

Configuration Manual

MSc Research Project

MSc in Cyber Security

Rahul --

Student ID: 20243804

School of Computing

National College of Ireland

Supervisor: Prof. Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Rahul --

Student ID:

20243804

Programme:

MSc in Cyber Security

Year:

2021-22

Module:

MSc Research Project/Internship

Lecturer:

Prof. Michael Prior

Submission Due
Date:

15/08/2022

Project Title:

How to Improve Security of Smart Contracts written in Solidity in

Blockchain by Detecting Reentrancy Vulnerability

Word Count:

1182 Page Count: 5

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Rahul --

Date:

15/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Rahul --

Student ID: 20243804

1 Understanding Smart Contracts

First, the package Brownie (christianb93, 2021) was installed on three different platforms

Ubuntu, Kali Linux, and Windows OS using the administrative privilege of the terminal and
command prompt. Brownie is a Python3 package named eth-brownie.

To get the package running successfully, a module named Ganache (version 6.1) was also
installed.

The path where Brownie was installed was added to the path/environment variable.

Occasionally Brownie maintains items that shouldn't be included in the owner's GitHub
repository. As a result, usually a subdirectory is created in the repository and added to the

gitignore file. A project is created within this subdirectory, and then symlinks are created to
the data sets and tests that have to be used.

After that, a smart contract named Counter was compiled. In the case of a project with smart
contracts, Brownie compiles all contracts in that project when it runs.

Once the compilation is complete, the Brownie console can be accessed. Brownie is most

commonly accessed through this tool. Brownie consoles are basically interactive Python
consoles with the additional Brownie features built in.

Now the smart contract, Counter, is deployed using the deploy functionality.

Upon running the command all the methods that the newly created object has will be listed.
The methods named increment and read will be used. The logs, events, and information are

listed.

By using either the user accounts array or the corresponding API call, Brownie allows us to
inspect a list of user accounts handled by Ganache. Alternatively, apps-handeled accounts
method could be used to reach the same result.

Then the account is saved in a password-protected file called “myAccount”. Now, it can be

reloaded whenever the Brownie console is restarted through the same file.

Now, for running the tests of Brownie we will import some functions and the next step is to
obtain a copy of the smart contract that has been deployed. The Fixture module that was
imported earlier handles this.

Finally, the scripted tests are run using the test functionality of Brownie.

2

Second, Web3 (christianb93, 2021) is installed on all three platforms through the

terminal/command prompt. It is important that GCC and Python Development package are
present on the system for Web3 to run successfully.

Now, the Web3 library needs to be imported. Then a link to the Ganache server is
established. To verify whether the link has been successfully made or not, the version string

is requested from the server.

Now, we choose one account randomly from the ten accounts present in the Ganache server
through the w3 function of Web3 module.

After that, Ether is sent to the address that has been obtained from the account created in the
Brownie console using myAccount. Then, Ether is called back from the user account Alice.

The smart contract is retrieved from Web3 by stating the smart contract ABI.

Then the smart contract address and its ABI are made known to the library so as to
communicate with the smart contract.

Finally, a contract function method was used such that the counter value is read, incremented

by one, and then read again to call the smart contract.

A contract function was run which was not part of the ABI so it would throw an error.

2 Debugged Tools that didn’t Function

I tried running tools such as Rechecker and Oyente but even after debugging the source codes
that were used differently in the newer version of the language, I wasn’t able to run them

successfully.

Rechecker took more than 10 minutes just to train the model as it is based on deep learning
which is not efficient.

While Oyente couldn’t be imported from pip3 or the docker command properly, and hence it
crashed.

3 Debugged Tools that Function

Slither (trailofbits, 2022):

First, I installed the dependencies of slither analyzer which are Python 3.8+, and solidity
compiler (solc-select), the link to installing the solidity compiler given is wrong it is the

solcjs installed through npm which will not work for the slither analyzer, for slither we need
solc-select and I found that I download the wrong solidity compiler after it threw error a few

times.

Also, we have to give administrative privileges to the terminal/ command prompt on which

the slither is installed for it to access the directory to be stored.

After installing the correct dependencies, I download a buggy smart contract through the
following link,

3

Then I installed the slither analyzer through pip3 command of Python3 package, and it ran

successfully.

Finally, I tested the slither tool on the buggy smart contract that I downloaded, and the tool
successfully did the analysis and generated a report of the reentrancy vulnerability.

Mythril (ConsenSys, 2020):
I downloaded the mithril tool using pip3 command which was successful.

Then I ran the test on a buggy contract that I downloaded from the following link,

It ran successfully but It only runs if the smart contract is written in the same version as of the
solidity compiler or else it throws an error.

4 References

christianb93. (2021, 08 18). Fun with Solidity and Brownie. Retrieved from LeftAsExercise:

https://leftasexercise.com/2021/08/18/fun-with-brownie/

christianb93. (2021, 08 22). Using web3.py to interact with an Ethereum smart contract.

Retrieved from LeftAsExercise: https://leftasexercise.com/2021/08/22/using-web3-

py-to-interact-with-a-smart-contract/

ConsenSys. (2020, 03 23). Mythril. Retrieved from GitHub:

https://github.com/ConsenSys/mythril

Mueller, B. (2021, 08 06). Mythril Documentation. Retrieved 04 03, 2022, from

https://readthedocs.org/projects/mythril-classic/downloads/pdf/master/

trailofbits. (2022, 04 21). Slither. Retrieved from GitHub:

https://github.com/crytic/slither#how-to-install

