X20135530

Programme: Cyber Security

Year: 2022

Module: MSc Research Project

Supervisor: Ross Spelman

Submission Due Date: 15/08/2022

Project Title: Hybrid Security For Securing A Combination Of Physical And
Virtual Information Assets

Word Count: 3284

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Shiva Ramasamy

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Shiva Ramasamy
X20135530

1 Introduction

This document presents the configuration manual for the primary research settings and
runtime pertaining to the topic “Hybrid security for securing a combination of physical
and virtual information assets”. The security design is created for an organisation having
distributed critical IT assets in a large campus, such as an industrial setting. One may
visualise several servers installed in small scale data centres running monitoring and con-
trol applications of the production lines manageable through Augmented Reality (Gomes
et al.; 2020) (Palmarini et al.; 2018). Such campuses may be as large as 100 square kilo-
metres (such as a primary metal manufacturing plant). For security administrators, it
will be very challenging to administer hundreds of servers running the production lines.
This research investigates a “hybrid security monitoring system” that can detect physical
as well as virtual threats and raise alarms to the security administrators.

The design of the hybrid security monitoring system is presented in Figure 1:

Figure 1: Hybrid Security Monitoring System

Figure 1 shows a digital fencing around physical IT assets. A digital fence can be
configured by deploying at least three Wi-Fi access points such that the local X, Y,

1



and Z coordinates within the digital fence can be calculated using several metrics of
localisation in a network of Wi-Fi access points and Internet of Things deployment (Basri
and Elkhadimi; 2020) (Braggaar; 2018).

A large campus may have hundreds of such small fences. The IT assets within the
digital fences will have Internet of Things sensors attached with them communicating
with their respective API gateways. Each fence will have an API gateway consolidating
the data collected from the sensors in a JSON file that shall be sent to a centralised API
server over the campus LAN. In this research, the API gateway and the API server have
been programmed and tested. The API gateway is configured using Insomnia and the
API server is programmed in Java 13 using the Spring Boot framework. The database
used is PostgreSQL. The Spring Boot application comprises a rules engine written in Java
13 that receives the JSON files from the API gateways, matches with the stated rules
and the generates the alarms for the security administrators.

The variables entered in the JSON file of the API gateways are: X-location, Y-
location, Z-location, CPU fan speed, CPU temperature, GPU fan speed, GPU temperat-
ure, whether three logins failed, whether critical folder access denied occurred three times,
whether critical software installation failed, and whether critical security patch installa-
tion failed. In practice, the sensors will send the data to the API gateway, which in turn
will enter them into a JSON file and send to the API server. In this research, the JSON
data entry is done manually in the same format as the sensor data will be entered in it.
The subsequent section presents the installation instructions and the runtime reports.

2 Preparing the Ubuntu 20 virtual box inside Win-

dows 10

The steps for preparing the Ubuntu 20 environment are the following:

(a) Download and install VMware Workstation 16 Pro (an evaluation copy is suffi-
cient) for Windows 10 (a simple Windows installation).

(b) Download the ISO file of Ubuntu 20.0.4 available on the Ubuntu.com website.
(c) Launch VMware Workstation 16 Pro and click on the icon allowing creation of a

new virtual machine.
(d) It will open a wizard for creating a guest operating system on the top of Windows

10.
(e) In the wizard, give the path to the ISO file of Ubuntu 20.0.4nd press Next.
(f) Setup the machine name, username and password and press next.
(g) Give the virtual machine a unique name and also a path, and press next.
(h) Assign a size of disk to Ubuntu (preferred is 100GB); prefer splitting of the virtual

disk into multiple files and press next.
(i) This screen will show all the settings done for the virtual machine. Confirm them

and press finish.
(j) Now the virtual machine hardware settings will be shown. Verify the configurations

and press OK.
(k) The virtual machine will be installed. After installation, it will have two tabs:

home and virtual machine name allocated.
(l) Press on a link “power on this VM”; Ubuntu installation will begin.

2



(m) It will give two options: Try Ubuntu and Install Ubuntu; press the button “Install
Ubuntu.

(n) Now follow the instructions on the subsequent screens. It is a simple “Windows-
type” installation.

(o) The Ubuntu 20.0.4 desktop will be visible after installation. Just login and the
desktop screen appears.

The next steps are to install the development and runtime environment. To prepare
for it, the following steps should be taken:

Launch the Terminal and run the following command:

sudo su

Input the administrator password. The main command prompt will appear. Now run
the following command:

sudo apt-get update

This command should be run at the beginning and after every installation.

3 Installing the Java environment

The next step is to install Java JDK 13. In the terminal, run the following command:

sudo apt install openjdk-13-jdk

Press y and then ”Enter” to start installation. Ubuntu will begin installation by
downloading Java JDK 13 from the Ubuntu servers.

To check installation, run the following command:

java –version

Finally, run the command sudo apt-get update again.

4 Installing Maven for running Spring Boot Frame-

work

Maven is needed to run the Java Spring Boot framework. Install it by running the fol-
lowing command:

sudo apt install maven

To verify installation, run the following command:

mvn -version

3



Finally, run the command sudo apt-get update again.

5 Installing Insomnia API Gateway

Insomnia is needed to prepare and send the JSON files to the API server. In real world
implementation, it will require a code layer for collecting the data from the Internet of
Things sensors attached to the IT assets and compile the JSON file. For the testing
purpose in this research, the JSON file is created manually.

To install Insomnia, run the following command in the terminal to create an etc file
in Ubuntu for Insomnia:

echo ”deb [trusted=yes arch=amd64] https://download.konghq.com/insomnia-
ubuntu/ default all” — sudo tee -a /etc/apt/sources.list.d/insomnia.list

Now, run the following command:

sudo apt-get install insomnia

Press y and then ”Enter” to start installation.

Finally, run the command sudo apt-get update again

6 Installing PostgreSQL and PGAdmin4

PostgreSQL is the database server in which, the data sent by the API gateway in JSON
format is parsed and stored. The API server parses the data received and stores in
the PostgreSQL database. There are several steps to be followed to install PostgreSQL
and its user interface client called PGAdmin4 (Drake; 2020) . PGAdmin4 can be used to
conduct all database tasks from the graphic user interface that is a windows-like interface.

(a) To create file repository configuration, run the following command:

sudo sh -c ’echo ”deb http://apt.postgresql.org/pub/repos/apt $(lsbrelease − cs) −
pgdgmain” > /etc/apt/sources.list.d/pgdg.list′

(b) Import signing key:

wget –quiet -O - https://www.postgresql.org/media/keys/ACCC4CF8.asc
— sudo apt-key add -

(c) Run the main command for installing postgresql:

sudo apt-get -y install postgresql

Press y and then ”Enter” to start installation.

4



(d) UI Client for PostgreSQL:

Next, install User Interface Client for Postgresql, known as PGAdmin.

Before starting run: sudo apt-get update

(a) Install public key for repository:

sudo curl https://www.pgadmin.org/static/packagespgadminorg.pub|sudoapt−keyadd

(b) Create Repository configuration file:

sudo sh -c ’echo ”deb https://ftp.postgresql.org/pub/pgadmin/pgadmin4/apt/$(lsbrelease−
cs)pgadmin4main” > /etc/apt/sources.list.d/pgadmin4.listaptupdate′

(c)) Install PGAdmin:

sudo apt install pgadmin4

Press y and then ”Enter” to start installation.

Finally, run the command sudo apt-get update again.

7 Explanation of the codes

The codes written for the API server in Spring Boot are explained in this section. Spring
Boot is a Java framework that is built upon Java JDK 13 and Maven. The framework
works as a system comprising an internal API server (called embedded Apache Tomcat)
and routing of API calls managed through an application properties file (shown in Figure
2) (Webb et al.; 2020). It is a standard file that comes with hashed commands. The
hashes need to be removed as per the project requirements. The application Properties
file defines the database connection, database name, database access credentials, and the
port number to launch the API server. The database connector used is Java Data Base
Connector (JDBC) and the data access layer is created using Java Persistent API (JPA)
Hibernate running the PostgreSQL driver.

From Figure 2, it may be observed that the TCP port of API server, the path of
database for JDBC connection, and the username and password of database connection
are hard coded in this file. The PostgreSQL driver and the Java Persistent API (uses
JDBC to create a data access layer called boiler plate) are also defined in the application
properties file (Oliver Gierke; 2022)l (Webb et al.; 2020). This is a critical file stored deep
inside the runtime folder structure. It is accessible only to the application administrators.
If deployed on the cloud computing, either in Kubernetes orchestration engine or in a
virtual machine, this file is accessible to the virtual private cloud administrator.

The framework installation is controlled through a file called pom.xml (Webb et al.;
2020). Figure 3 shows the screenshot of pom.xml. This file comprises all the dependencies
that need to be downloaded and installed in Sprint Boot framework pertaining to a
project. Figure 3 presents the Pom.xml configuration of Spring Boot. Pom.xml is an XML
application file connecting with the schema at http://maven.apache.org/POM/4.0.0. It

5



is a configuration to request for packages from Spring Boot framework. The application
name is defined in this file along with the name of the final JAR file to be compiled. In
this research, the application name is “listener” and the JAR file composition is named
as: listener-1.0-SNAPSHOT.jar. It comprises all the essential classes of Spring Boot to
run the class files created by the Java coding done for the “listener” application. Its
composition is explained later in this section.

Figure 2: Java Spring Boot Application properties

Figure 3: Java Spring Boot pom.xml code snippet

6



Figure 4: Java Main Class for the Spring Boot API server

Figure 4 shows the main class called “LocationService”. The package name defined
is “location”

Figure 5: Java Model File for defining the database structure for the Spring Boot API
server

Figure 5 shows the class called “LocationModel”. It is stored under the “Main” folder
of the package “Location”. A model file is used to define the structure of data in the
database and the corresponding variable name of each data unit. It uses the Lombok and
javac.persistence packages along with several dependency injections. When the controller
code receives the data, this file helps in saving the parsed data in appropriate columns
in the database.

Figure 6 shows the repository code. Its class is “LocationRepository”. This code
is used to initiate the JPA queries that can be run on the database to fetch data for

7



analysis. The “Map” and “Pageable” packages can organise data fit for creating a data
presentation page.

Figure 6: Java Repository File for creating a JPA instance for database connectivity for
the Spring Boot API server

Figures 7 and 8 show the main controller code in the Spring Boot API server. Its
class is “LocationController”. This code receives the data from the API gateway, sends
the data to the repository that uses the model code to save the data in the database,
and runs the main rules for hybrid security to generate alarms. There are four risk levels
programmed in this code:

(a) Low - when no parameter is breached.
(b) Medium - when one parameter is breahed.
(c) High - when two parameters are breached.
(d) Critical - when three or more parameters are breached.

When the controller receives the data from the API gateway, it runs them through
the rules stated as the following:

(a) X-location is changed by greater than 10 metres.
(b) Y-location is changed by greater than 10 metres.
(c) Z-location is changed by greater than 10 metres.
(d) CPU fan speed has increased beyond 1100 RPM.
(e) CPU temperature has increased beyond 80 degrees Celsius.
(f) GPU fan speed has increased beyond 1100 RPM.
(g) GPU temperature has increased beyond 80 degrees Celsius.
(h) Whether three logins have failed (Boolean – Yes or No).
(i) Whether critical folder access denied occurred three times (Boolean – Yes or No).
(j) Whether critical software installation failed (Boolean – Yes or No), and/or
(k) Whether critical security patch installation failed (Boolean – Yes or No).

If none of these rules have occurred, the API server will send a response: ”RISK
LEVEL: RISK LEVEL: LOW. No errors detected”

If one of these rules has occurred, the API server will send a response: ”RISK LEVEL:
MEDIUM. Description of the specific breach.”

8



If two of these rules have occurred, the API server will send a response: ”RISK
LEVEL: HIGH. Description of the specific breaches.”

If three or more of these rules have occurred, the API server will send a response:
”RISK LEVEL: CRITICAL. More than 3 errors detected”

Figure 7: Java Controller File acting as the rules engine for the hybrid security threats
detection and raising the alarms for the Spring Boot API server

Figure 8: Java Controller File showing a snippet of the rules engine coding for the hybrid
security threats detection and raising the alarms for the Spring Boot API server

In order to return the right risk level after reading the data set arrived, all possible
scenarios of comparison of parameters have been written in the code. Given that there

9



are eleven parameters, writing all possible combination of rules caused the Location Con-
troller Java code to be written in almost hundred pages. This has been done to create a
complete model of collaborative security as explained by (Happa et al.; 2019; Plósz et al.;
2017).

The next section presents screenshots and explanations of the tests executed through
the runtimes.

8 Explanation of the runtimes

The Spring Boot API server runtime is invoked by the following command at the path
/Shiva Project:

mvn clean install -DskipTests

Figure 9: Starting to build the Sprint Boot application for the API server

10



Figure 10: Ending to build the Sprint Boot application for the API server

The command “mvn” invokes Maven, which is essential for installing a spring boot
project as a runtime. This occurs as a .JAR file of the entire project is created in the
path: /Shiva Project/target. The screenshot in Figure 9 shows the beginning of this
process and the compilation of the four source files created. The compiled classes are
stored at /Shiva Project/target/classes. Figure 10 shows completion of the build process
and creation of the JAR file as: /Shiva Project/target/listener-1.0-SNAPSHOT.jar.

Figure 11: Starting the main JAR file of Sprint Boot application for the API server

Finally, the Spring Boot API Server application is launched through the following

11



command at the path: /Shiva Project/target/

java –jar listener-1.0-SNAPSHOT.jar

Launching of Spring Boot is shown in Figure 11. This command launches all the spring
boot services needed to run the application, such as JPA Persistence, Hibernate, Embed-
ded Apache Tomcat, API listener, and Spring Data Repository. As per the “application
properties” file (discussed earlier), the API service launches at http://localhost:8081.

Figure 12: The three classes created in the “listener” application shown inside the listener-
1.0-SNAPSHOT.jar file

Figures 12 and 13 are presented specifically to show the classes inside the “listener-1.0-
SNAPSHOT.jar” JAR file. Figure 7 shows the classes created for this experimentation
and Figure 12 shows the Spring Boot classes downloaded and installed by Maven. These
classes are essential to run the fully packaged API server with network, transport, session,
and application layers using Spring Boot framework.

Figure 13: The Spring Boot classes downloaded by Maven and created in the “listener”
application shown inside the listener-1.0-SNAPSHOT.jar file

12



After completing the Spring Boot coding and configuration tasks, the API gateway
was installed and configured to prepare it to send the JSON file data to the API server
(Figure 14). In this screen, the JSON file can be inserted as a “Body” and the POST
REST call can be made by entering the URL of the API server.

Figure 14: Configuring Insomnia to prepare it for JSON object transmission to the API
server

Figure 15: PostgreSQL database creation

13



Finally, the database was created in PostgreSQL as shown in Figure 15 . The database
name created was “shivaproject” and the table created was postgres@listener (listener
schema accessed by the username postgres). The columns for the eleven parameters were
created in the listener table. The JDBC, JPA, and Hibernate settings were tested by
sending test data from the API gateway through example JSON files.

With the API server in operation, the next step is to launch the API gateway, prepare
the JSON file, and send to the API service address. Figure 16 shows this process. An
insomnia instance is first created within the Insomnia application at the path /Insom-
nia/ShivaProject. The full API server path is at: http://localhost:8081/location. Here,
“location” is the name of the package. Figure 16 also shows the JSON file configuration
with the eleven parameters related to hybrid security. The specific JSON file in Figure
16 has no parameter breached. Hence, the response is:’RISK LEVEL: LOW. No errors
detected”’. The Figure 17 however shows a breach. The response for the specific breach
is: ’RISK LEVEL: MEDIUM. Three attempts to access critical folder was made’.

Figure 16: The API gateway showing JSON file feed to the API server and the response;
this screenshot shows a Low Risk Level response

14



Figure 17: The API gateway showing JSON file feed to the API server and the response;
this screenshot shows a Medium Risk Level response

Figure 18 shows the JSON file with two breaches. Hence the response is:’RISK
LEVEL: HIGH. Three attempts to access critical folder was made and critical software
installation has failed’.

Figure 18: The API gateway showing JSON file feed to the API server and the response;
this screenshot shows a High Risk Level response

15



Figure 19: The API gateway showing JSON file feed to the API server and the response;
this screenshot shows a Critical Risk Level response

Figure 19 shows the JSON file with three breaches. Hence the response is:’RISK
LEVEL: CRITICAL. Three attempts to access critical folder was made. Critical soft-
ware installation has failed. Critical security patch has failed to install’.

Figure 20: The PGAdmin4 interface connected to the PostgreSQL server showing the
data coming from the API gateway getting stored

16



In this way, multiple cases were tested. All cases are recorded in the database, as
shown in Figure 20. Finally, Figure 21 shows that all alert logs are recorded in a text
file, which can be used for further analysis. The database can be accessed by going to
the path Tables – Location – Columns. A SQL query needs to be executed as shown in
the Figure 20.

Figure 21: The Risk logs generated by the rules engine in the Spring Boot API Server

Multiple test cases were tested for all the four risk levels and multiple parameter
breaches. The system worked satisfactorily for all the cases. The data was saved in
the database in appropriate columns; the risk level responses made along with descrip-
tion of the breaches were accurate. Further, the alert messages were logged into a text file.

The text file is used in this research to log Alerts. In real world systems, the logs will
be stored in a separate activity logging database, which will have its own analytics layer.
By collaborating the information in multiple parameters, the exact threat scenario be
judged. For example, if the GPU and CPU temperatures of a server have breached the
limits and the server itself has been shifted by about 20 metres, the security administrator
can judge that the server has been shifted from its air conditioning environment and is
now facing heat. This may have happened because the air conditioning malfunctioned
and a technician is on site to repair it. For plant continuity, the supervisor may have
decided to shift the server outside the air conditioning cubical while the technician is
carrying out the repairs but keeps the server running. There can be numerous such
scenarios in a plant campus when this hybrid security system can be very useful.

9 Conclusion

The research was conducted for designing a test lab implementation of a hybrid security
system for detecting both physical and virtual threats in the same framework. This
framework shall be useful for campus deployments of distributed IT assets in several
air-conditioned cubicles for running several modules of manufacturing. This system is
designed based on the concept of digital fencing and localisation of coordinates within
the fence using Wi-Fi access points. The application was developed in Java Spring Boot
framework serving as an API server and a hybrid security rules engine. API gateways were

17



configured with a conception that sensory data from the IT assets will be consolidated
in JSON files and transmitted to the API server. This document presented detailed
instructions on installation of the environment. In addition, the document presented a
description of the coding done (although the codes are not included in this document
because of their length; they are available in a different document and can be provided
on request). Finally, the runtime test reports were also presented. All evidences have
been supported by screenshots where sufficient details are justified to be shown in them.

References

Basri, C. and Elkhadimi, A. (2020). A review on indoor localization with internet of
things, The International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences XLIV-4/W3-2020: 121–128.

Braggaar, R. (2018). Wi-fi network-based indoor localisation: The case of the tu delft
campus.

Drake, M. (2020). How to install and use postgresql on ubuntu
20.04, https://www.digitalocean.com/community/tutorials/

how-to-install-and-use-postgresql-on-ubuntu-20-04.

Gomes, P., Magaia, N. and Neves, N. (2020). Industrial and artificial internet of things
with augmented reality, Convergence of Artificial Intelligence and the Internet of
Things, Springer, pp. 323–346.

Happa, J., Glencross, M. and Steed, A. (2019). Cyber security threats and challenges in
collaborative mixed-reality, Frontiers in ICT 6.

Oliver Gierke, J. B. (2022). Spring data jpa - reference documentation, https://docs.
spring.io/spring-data/jpa/docs/current/reference/html/.

Palmarini, R., Erkoyuncu, J. A., Roy, R. and Torabmostaedi, H. (2018). A system-
atic review of augmented reality applications in maintenance, Robotics and Computer-
Integrated Manufacturing 49: 215–228.

Plósz, S., Schmittner, C. and Varga, P. (2017). Combining safety and security analysis
for industrial collaborative automation systems, International Conference on Computer
Safety, Reliability, and Security, Springer, pp. 187–198.

Webb, P., Syer, D., Long, J., Nicoll, S., Winch, R., Wilkinson, A., Overdijk, M., Dupuis,
C., Deleuze, S., Simons, M. et al. (2020). Spring boot reference documentation, Re-
trieved June 22.

18

https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-20-04
https://www.digitalocean.com/community/tutorials/how-to-install-and-use-postgresql-on-ubuntu-20-04
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/ 
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/ 

	Introduction
	Preparing the Ubuntu 20 virtual box inside Windows 10
	Installing the Java environment
	Installing Maven for running Spring Boot Framework
	Installing Insomnia API Gateway
	Installing PostgreSQL and PGAdmin4
	Explanation of the codes
	Explanation of the runtimes
	Conclusion

