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Hybrid Security For Securing A Combination Of
Physical And Virtual Information Assets

Shiva Ramasamy
X20135530

Abstract

Hybrid security is a collaborative design in which parameters related to phys-
ical and virtual security are collectively analysed to detect multi-domain, multi-
departmental, or multi-vertical risks. Hybrid security has been used extensively in
smart grid security and can be deployed for small to medium scale manufacturers.
This research designed, implemented, and tested a hybrid security system using
spring boot framework and Insomnia API gateways. The data storage used was
PostgreSQL. The system was tested for four risk scenarios related to collaborative
risk analysis of eleven parameters sensed and consolidated in a JSON object at the
API gateway. The rules engine was written in Java, which performed with 100%
accuracy of risk level identification and 0% false positives. Practical realisation and
future research of the designed system is very much feasible given the components
chosen are commercially popular. However, the coding and networking will require
significant scaling up.

1 Introduction

The modern computing paradigm of industrial control systems has changed significantly
as compared to the older days of supervisory and distributed control systems (Boyes et al.;
2018), (Sadeghi et al.; 2015). The older systems of programmable logic controllers are
now rapidly getting replaced by the new cyber-physical systems controlled by computers
running control engineering software and tools (Sadeghi et al.; 2015). Cyber-physical
systems (CPS) provide deep accessibility into the industrial processes thus enhancing the
precision of operations ((Sharma et al.; 2018)). Industrial deployment of cyber-physical
systems is commonly referred to as Industrial Internet of Things (IIoT) (an industrial
design of the Internet of Things architecture under the newly evolving Industry 4.0 frame-
work) (Malik et al.; 2021) (Mugarza et al.; 2020) (Sharma et al.; 2018).

The modern computing paradigm employing CPS/IIoT has transformed the industrial
control systems through the innovations of digitalisation, pervasive (or cognitive) com-
puting, ubiquitous computing, and cloud computing ((Malik et al.; 2021; Schumacher
et al.; 2019)). This has a multi-layered architecture, as presented in Figure 1 below.
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Figure 1: A multi-layered architecture of the modern computing paradigm of Industrial
Control Systems.

There are five layers shown in Figure 1: Physical layer that comprises devices and
things, data link layer facilitating devices networking in the physical space, networking
and Internet layer providing IPv6 addressing and latest technologies for both low power
and high power communications, transport layer providing the protocols for establish-
ing sessions, and application layer where the application programming interface (REST),
JSON objects, applications, and databases are deployed.

This research was conducted to meet the following aim and objectives:

Aim: To explore, study, design, and test a hybrid security system for industrial con-
trol systems using Industrial Internet of Things architecture.

Objective 1: To explore hybrid security designs in industrial control systems using
Industrial Internet of Things architecture to capture the design specifications.

Objective 2: To implement an experimentation environment in a laptop following
the design specifications and conduct coding and configurations as required to operate it
as a fully configured pilot project.

Objective 3:To run test cases of different risk levels and determine whether the
experimentation environment detects and logs the correct risk level based on its rules
engine specifications.

Objective 4:To describe the practical validity of and future expansion of the hybrid
security system.

The following research questions were addressed in this research: How a hybrid secur-
ity system can be designed to protect industrial controllers and the devices administered
by them using the Industrial Internet of Things architecture?

In the next section, the related works have been reviewed to build the theoretical
knowledge required for this research.
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2 Related Work

There are multiple research studies having studied the challenges of CPS security in
IIoT systems. Their works may be broadly divided into three aspects: virtual (logical)
security, physical security, and hybrid security. The reviews are presented in three sections
as follows.

2.1 Virtual security

The virtual security controls of CPS are researched from the perspectives of authentica-
tion and authorisation, device recognition, anomaly detection, privacy-protected data ac-
cess and transmission, communications security, and data security. This section presents
some of the relevant studies presenting virtual security designs of CPS.

(Ning et al.; 2013)discussed a design of secure data access, data sharing, and author-
ity transfer by device control systems configured to match the credentials between cyber
entities and cyber targets. The device controllers are designed to refer databases for ex-
changes, handshakes, authority transfer comprising pre-shared secrets and privacy keys.
Multiple handshake and authority transfer scenarios were discussed. Once the authority
transfer is ascertained, the cyber entities are authorised to share data with the cyber
targets through transport layer encrypted links. This design provided algorithmic inter-
actions between the cyber entities and the device control systems before the formers are
allowed to connect and transfer data with cyber targets. However, although the intent
of this research was to present a working design of interactions security of CPS, the al-
gorithms appeared as abstract conceptualisation that may require significant expanding
before realisation through architecture design and software programming.

Similar studies were conducted by (Yousuf et al.; 2015; Maple; 2017; Rahman et al.;
2016; Roman et al.; 2013; Sadeghi et al.; 2015) . These studies are grouped together be-
cause they studied common controls for securing CPS interactions with their controllers.
These studies have conducted theoretical reviews of the security of CPS interactions,
which are useful in building a contextual design for this research. The key controls
studied are CPS in-built (embedded) security architectures (critical code and local data
security protocols and trust modules built within the CPS) ((Rahman et al.; 2016; Sade-
ghi et al.; 2015)), CPS integrity verification to protect against malicious software and
hardware manipulations (Sadeghi et al.; 2015; ?), secure device communications (Rah-
man et al.; 2016; Sadeghi et al.; 2015), secure localisation (Basri and Elkhadimi; 2020;
Rahman et al.; 2016), device identification (Roman et al.; 2013; Vasilomanolakis et al.;
2015), device authentication and authorisation (Yousuf et al.; 2015; Maple; 2017; Rahman
et al.; 2016; Roman et al.; 2013; Sadeghi et al.; 2015; Vasilomanolakis et al.; 2015), access
control protocol and network security (Maple; 2017; Rahman et al.; 2016; Roman et al.;
2013; Sadeghi et al.; 2015)), trusted sensors with privacy protection ((Yousuf et al.; 2015;
Maple; 2017; Roman et al.; 2013; Rahman et al.; 2016; Vasilomanolakis et al.; 2015)),
fault tolerance (Roman et al.; 2013; Vasilomanolakis et al.; 2015), informed consent of
controllers (Maple; 2017), and gateway for secure mediation (in federated CPS IIoT ar-
chitectures) .(Yousuf et al.; 2015). These studies covered the context and application of
the controls identified
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There is a significant advantage in the studies of controls, as reviewed in the previous
paragraph. They provide a strong context for designing a security framework with know-
ledge of rules and policies to be implemented. However, except for the study by (Rahman
et al.; 2016; Yousuf et al.; 2015) no other study has presented details on how the controls
are organised, positioned, and collaborated. This drawback does not help a security de-
signer beyond establishing the basic design context. For example, the studies by (Roman
et al.; 2013; Vasilomanolakis et al.; 2015) described device identification controls but did
not explain how it needs to be integrated with device authentication and authorisation
controls. Another example is about the device authentication and authorisation controls
which are discussed by (Yousuf et al.; 2015; Maple; 2017; Rahman et al.; 2016; Roman
et al.; 2013; Sadeghi et al.; 2015; Vasilomanolakis et al.; 2015), but except (Rahman et al.;
2016) no other research discussed about their positioning in the IIoT/CPS network ar-
chitecture. Hence, advanced controls in collaborative and behavioural security are not
covered in these studies.

Beyond establishment of basic context and content, the study by Rahman et al. (2016)
is useful in designing the security organisation. This research mapped the security con-
trols with the CPS/IIoT multi-layered architecture (Malik et al.; 2021) introduced in the
introduction section. This mapping has been a useful reference in creating the multi-
layered architecture designed for experimental study in this research. The architecture is
replicated in the Figure 2 below:

Figure 2: A multi-layered security architecture of CPS/IIoT for the modern computing
paradigm of Industrial Control Systems.

The above studies did not cover the hardware and operating system (low level) se-
curity aspects of CPS/IIoT. Hence, further studies were reviewed to expand the context.
The research studies by (Ammar et al.; 2018; Frankó et al.; 2020; Happa et al.; 2019;
Mugarza et al.; 2020; Plósz et al.; 2017) were found to be useful for this research. They
are reviewed separately because they have covered different aspects of low level security
controls in CPS/IIoT architecture and also the concept of collaborative security by ana-
lysing multiple data inputs.

The research by (Ammar et al.; 2018) was specifically identified because they reviewed
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practical designs of IoT frameworks by several vendors: such as, ARM mbed IoT, AWS
IoT, Azure IoT suite, Brillo/Weave, Calvin, and Smart Things. For every vendor they
reviewed specifications of smartness, architecture, specifications of hardware, and secur-
ity. They found common hardware specifications, such as custom microprocessor chips
(low cost 32 bit controllers; both complete instruction set and reduced instruction set
computing types), on-board random access memory, on-board storage, built in secured
socket layer and transport layer security, authentication protocols (different types), SHA
256 hash function (keys exchange), on-board Wi-Fi client as well as access points (where
device networking is part of the design), and on-board Bluetooth communication. The
storage capacities on the IoT boards are quite low (32 MB to 128 MB). Hence, onboard
security features are not sufficient. They need to be complemented by cloud backend
controls. The authentication credentials and any subscription keys are normally stored
within the device storage. Hence, device manipulation is possible. (Ammar et al.; 2018)
provided useful insights into how vendors have implemented their IoT hardware and se-
curity. However, their research was too much vendor-specific that did not cover reflections
of theoretical concepts.

The next research studied is by (Frankó et al.; 2020). They studied the mechanisms of
tracking assets in a cyber-physical infrastructure. Their study comprised of architecture
of RFID-based real-time localisation in an indoor positioning system, a communication
network at Wi-Fi frequencies, and a front-end visualisation of the location trackers on a
map of the facility. They designed the real-time localisation system with four wireless ac-
cess points deployed at the corners of the facility. This is called a geo-fencing system and
the tracking was done using motion-based sensors using the access points as referencing.
They measured the overall accuracy of ranging and detection of start and stop events
and elements crossing the digital fencing. This is a good research on localisation design
although their experimental setup did not get into coding an application or creating a
3D model as a digital twin. They simply focused on accuracy of localisation. The other
two studies on localisation conducted in this research are by (Basri and Elkhadimi; 2020;
Braggaar; 2018). They described the design of secure triangulation method for secured
localisation within a digital fencing.

The next research studied is by (Happa et al.; 2019). They studied collaborative se-
curity in a mixed reality business environment. Mixed reality may comprise of a mix of
multiple business process verticals serviced by a common network infrastructure. As the
business owners are focused on their respective business process verticals, exploiters can
take advantage of inter-vertical ignorance causing lack of realisation of anomalies induc-
ted by them. In industrial systems, the sensors may be feeding data to multiple business
process verticals managed by different managers. This research showed how the sensor
data of different verticals can be collaborated to detect and contain exploits. This re-
search discussed four use cases in which, the use cases of industrial espionage and virtual
trying were of special interest to this study. They explained how attack behaviours can
be detected by collaborating data from multiple sensors. However, this research did not
provide adequate technical details on how the collaboration process was realised. Another
research reviewed with collaborative security context was by (Plósz et al.; 2017).

The next research studied was of (Mugarza et al.; 2020). They studied the security
issues and solution in deploying security patches in the Industrial Internet of Things net-
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working. They described the IEC 62443-2-3 patch management cycle and its application
in IIoT networking. They described the framework of current patch states of all devices,
patch authorisation statuses, and patching policy for immediate deployment and deploy-
ment in 30, 60, and 90 days. Their research covered the issue of patch management in
IIoT. This study was shortlisted because patch management is a major security control
but not studied adequately in IIoT networks. Their research was, however, theoretical
only. They did not study and evaluate any practical implementation.

2.2 Hybrid security

Physical security is a very crucial aspect of CPS/IIoT security. However, physical security
is not studied separately by the scholars as the total solution always combines physical
and virtual security controls. The research studies reviewed in the previous section do not
cover physical security aspects of CPS/IIoT networking (except for localisation covered
by (Rahman et al.; 2016). This is because the studies were mostly focused on cloud-
hosted controllers. In many industrial settings (especially large ones), controllers are
deployed on premises (Kobara; 2016). Hence, physical security is a critical aspect. The
physical space is divided into small spaces with varying criticality such that the intensity
of controls can be implemented in controlled ways. There is a large body of research on
smart grid security and collaborative security (some of them reviewed here). This section
presents some hybrid security design reviews from these studies as they are relevant to
the context of this research. Smart grid is one of the many industrial applications of
CPS/IIoT. However, it is studied separately given that it is one of the largest adopters of
CPS/IIoT and has a historical track record in tackling both physical and cyber security
threats (Gunduz and Das; 2020; Lei et al.; 2018).

The research by (Neureiter et al.; 2016) explained the fundamental requirements of
hybrid security in Smart Grid security models. Smart Grids are formed by thousands of
assets forming a massive attack surface for the attackers. Hence, hybrid security model is
valid for Smart Grid security. This fact was also explained by (Marksteiner et al.; 2019)
in the context of low-voltage distribution architectures. Every asset monitored should be
categorised under clearly defined asset classes and addition/removal of assets in each class
and their exact locations should be recorded and approved in an assets governance system
((Marksteiner et al.; 2019; Neureiter et al.; 2016)). Pattern of anomalies in each asset
should be clearly identified such that their detection and risk logging can be planned.
Monitoring every asset may not be possible centrally, especially in low voltage distribu-
tion given that millions of them may be outside the core administration domain installed
in user or near user premises ((Marksteiner et al.; 2019)). These research studies provided
a good insight into the hybrid security in smart grid but covered only the requirement
specifications.

Another research on hybrid security reviewed was by (Gunduz and Das; 2020). They
described a number of smart grid attack scenarios and explained that the attacks mostly
happen through vulnerabilities in human – machine interface, remote terminal units (used
for remote administration of the controllers), machine terminal units, and programmable
logic controllers. The attacks can happen physically as well as logically. They covered
the key components of cyber security in smart grid. However, their research was limited
to theoretical description only. An additional theoretical research in the same context
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reviewed was by (Lei et al.; 2018). They described the categories of attacks as: intercep-
tion, modification, interruption, fabrication, active attack, passive attack, insider attack,
and outsider attack.

2.3 Research gaps

A clear gap in the research studies reviewed in the previous two sub-sections is about real-
isation and practical evaluation. The realisation part is avoided by most of the researchers
as they focus greatly on theoretical concepts and some evidences taken from running sys-
tems. Creating a system requires several components. While the theoretical knowledge of
the components is available amply from the existing literature, realising them practically
is seldom covered. This gap invokes a need for exploring technical manuals and finding
own ways without much and effective empirical guidance. This research has been conduc-
ted on actual practical realisation of the hybrid security model. However, except for the
knowledge of the five layers of CPS/IIoT infrastructure, and the names of components
needed (with some description), the research was largely dependent upon technical books
and manuals.

Another research gap is lack of test cases and proper reporting of the test results.
Research studies provide test results in the form of running graphs and sensitivity analysis
charts. However, the test cases and testing procedure are not described. Further the
practical validity of the test results are not covered adequately.

3 Methodology

In this section, the research environment and methodology is described. They are presen-
ted in brief as the full details are presented in the configuration manual. This research
was conducted to test an experimental pilot of collaborative security using hybrid para-
meters relevant to physical and logical security in a manufacturing premise. The pilot
was designed and configured in Ubuntu 20.0.4 operating system (deployed in a VMware
virtual box configured inside Windows 10) and multiple software components installed in
it. The components are listed and described in Figure 3.
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Figure 3: Components and their descriptions with roles in the experimental setup.

Other options considered before selecting these components were JavaScript server
using Express Node.js framework (; n.d.) and C++ backend in .Net core open source
(.NET Cloud Client Libraries; 2022). These two frameworks could have been used, as
well, for meeting the research objectives. Java in Spring Boot was chosen because of
the researcher’s comfort level with the language and also its significant popularity in the
manufacturing industries for API server applications (Vermeer; n.d.). It may be noted
that selecting a framework like Spring Boot does not mean that the core components can
be avoided. Just like every framework, Spring Boot is built upon Java Development Kit,

8



which is a core Java foundation comprising the Java language specifications (Webb et al.;
2020; Gosling et al.; 2021). Currently, Spring Boot is supported on Java Development
Kit version 13. Hence, it was the first environment configured. Other software installed
with their description and their roles are shown in Figure 3.

The process followed for this research is described in the following steps:

Step 1: A Ubuntu virtual box was configured inside Windows 10.
Step 2: Java JDK version 13 was installed and its environment created.
Step 3: Software essential for this research were installed: Maven, Spring Boot

(spring.io), Insomnia API Gateway, PostgreSQL, and PGAdmin4.
Step 4: The spring boot environment was configured using Pom.xml and application

properties.
Step 5: Four Java codes were written: Main Class, Location Model, Location Repos-

itory, and Location Controller; the Location Controller is the main code comprising the
rules engine for hybrid security; these four codes collectively formed the API server; the
server interface was created at Localhost: 8081 using embedded Apache in Spring Boot.

Step 6: Four scenarios were created: Low risk level (only one parameter breached
the rules), Medium risk level (two parameters breached the rules), High risk level (three
parameters breached the rules), and Critical risk level (any number of parameters that
breached the rules).

Step 7: The four scenarios were tested by sending four JSON objects to the API
server having the breaches conducted in the values.

Step 8: The detection of the breaches by the rules engine was tested in the API
gateway interface as well as in the Log file.

Step 9: Verification of the sensor data recording in the PostgreSQL database was also
done.

4 Design Specification

The main aim of this research is to explore, study, design, and test a hybrid security sys-
tem for industrial control systems using Industrial Internet of Things architecture. The
literature review helped in exploring the layers of CPS/IIoT architecture. This research
followed the knowledge of the CPS/IIoT architecture layers to create a design framework.
The design framework was created taking help of the multilayered CPS/IIoT architecture
models by (Malik et al.; 2021; Rahman et al.; 2016)(presented in Figures 1 and 2). A
multilayered structure was created in the experimental setting of this research based on
Figures 1 and 2. The description of the layers is presented as the following:

(a) Physical and data link layers: the physical layer comprises of physical sensors at-
tached to devices and the data link layer comprises of the PHY interfaces of the devices
having unique MAC addresses. In this research, setting up the physical and data link
layer was not possible given the cost constraints. Hence, the physical layer is simulated
by creating a JSON object file in which, the data collected from sensors are consolidated.
A sample format of the JSON object used is presented below:

{ ”xaxis” : ”2”,
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”yaxis” : ”2”,
”zaxis” : ”8”,
”cpuFanSpeed” : ”1200”,
”cpuTemperature” : ”80”,
”gpuFanSpeed” : ”1000”,
”gpuTemperature” : ”90”,
”threeFailedAuthentication” : true,
”threeFailedCriticalFolderAccess” : false,
”criticalSoftwareInstallation” : false,
”criticalSecurityPatchFailed” : false
}

The variables entered in the JSON file of the API gateways are: X-location, Y-
location, Z-location, CPU fan speed, CPU temperature, GPU fan speed, GPU temper-
ature, whether three logins failed, whether critical folder access denied occurred three
times, whether critical software installation failed, and whether critical security patch
installation failed. In the practical world, this JSON file will be populated by the sensors
attached to the physical devices being monitored by this system.

(b) Network layer: the network was configured inside the virtual box. The API
server was hosted at http://127.0.0.1:8081 and the API gateway was point to the path
http://localhost:8081/location. The local host is mapped by default to the IP address
127.0.0.1 in Ubuntu.

(c) Transport layer: The transport layer was configured using REST API calls to the
API server. The calls POST and GET were made in sequence for all the four scenarios
tested.

(d) Application layer: The application layer comprised of the Maven and Spring Boot
framework, the Java codes written in Spring Boot, and the PostgreSQL database server
managed using PGAdmin4.

5 Implementation

The final output of the implementation comprised of a runtime of Java Spring Boot
having one main class and three sub-classes serving as the API server, and the runtime
of Insomnia that served as the API gateway. This research simulated data collection
from sensors using a JSON object compilation in which, values of eleven parameters were
entered. The API server was programmed to assess the JSON object compilation sent to
it through an API POST call.

The rules configured in the API server were the following. These rules were configured
in the main Java program file of the API server named “LocationController.java”. Given
that this research implemented collaborative security as explained by (Happa et al.; 2019;
Plósz et al.; 2017), the rules also comprised of syntax’s for collaborating multiple variables
(defined by using “&”). All the combinations of the eleven variables with decision-making
on rules breaches were programmed in Java. Hence, the coding was completed in about
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100 pages.

(a) X-location is changed by greater than 10 metres.
(b) Y-location is changed by greater than 10 metres.
(c) Z-location is changed by greater than 10 metres.
(d) CPU fan speed has increased beyond 1100 RPM.
(e) CPU temperature has increased beyond 80 degrees Celsius.
(f) GPU fan speed has increased beyond 1100 RPM.
(g) GPU temperature has increased beyond 80 degrees Celsius.
(h) Whether three logins have failed (Boolean – Yes or No).
(i) Whether critical folder access denied occurred three times (Boolean – Yes or No).
(j) Whether critical software installation failed (Boolean – Yes or No), and/or.
(k) Whether critical security patch installation failed (Boolean – Yes or No).

The LocationController.java was programmed to take four actions whenever an API
POST call is received by it:

(a) Receive and parse the data consisting in the JSON object sent by the Insomna
API gateway.

(b) Commit the data parsed in the appropriate columns of the table named “location”
in the database named “shivaproject” in PostgreSQL; data committing in PostgreSQL
was done with the help of two more Java code files: LocationRepository.Java and Loca-
tionModel.Java. These two Java files are explained in the manual document.

(c) Judge the data collectively based on the rules engine and send the judgment result
(identification of the risk level and the action to be taken) to the API gateway.

(d) Log all the judgments in a text file named as “output.txt” for future analysis.

In this research, only one API gateway was used because it was a pilot experiment.
In real implementation, there may be hundreds of such API gateways installed at the
shop floors where the controllers and the IIoT attached CPS devices controlled by the
controllers are installed. The local supervisors keep an eye on their respective API gate-
way monitor to get the risk alerts and take necessary action within the area controlled by
them. The next section presents an evaluation of four scenarios tested in the experiment.

6 Evaluation

The final step of the experiment was to run the test cases defined. In this research,
four scenarios were tested: risk level low, risk level medium, risk level high, and risk
level critical. There were four experiments conducted. Their details are presented in the
subsequent sub-sections.

6.1 Experiment 1

In this experiment, the JSON object transmitted to the API server did not have any
breaches of rules as defined in the Location Controller Java code (discussed in previous
section). As shown in Figure 4, the Java Controller clearly identified this combination of
parameters as a Low risk level scenario. This test was repeated with multiple combin-
ations and every time the Java Controller could identify the risk level accurately. This
indicates that the controller has been written accurately to avoid false positives. The
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decision was made in 32.8 Milliseconds. In the practical scenario, the supervisor of the
monitoring area need not take any action.

Figure 4: JSON object transmission with no parameter breaching the rules

6.2 Experiment 2

In experiment 2, one of the parameters was allowed to breach the rules. As shown in
Figure 5, the breach was caused in the parameter “three failed attempts to access critical
folder”. This is a Boolean. In the JSON object, it was marked as “true”. In the practical
scenario, the supervisor controlling the CPS assets in the local area needs to check the
folder logs and find out who was attempting to access the folder and why the access failed
thrice.
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Figure 5: JSON object transmission with one parameter breaching the rules

When the JSON object was transmitted to the API server, the Location Controller
rightly identified the risk scenario at medium level. The decision was made in 36.3
Milliseconds. This test was conducted with all the 11 parameters and the controller
identified the risk level accurately. This indicates 100% performance of true positives
and zero percent false positives.

6.3 Experiment 3

The third experiment was conducted by breaching any two parameters in the JSON
object file. As shown in the screenshot in Figure 6, the parameters breached were “three
failed attempts to access critical folder” and “critical software installation failed”. As
shown in the Figure, the Location Controller identified the risk scenario at High level.
The decision was made in 43.3 Milliseconds. All possible pairs of breaches were tested
in this experiment. The Location Controller identified the risk at “High” level in all the
tests. This indicates 100% performance of true positives and zero percent false positives.
In the practical scenario, the supervisor should check the logs to find out who has caused
the breach and why there were failures. In this scenario, the core security team of the
organisation may also get involved because a critical software update or patch installation
had failed.

13



Figure 6: JSON object transmission with two parameters breaching the rules

6.4 Experiment 4

The fourth experiment was conducted by breaching three parameters in the JSON object.
As shown in the Figure 7, the parameters “three failed attempts to access critical folder”,
“critical software installation has failed”, and “security patch has failed to install” were
marked as Boolean true. The Location Controller rightly identified the risk scenario at
“Critical” level. The decision was made in 31.1 Milliseconds.

Figure 7: JSON object transmission with three parameters breaching the rules

This experiment was tricky. It is not possible to test all possible scenarios of three
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or more breaches among eleven parameters. There will be a significant number of com-
binations. The rules engine code reached almost 100 pages in covering all the possible
scenarios. However, the experiment was conducted with large number of combinations
of three, four, and five parameters breaching the rules. In all the attempts, the Location
Controller accurately identified the risk level as Critical. This indicates 100% perform-
ance of true positives and zero percent false positives. This is a critical situation and
hence, the core security team should get directly involved in the investigations.

The text file is used in this research to log Alerts. In real world systems, the logs
will be stored in a separate activity logging database, which will have its own analytics
layer. By collaborating the information in multiple parameters, the exact threat scenario
be judged. For example, if the GPU and CPU temperatures of a server have breached
the limits and the server itself has been shifted by about 20 metres, the security admin-
istrator can judge that the server has been shifted from its air conditioning environment
and is now facing heat. This may have happened because the air conditioning malfunc-
tioned and a technician is on site to repair it. For plant continuity, the supervisor may
have decided to shift the server outside the air conditioning cubical while the technician
is carrying out the repairs but keeps the server running. There can be numerous such
scenarios in a plant campus when this hybrid security system can be very useful.

In the next section, a discussion about the significance and performance of this design
has been discussed.

6.5 Discussion

The test results provided useful insight into an automated risk assessment by a control
engine, which can be logged for necessary action by the security operations. This capab-
ility is already realised in Smart Grid systems, and can be implemented at a lower scale
in small to medium sized manufacturing organisation. A projected scenario of this design
is presented in Figure 8 as the following.

The design presented in Figure 8 was realised at a small scale within Ubuntu laptop.
In real world manufacturing, this design may be merely a module defining digital fencing
of a set of assets. There may be hundreds of such modules active. All of them may be
communicating with a centralised API server. There were eleven parameters configured
to be monitored. In reality, there may be hundreds of them. Hence, detailed risk logs
would have to be generated for advanced analytics. The screenshot in Figure 9 shows a
snippet of the logging generated in this research. This will be needed at massive scales and
a smart log analyser using machine learning may be needed to understand the ongoing
and historical attack patterns in the organisation.
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Figure 8: Hybrid Security Monitoring System

Figure 9: Final output file recording all the risk levels

In this research, security design literature on IIoT/CPS was reviewed. Not all re-
search studies explained integrated designs but majority of them covered the essential
components used in the designs. These studies were useful in defining the components
those were possible to be programmed and configured within a pilot environment in an
Ubuntu laptop. The study by (Rahman et al.; 2016) provided design idea of security con-
trols positioned in a multilayered CPS/IIoT architecture. Further, the study by (Ammar
et al.; 2018) provided insight into how these layers are realised in a real world architec-
ture. The research studies by (Basri and Elkhadimi; 2020; Braggaar; 2018; Frankó et al.;
2020) provided insight into secure localisation as a significant control of physical secur-
ity. (Mugarza et al.; 2020) presented a standard for implementing critical security patch
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management. The research studies by (Happa et al.; 2019; Plósz et al.; 2017) provided
insights into collaborative security controls when multiple parameters related to different
verticals are monitored collectively to identify and report risk levels. Finally, the research
studies by (Gunduz and Das; 2020; Lei et al.; 2018; Marksteiner et al.; 2019; Neureiter
et al.; 2016) provided insight into hybrid security configuration in Smart Grid where it
is implemented and tested the most. These studies provided detailed ideas to be realised
as design details for the experimentation. The experimentation was successful as there
were no errors in the final setting, and the performance of the Risk analysis was 100%
(100% risks identified, 0% false positives identified). Hence, it is hereby declared that
this research was successful in meeting its aim and objectives and could get the answer
to the research question reasonably.

The components used in the design are already popular in the commercial world. The
Spring Boot framework is popular for mission critical applications, although there are
multiple alternatives ((Webb et al.; 2020)). However, Java has its original and unique
place in designing the layers of a mission critical application. Core Java comprises the
foundation of advanced systemic programming, which cannot be avoided while designing
mission critical applications ((Gosling et al.; 2021)). It is one of the most organised,
easy to learn and widely deployed programming. The experimentation setting of this
research can be very much realised in the real world. However, several enhancements are
needed. For example, the networking will be complex and risk decision making in a few
tens of milliseconds (as achieved in the experimentation) will be hard to achieve. The
API server will be contacted by hundreds of API gateways. Hence, it requires very high
capacities of hardware and networking. Preferably, it should be cloud hosted even if the
main controller application is hosted on premises. The decision engine (controller) code
may have to be divided into multiple controller codes as this research had to write about
a hundred pages of code for only eleven parameters. In actual practice, there may be
hundreds of parameters to be monitored and controlled.

7 Conclusion and Future Work

This research was conducted following directions of one aim, four objectives, and a re-
search question. This section presents detailed discussion on how the objectives were
met, and what answer to the research question was obtained.

Objectives:
(a) To explore hybrid security designs in industrial control systems using Industrial

Internet of Things architecture to capture the design specifications:

This objective was realised by studying a number of literature on IIoT/CPS security
modelling components, localisation security, hybrid security, and collaborative security.
Inputs from all these literature were used to develop the design specifications of the ex-
perimentation setting.

(b) To implement an experimentation environment in a laptop following the design
specifications and conduct coding and configurations as required to operate it as a fully
configured pilot project;
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This objective was realised by designing and implementing an experimentation setup
in Maven and Java Spring Boot connected with an API gateway server. This entire design
was realised based on inputs from the literature view.

(c) To run test cases of different risk levels and determine whether the experimentation
environment detects and logs the correct risk level based on its rules engine specifications;

This objective was realised by defining four test case scenarios and conducting com-
prehensive testing in each of the scenarios.

(d) To describe the practical validity of and future expansion of the hybrid security
system;

This objective was realised in the previous section where the practical validity and
future expansion of the experimentation design and its setting was explained.

The research question of this research was the following:

How a hybrid security system can be designed to protect industrial controllers and
the devices administered by them using the Industrial Internet of Things architecture?

This research could answer the research question reasonably although not compre-
hensively. It was based on a basic design tested within a laptop environment. Hence, the
findings were limited to risk identification success (or failure, if was evident) in the four
risk scenarios and the decision making time taken by the location controller. In larger
experimentation settings, more findings may be reported providing wider answers to this
question.

This project can be commercialised in future given that the experiment involved tech-
nically tested and commercially used products. For example, the Spring Boot framework
is very popular commercially and the codes used in this experiment can be expanded for
future commercialisation. However, the expansion needs to be significant. This research
used only one module of products in a digital fence talking to one API server through one
API gateway. In practical applications, there may be several API servers and perhaps
hundreds of API gateways each serving a digital fenced module. One controller Java code
file cannot handle such volumes. Designers may create several such controllers attached
with one or more API servers. For academic study, a real world digital fence may be
pursued in the future. The devices may be real having their sensors communicating with
a data consolidation layer (or a data transmission object layer) that can consolidate all
sensor data into JSON object files. The JSON object files shall be larger than the one
used in this research. All these need to be conducted in a real network scenario. Tri-
angulation for localisation may be implemented using four Wi-Fi routers. The overall
setting will be much more expensive than this research but will generate many more
useful results.
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