e—]

'\‘
National

Collegeof
Ireland

Configuration Manual

Msc Research Project

Msc CyberSecurity

Viknesh Aditya Rajendran
Student ID: 19216343

School Of Computing

National College of Ireland

Supervisor : Prof: Imran Khan

Introduction:

The proposal of this research work is “Ensemble techniques to enhance wireless intrusion detection
system in IoT”. This research work was implemented by utilizing many software and hardware
requirements. The primary of the goal of this research is to develop an Ensemble based Intrusion
Detection System to detect the 10T botnets. However, this model categorises the types of botnets
and determines if a packet is malicious or benign based on the md5 has values. In order to achieve
this model, two ensemble models were combined, which is LightGbm and CatBoost via single
voting classifier. The dataset utilized in this research was I0T-BDA dataset. The dataset contains
the findings from 10T-BDA Framework's analysis of 4069 distinct IoT botnet samples that were
collected using honeypots.

1. System Requirements
Hardware and software are needed to process the model quickly and efficiently.
1.1. Hardware Requirements

The implementation was performed on an DELL vostro laptop, the configuration of the device is
as follows

1. Processor- 11th Gen Intel(R) Core(TM) i5-1135G7
RAM -8 GB

Hard Disk — 1 TB PM981 NVMe SSD

System Type x64-based PC

. OS —Windows 11 64 — bit

1.2. Software Requirements

SIENEANN

The software requirements are listed below.

Software Version
Python 3.8.3
Anaconda Navigator 2.1.1
Jupyter Notebook 6.4.11
Numpy 1.21.0
Scikit-learn 0.23.0
Google colab 3.6
Pandas 1.43
LightGbm classifier 3.3.2.99
CatBoost Classifier 1.0.6
Label Encoder 0.12

1.3 Acquiring the results for the md5 hashes:

The dataset doesn’t consist of the records for the final columns to perform the testing part. Records
for the final columns were generated by combining two engines, such as avast and kaspersky, in
the virus total checker, and based on md5 hashes, labels for the types of botnets and whether they

are malicious or benign were obtained. Finally, the output was labelled in the.csv file using the
keywords "label™ for benign and malicious and "final label” for botnet types such. Then, the
preprocessing part has been started.

0d4a95bl ELF:-Mirai|HEUR:Backdoor.Linux.Mirai.au
Ad5d878e ELF:CWVE-2| HEUR:Backdoor.Linux.Mirai.b
2d0cy3o6] ELF:Mirai|HEUR:Backdoor.Linux.Mirai.b
5eeBl1497]ELF:Mirai|HEUR:Backdoor.Linux.Mirai.b
Bddel2Bbdc260872]HEUR:Backdoor.Linux.Mirai.b
JclBYaab|ELF:Mirai|HEUR:Backdoor.Linux.Mirai.b
6f42d38ca ELF:Mirai|HEUR:Backdoor.Linux.Mirai.ba
6ec274d7|ELF:Mirai|HEUR:Backdoor.Linux.Gafgyt.a
all305ff0 ELF:Mirai| HEUR:Backdoor.Linux.Mirai.a
GE43Ef369 ELF:Mirai|HEUR:Backdoor.Linux.Mirai.ba
5b3BB1e5 ELF:Mirai|HEUR:Backdoor.Linux.Mirai.b
T3CITleBqELF:Mirai|HEUR:Backdoor.Linux.Mirai.ba
byde0fd2| ELF:Mirai| HEUR:Backdoor.Linux.Mirai.cn
919b7b2e ELF Svirtu| HEUR:Backdoor. Linux.Mirai.b

2. Data pre-processing
This part represents all steps required for preparing data for the machine learning model.
2.1 Importing Libraries:

The libraries shown in the image below were all used in this research project.

import numpy as np

import pandas as pd

from google.colab import driwve

from sklearn.metrics import plot slon_matrix
from sklearn.metrics import plot_confusion_matrix
from sklearn.ensemble import Yoting ifier

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import classification_report
from sklearn.model selection import traln_test split

from lightgbm import LGBMC sifier

from catboost import CatBoostlClassifier

Stepl: The very first was to import the pandas library. Pandas has a faster built-in function and
preprocessing are performed faster when compared to other packages

Step2: From the google colab application, google drive has been mounted, Where the .csv files
are stored.

Step 3: Dataset has been imported by using pandas library from google drive. Pandas library
utilizes its function read_csv in order to pass the path or directory of the dataset which has to be
loaded

2.2 Data Loading

After importing, we not first connect our Google Collaboratory environment with our Google
Drive. Because our dataset is stored inside our drive. In the next cell, we import our dataset using
the library Pandas and its using its function read_csv where we pass the path or directory of our
dataset which we want to load.

Step4: df.columns(() are utilized to view the entire column of the loaded dataset and df.shape are
utilized to view the number of rows and columns

2.3 Data Classification

data = df[[

md5 architecture honeypot tracking udp endpoints antisandbox ... antiexecution

yeeb76c488c6c72c457abbaa arm telnet 2;2?” 50?%,, { 5 "{"tep™: {}

b12d241e5108bd7 19575269 telnet 709&:1 37‘?;2); { . "data_in": 200

"{"telnet" "26663" “[{"ip™

17b1a196d83e128e5f4215af telnet 1y 27y ¢ "142.93.15.164"

"data_in": 1761

"{"md5":
"5ee8149f1c0a570120363150cc3bec52" "232d8bc20

c0a570120363150cc3bec52 dropper {"dropper”:
1"

"{"telnet”: "{"md5";

CE R e 1y “* "84de128bdc2609721029b2302f287415" "1449c08f0

In this seaction, important features are chosen out of the 42 columns. These are the important features that
are needed to be used inside for building the models bothe for the classifying the packets whether its
malicious or benign as well as for classifying the botnet types

Step5 : In this step, total number of null values will be displayed by utilizing the isnull() function and
dropna() has been utilized in the next cell in order to drop the rows which contains any single null value

print(data_isnull() . sum(})

=]
=]

linking
oded

entropy
dtype:

1 BRI TSUGHEU

eplace(']","

walue,new_value)

h_value,@)

botnet
md5,
chitecture

Step6: One of the crucial components of data preparation is data learning. The bulk of the values in this
dataset are in the Json/Dict format, which is also known as key value pairs. However, the main concern is
to retreive the value from the cells so that they could be used for model tranining.

To achieve this task, values will be examined whether they are in the format of dictionary or not. If it yes,
then they would move forward to use the as replace unnecessary characters and symbols. So that values
can be retrieved and save it in the same index.

2.3 Label Encoding

Step 7: Label encoder library has been imported and in the next cell datatypes for each columns
has been displayed.

o sklearn.preprocessing import LabelEeEncoder

data.dtwvpes

wrl
ot mett
=

rchitecture
ho ot
tracking
+tcp
wdp
endpoints
antisandboo
=

hittp
==

spoct
antidebusging
antiexecwubtiom
persistemce

stealth
kermel modules

ARAARAARAARAAARARRARRARILS

Step8: In the process of Label Encoding, conversion of all the data into strings has been performed
first and then converted them into labels. Through this process, all the columns will be converted
into labels. Because ML model accepts inputs only in the form of integers or floating points.

2.4 Dimension Reduction

Step9: PCA library has been imported for the purpose of reduction of columns. Then the entire
data of the respected data frames has been converged in to four columns without losing much
information. This PCA methodology will helps to increase training process and decreases variance
from the model

[1 transformed_data

array([[

Step10: Following this, the.csv file was imported that had all of the records of the malicious,
benign, and botnet categories that were extracted using the md5 hashes provided by virus total
checker. In order to take the first 4069 rows from the dataframes iloc function has been utilized .

[1 label df — pd.read excel(’/content/drive/MyDrive/cryp
° label df = label df.iloc[:4069,:]

[1 label df

Unnamed: @ Hash label MD5 Hash final_label 1llast
2021-05-02 18:10:37 0d4a95b1beeb76c488c6c72c457abbaa Malicious file: 37 /60 0d4a95b1beeb76c488cbc72c457abbaa ELF:Mirai-AHV [Tj] HEUR:Backdoor.Linux.Mirai.au
2021-05-03 09:18:56 4d5d979edb12d241e5108bd719575269 M us file: 40 /61 4d5d979edb12d241e5108bd719575269 ELF:CVE-2017-17215-A [Expl] HEUR:Backdoor Linux Mirai b
2020-02-17 15:07:27 2d0c79c617b1a196d83e128e5f4215af Malicious file: 36 /60 2d0c79c617b1a196d83e128e5f4215af ELF-Mirai-GB [Trj]] HEUR:Backdoor Linux Mirai b
2020-02-16 14:34:24 5ee8149f1c0a570120363150cc3becs2 Malicious file: 31/60 5ee8149f1c0a57012036: >c3bec52 ELF:Mirai-VL [Tnj] HEUR:Backdoor.Linux.Mirai.b

2020-05-28 03:19:08 8dde128bdc2609721028b23021287415 Malicious file: 33/58 8dde128bdc260972102 8 NaN HEUR:Backdoor Linux Mirai b

2020-09-18 22:23:27 475a27bebe2eebdedd466350fb4c865e Malicious file: 37 /56 475a27bebe2eebdedd466350fb4c865¢ ELF:Mirai-AAU [Trj)] HEUR:Backdoor.Linux.Mirai.au
2020-03-24 21:54:32 2295dc7a4b55ffabaa13a89cf7e61f15 Malicious file: 33 /60 2295dc7a4b55ffabaal3a89cf7e61f15 ELF:Mirai-ID [Trj] HEUR:Backdoor Linux Mirai.ba
2020-03-24 21:54:43 44a19565fa61174a5bdb3cbdcb418f6b Malicious file: 16 /60 44a19565fa61174a5bdb3c6dcb418f6b ELF:Svirtu-AA [Trj] HEUR:Backdoor Linux Gafgyt a
2020-03-21 18:22:40 2c571d900d92a5a32ed8e2efc15742b5 Malicious file: 13/59 2c¢571d900d92a5a32ed8e2efc15742bS ELF:Mirai-GH [Trj] HEUR:Backdoor.Linux.Mirai.c

2020-03-24 21:23:58 a84725b73d224dc175e5e324d600f584 Malicious file: 13 /60 a84725b73d224dc175e5e324d600f584 ELF:Gafgyt-FH [Trj] HEUR:Backdoor Linux Gafgyt a

Step 11: In this step frequency for each value with respective to the column “final label” were
then displayed. Secondly, botnet types were extracted from each value in the column “final label”

label df["]-value_counts()[:
attacks = []

for i in label df["1 1']:
attacks.append(i.split()[@])

Step 12: A list was created in order to save all the values and then appended them, after which
they are then converted into numpy arrays

attacks = np.array(attacks)

Step 13: In this step, concatenation was done for the label and final label, which are xdata.
Secondly, the null values are dropped from the xdata by using dropna()

xdata = pd.concat([data,label df[[

xdata = xdata.dropna()

Step 14: The next step is to extract the label from the column termed ‘label’. After which the
frequency of the column ‘label’ will be counted

ydatal = []
for 1 in xdata['label’]:
ydatal.append(i.split()[e])

° xdata["label'].value counts()

Malicious file:
Malicious file:
Malicious file:
Malicious file:
Malicious file:

Malicious file:
Malicious file:
Malicious file:
Malicious file:
Malicious file:

Step 15: In this step Label Encoder is utilized again in the ydata 1 via fit_transform function.
Secondly, label column and other independent columns were concatenated.

ydatal = LabelEncoder().fit_transform(ydatal)

xdata2 = pd.concat([xdatal.reset index(),pd.Series(ydatal)],axis=1)

Step 16: In this step, unique value for the column “final label” were displayed

xdata['final 1 "]-unique()

array(["ELF:Mirai-GH [Trj]", 'ELF:Svirtu-AA [Trj]', 'ELF:Mirai-APD [Trj]l’',
'Other:Malware-gen [Trj]', 'ELF:Mirai-ACU [Trj]'], dtype=object)

Step 17: The list were created again for the column “final_label” and then appending it ydata2

ydata2 = []
for 1 in xdata['final_label’]:

ydata2.append(i)

] ydata2 = np.array(ydata2)

Step 18: Data are transformed in this stage using PCA.

rvoB8PN

.. persistence info_gathering stealth kernel modules process_injection linking encoded firewall entropy @

670

transformed_xdatal

array([[-369.80769972, -568.02481226, 1.04735489],
[-682.03890567, 523.53936: -366.05720267, .942016591],
[-910.91869025, 23 : 195.78253252, .224610411,

=90
[889.84359969, -217.57835811, 713.39017223, .6484275 1,
[-808.67767229, 84.78686027, -41.58459481, .191113461,
[1103.73946781, -252.88049145, 71.75930677, .5442585117])

Step 19: The.csv file containing all the malicious and benign data based on the md5 hash values
is imported once again in this stage. Second, the variable label_df has been given the value "label."

i rt pandas as pd
label df = pd.read excel(
label df[’

Step 20: In this stage, data and label_df are combined, and each value in the column "label™ is
tallied.

data = pd.concat([data,label df],axi

data['label'].value_counts()

Malicious file:
Malicious file:
Malicious file:

Malicious file:
Malicious file:

Malicious file:
Malicious file:
Malicious file:
Malicious file:
Malicious file:

_xdatal = data[['url’

"udp',

Step 21: The 'label’ column in this phase was found to be ydatal, and then the distinct values were
presented. It is concluded that the excellent, clean, and unknown are benign. The ydatal has been
subjected to label encoding through the fit_transform function.

] data["label'].unique()

array([‘Malicious', 'Unknown', 'Clean:', 'Good:'], dtype=object)

ydatal.unique()

array(['"Malicious', 'Benign'], dtype=object)

ydatal = LabelEncoder().fit_transform(ydatal)

2.5 Train/Test Split:

Lightgbm, Catboost, classification _report, train_test_split were imported.
lightgbm import LGBMClassifier

catboost import CatBoostClassifier
sklearn.model_ selection import train_test_split

sklearn.metrics import classification_report

° xtrain,xtest,ytrain,ytest = train_test split(transformed xdatal,ydatal,test size=0.30,random state=9)

xtrain,xtest,ytrain,ytest = train_test_split(transformed_xdata2, ydata2,test_ size=0.10,random_state=9)

The division of data into train and test is the last and most crucial step in the processing of data.
By separating the test and train sets of data. It assesses the model's performance in both visible and
hidden data. The model is being trained on the seen data, while the test set is the unobserved data
that will be used to evaluate the model's performance. The train and test functions are utilized to
train and test the data

3. Model
3.1 Model Training & Testing:

The next phase of the data preprocessing is the model building part. The proposed methodology
states that the two different model LightGBM and Catboost will be combined together via soft
voting classification which takes the probability of the output from LightGbm and Catboost . The
boosting algorithms helps to reduce the variance and biasness from the model.

Soft voting classification method was opted. Through the help of Voting Classification, we can
combine the above selected boosting models and make them one. The models have been trained
and tested were done in the ratio of 90 :10 for classifying the botnet types which is xdata2 and
ydata2 and for the xdatal and ydatal were trained and tested in the ratio of 70: 30 which is for
classifying initially whether the packets are benign or malicious.

For xdata2 and ydata2 (classification of 10T botnets):
CatBoost Training:

cb model = CatBoostClassifier(iterations=1000)

cb_model . fit(xtrain,ytrain)

Catboost Testing

LightGBM Training:

[1 1lgb _model = LGBMClassifier()

lgb_model . fit(xtrain,ytrain)

LightGbm Testing:

predictions = lgb _model.predict(xtest)

Soft voting classification Training:

boost', ch model), ('lgb_model', lgb model)], voting = 'soft')

Soft voting classification Testing:

predictions = soft voting.predict(xtest)

For xdatal and ydatal (classifying whether its benign or malicious):

The same procedures used for xdata2 and ydata2 are also used to train and evaluate xdatal and
ydatal. However, as noted above in the train and split portion, testing and training are divided
70:30. The major training and testing of Xdatal and Ydatal is done to determine if the output is
malicious or benign if the output is o it is considered as benign and if the output is, then it is
considered as malicious.

Soft voting classification Training:

Soft voting classification Testing:

predictions = soft voting.predict(xtest)

4. Evaluation:
For the classification Benign or Malicious:

The Performance of the soft voting classifcation were examined for both the models i.e; whether
to classify whether the packets or malicious as well as for the botnet types

The first section focus on checking the classification performance of Benign and Malicious. For
this Accuracy, F1 score, recall were calculated . The accuracy we are achieving with the help of
combined Cat Boost and LightGbm Classifier via softvoting classifier is 99%.

[+ Learning rate set to @.5
total: 1.56ms remaining:
recall fl-score support

@. aa @. e
@. 99 1.00

accuracy
macra avg
welghted awg

False Alarm Rate:

Flase Alarm Rate is one of the important merics for the IDS.
print("The False Alarm rate for Malicious and Ben is: {}".format(FAR))

The False Alarm rate for Malicious and Benign is: ©.5008483361344538

precision support

ELF:Mirai-ACU [Trj] e.97
ELF:Mirai-APD [Trj] 1.00
ELF:Mirai-GH [Trj] 9.90
ELF:Svirtu-AA [Trj] B8.92
Other:Malware-gen [Trj] o.

=
8af 5y

[

accuracy
macro avg
weighted avg

BB
ISl
BB

5. Conclusion:

In this research work, Ensemble based IDS was built to detect and lIoT botnets. The model was
built by combining LightGBM and Catboost into a single voting classication which decides the
the probablity of the outputs from LightGbm nd catboost into a single ouput. However, this model
classifies whether the packet is malcious or benign and it will also classifies the botnet types. The
models were trained and tested on the ratio of 70:30 for classifying whether its benign or malicious
which attained the accuracy of 99 percent and the Flase Alarm rate was 0.5, and for classifying
botnet types the model was trained and tested in the ratio of 90 : 10 in which the 93 percent
accuracy was attained.

