

How to Improve Security of Smart Contracts written
in Solidity in Blockchain by Detecting Reentrancy

Vulnerability

MSc Research Project

MSc in Cyber Security

Rahul --

Student ID: 20243804

School of Computing

National College of Ireland

Supervisor: Prof. Michael Prior

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Rahul --

Student ID:

20243804

Programme:

MSc in Cyber Security

Year:

2021-22

Module:

MSc Research Project/Internship

Supervisor:

Prof. Michael Prior

Submission Due
Date:

15/08/2022

Project Title:

How to Improve Security of Smart Contracts written in Solidity in

Blockchain by Detecting Reentrancy Vulnerability

Word Count:

6125 Page Count: 29

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.
ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Rahul --

Date:

15/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

How to Improve Security of Smart Contracts written

in Solidity in Blockchain by Detecting Reentrancy

Vulnerability

Rahul --

20243804

Abstract

As we know that the use of Blockchain is growing and so is the use of solidity a

Programming language used for creating agreements on the Ethereum platform but is it

really safe to use solidity. In this paper, I have researched on the main vulnerability of

the programming language used for Smart contracts in the Ethereum environment (i.e.,

solidity) which is reentrancy, and my research proposal is that I have tried to provide a

novel solution/ verification reentrancy detection tools. I have verified two important

reentrancy vulnerability detection tools, Slither and Mythril, in searching for a new and

ingenious solution. Since the tools were written in a programming language version that

is outdated and throwing errors, I debugged the code of these two tools and some other

tools too. I also experimented with brownie and python console on how to build a smart

contract, deploy them and interact with other smart contracts to learn how the smart

contracts work. I verified Slither and Mythril on different platforms, Kali Linux, Ubuntu,

and Windows OS with various different datasets.

1 Introduction

As we know in that the use of Blockchain is growing and so is the use of solidity a

Programming language used for creating agreements on the Ethereum platform but is it safe

to use solidity. In this paper, I have researched on the main vulnerability of the programming

language used for Smart contracts in Ethereum environment (i.e., solidity) which is

reentrancy, and my research proposal is that I have tried to provide a novel solution to this

existing vulnerability by merging other solutions for this vulnerability. I have verified two

important reentrancy vulnerability detection tools, Slither and Mythril, in searching for a new

and ingenious solution. Since the tools were written in a programming language version that

is outdated and throwing errors, I debugged the code of these two tools and some other tools

too. I also experimented with brownie and python console on how to build a smart contract,

deploy them and interact with other smart contracts to learn how the smart contracts work. I

verified Slither and Mythril on different platforms, Kali Linux, Ubuntu, and Windows OS

with various different datasets.

Solidity (Dannen, 2017) is one of the most prominent statically typed programming

languages used on the Ethereum environment to create smart contracts, its name was coined

by Gavin Wood in 2014 and was developed in the near future by a team created for solidity

which was a part of Blockchain project. Unlike ECMAScript, Solidity uses static typing and

has variable return types, so it is familiar to programmers.

2

Also, the environment in which solidity is used i.e., Ethereum is a frontrunner of web 3.0

(Groce, 2019) and one of the largest blockchain networks. Regardless of the fact that

Ethereum is a commonly utilized cryptocurrency that allows for secure currency transactions.

There's a whole number of apps that make use of the Blockchain's distributed nature to

handle activities.

The motive behind the research on the chosen topic is because solidity, a statically typed

programming language first designed in 2015, has risen in popularity because multiple

inheritance is provided by it, stores numerous variable functions for arranging and

representing smart contracts. if the third party is involved the operations are very reliable and

safe, and it can be used to create a significant number of smart contracts. Blockchain, a

relatively older technology with little progress in the sector, has recently become one of the

most significant breakthroughs in cryptocurrency. People have recognized the actual potential

of the Blockchain network as a result of the advancements in this industry. In spite of smart

contracts' many advantages, they can still be vulnerable. One example is that attacks can

happen while the contracts are still in development. Solidity smart contracts are vulnerable to

the Reentrancy attack, this vulnerability occurs when unanticipated behaviors can be

exploited to the project's detriment. If a function calls an untrusted contract externally, it is

considered a reentrancy attack. In an attempt to drain funds, the untrustworthy contract

recursively calls the original function. The attacker can continuously drain the contract's

funds if the contract fails to update its state before sending money. The reentrancy exploit

could take place whenever a smart contract calls another smart contract externally. When an

EVM is called by a smart contract, the execution responsibility of the EVM is transferred

from the smart contract that is calling to the one calling (as shown in Figure 1 indicated by

the green arrow). There is therefore a danger except if the smart contract executing the call is

familiar with the code of a smart contract being called. Depending on the call to the smart

contract, the external code could be used in any way it wishes. Smart contracts that have been

called can include actions such as calling back to the original smart contracts (as shown in

Figure 1 indicated by the red arrow).

Figure 1: Transaction between smart contracts

During DAO attack, 60 million US dollars were lost as a result of Reentrancy, which makes

it a very harmful vulnerability.

Structure of the paper. The rest of this paper is organised as follows:

1) Section 2 talks about the Literature Review

Figure 1: Transaction of contracts

3

2) Section 3 talks about the Research Methodology

3) Section 4 talks about the Design

4) Section 5 talks about the Implementation

5) Section 6 talks about the Evaluation

6) Section 7 talks about Conclusion and Future Work

7) Section 8 includes link to the Video demonstration

8) Section 9 includes References

2 Related Work

Since we know that Reentrancy is a very risky vulnerability in the Blockchain’s Smart

contracts as the information might be used by a malignant smart contract to build a

"fabricated fallback function" to perform malicious operations in the initial smart contract,

there should be a solution for it to avoid this vulnerability (Tantikul, 2020). Many reentrancy

detection coding techniques and tools have been innovated to know if there is a reentrancy

vulnerability in a smart contract programmed code or not by researchers amongst which one

of the first detection static tools was Oyente (Luu, 2016) which was successful at some levels

to find reentrancy, symbolic run on EVM bytecode is used and also it was the basis for some

other tools such as Oyente, but it had too many false positives and false negatives. After this,

other researchers also presented other static tools for detecting and revealing reentrancy in

smart contracts in the Blockchain which were Slither, Securify, and Mythril out of which the

work of group researched which worked on Slither was the best of all the static detection

tools as it had less FPs and FNs and more accurate than others.

One of the most notable and accurate detection tool ReDefender (Pan, 2021) was proposed

and innovated by a group of researchers which made a significant improvement when

compared to other static tools such as Oyente as it had the minimum number of false

positives and false negatives making it more accurate and efficient.

2.1 Detecting Reentrancy

For detection of reentrancy many different tools use different rules, such as Slither (Feist,

2019) presented by TrailOfBits which is a tool that uses a rule which should be met by the

condition given in Figure below (Figure 2) for reentrancy to be possible.

Figure 2: Slither's rule

In the above-given figure (Figure 2), Read and write operations are indicated by r() and w()

respectively, varg(g) represents a public variable. In the control flow of a program, “>”

indicates the order of execution. Payment functions that are externally called except send()

and transfer() are described in the extrnCall property. According to this stipulation, in a case

Figure 2: Slither's rule

4

where there are sequence processes to the very same accessible parameter, reentrancy may

occur when a call is made to an external payment function.

This principle also gives False negatives and false positives as a result which makes it less

effective. Now we will look at Securify tool which has better effectiveness than Slither.

A tool presented by group of researchers named as Securify (Tsankov, 2018), the way this

tools works is that it first takes in the smart contract’s source code as its initial input and to

proceed with the analysis, the files are then compiled into EVM bytecode. Then the first set

of patterns captures the conditions that a contract must satisfy in order to violate security

properties and the second set illustrates the conditions needed for a contract to violate

security properties. After that stackless representation in the static-single assignment of the

EVM bytecode given as initial input then it examines the contract after decompiling it to find

semantic rules underlying all of its actions, including information and control-flow

dependencies, securify then refers to a set of adherence patterns and cybersecurity violations

once semantic data have been acquired finally when it detects a breach pattern. Finally, it

gives the output of the command that causes a breach pattern to match. It has some

limitations such as overflows are not identified by it, every function in the smart contract is

reachable so it assumes, and it also gives false positives and false negatives same as the case

is with the Slither tool, but it is more precise than Slither.

Oyente is one of the first tools for detecting reentrancy presented by Melonport AG which

has very similar static procedural rules to that of Slither and Securify. So, it has same

limitations as Slither and Security making it less effective. Here False negative is a case

where the tool misses a reentrancy activity because smart contract static tools typically miss

analysis of some important but suspicious program paths, such as cross-function or cross-

contract call chains which is the case for all above-mentioned tools. (Luu, 2016). Also, by

extending Oyente to check for integer bugs in smart contracts, Oyente researchers have

developed Osiris and it has a similar accuracy rate as Oyente (Torres, 2018).

SolSaviour is a mechanism for mending and retrieving existing faulty smart contracts by

reallocating repaired contracts and transitioning the initial condition of previous smart

contracts to modified ones (Li, 2021). Some other researchers also suggested a runtime hook

mechanism for syncing and evaluating the Ethereum contract data's existing operations (Lin,

2020).

A static analysis tool called SmartCheck, innovated by SmartDec, uses patterns to detect

weaknesses and suspicious coding methods and it analyzes Solidity source code from a

lexical and syntactical perspective, but it is very less precise when compared to Slither tool

(Tikhomirov, 2018).

Mythril is a tool innovated by ConsenSys that among the other security issues detects

reentrancy, using taint path evalutaion (Mueller, 2018). The Mythril tool cannot identify

issues in an application's business logic, since it is designed to find common vulnerabilities.

A Mythril executor is not well-suited to exploring all possible states of a program, because

often it is not able to do so. But its detection accuracy is better than above given three tools as

found by researchers using analysis tools (Mueller, 2021).

A group of researchers developed a framework depending on the ABI requirements of the

smart contracts undergoing evaluation, this structure constructs a harmful contract and

5

evaluates the smart contract communication to accurately notify reentrancy vulnerability. But

this framework is only theoretical and not made in real time (Fatima Samreen, 2020).

A group of researchers built a machine learning model that analyzes transaction data and

classifies them as benign or harmful based on features extracted from the data. Its accuracy is

low, uses machine learning (Eshghie, 2021). Another group of researchers also use deep

learning to make a framework for detecting reentracy vulnerability, but runtime execution is

not analysed by this framework (P. Qian, 2020).

Some researchers employed a Datalog-based framework to discover reentrancy vulnerability

in the real time of Ethereum and contrasted the findings to those of other tools, which gave

much less false positives (Tang, 2021). While some other researchers (Cecchetti, 2021)

proposed a process to maintain security that allows smart contracts to secure their important

elements while keeping the descriptive potential of safe kinds of reentrancy.

With TrailOfBits' (which also developed Slither) Manticore tool, symbolic execution is used

to identify possible reentrancy vulnerabilities within EVM bytecode and self-destruct areas,

but it is less accurate than Slither, Securify, and Mythril (Mossberg, 2019).

One of the recently developed tools by researchers for detecting reentracy is ReDefender tool

and ReGuard tool which is based on fuzz testing it is different from the above tools in a way

that it is dynamic and not static and In ReDefender, the source code from uploaded contracts

is pre-processed for fuzz testing, a fuzzing engine will provide the input for the fuzzing

process, in the construction of an agent contract, all contracts are targeted for interaction and

assault, fuzzing inputs collect runtime information while they are executed, a malicious

reentrancy is detected by analyzing the execution log (Pan, 2021). The ReGuard tool works

on a similar workflow, as it was developed using fuzzing. To perform fuzz tests on smart

contracts, ReGuard generates diverse but random transactions iteratively. It then

automatically discovers vulnerability reentrancy, based on the execution logs. and it also uses

fuzz testing as its base (Liu, 2018). The limitations of this tool are,

• The fuzzing is not narrowed down which creates unnecessary redundancy,

• The execution timeouts are not dynamically determined which makes it a little less

effective,

but it still provides more efficiency than the other 3 static tools, as it can do the analysis of

smart contracts dynamically. Also, these tools are more effective than SmartInspect tool

(Bragagnolo, 2018) which provides better visualization.

The Clairvoyance Smart Contract static analysis tool (Xue, 2020) detects reentrancy

vulnerabilities by identifying infeasible paths across functions and contracts. The workflow

of Clairvoyance is that “msg.sender” is first checked to see whether it is part of an authorized

list of addresses or contracts, or whether it has permission to send. Next, it is checked for

modification or initialization before the external call of the tainted address or object,

afterwards, implement the above given two principles to the function's auto-defined

modifiers. Verify that the execution lock is present, and finally, verify that the pattern

“checks-effects-interactions” exists. This tool has more True positives than other static tools,

but it still has many false positives too (Ye, 2020).

In this section, I have talked about the related works and their strengths and limitations and in

the next section, I will be doing an analysis of these tools.

6

2.2 Analysis of Tools

The research gap or niche in the above-related works is that all the above-listed tools still

give some false positives and false negatives which I will try to improve in my novel

solution, the static tools take quite a bit of time to do the detection analysis on smart contracts

my proposed solution will be able to do it faster, the dynamic tools that used fuzzing

techniques have not got it narrowed down I will make it possible in my proposed solution

through the technique of static analysis building CFG with this I will be able to avoid

redundancy in the execution of paths, and use path coverage rates to dynamically determine

execution timeouts to be more accurate.

3 Research Methodology

By running the instalation code, Brownie console was installed successfully installed.

Brownie will be installed in .local/bin in home directory by default. Due to the fact that some

of the things that Brownie maintains shouldn't be up in the GitHub repository, I usually make

a project in the subdirectory I added to the gitignore file, then symlink to the contracts and

tests that will be needed/used. Upon running the essential commands for compiling and

deploying a smart contract, Brownie console downloads Solidity compiler and runs it. If

contracts are unchanged, Brownie console does not recompile them by default, but it can be

forced it using --all flag. As soon as Brownie console is launched on a machine, it will start

looking for an Ethereum client running on that machine. Now the smart contract is deployed

when we run the command "Counter.deploy()". On running a specific command it will be

shown that the newly created object has methods read and increment. These are used in our

smart contract to increment the value of counter by 1. Then a command is run to send and

recieve Ether between two user accounts. After that, the account is saved. Tests are written in

Python and then our smart contract is tested using the Brownie test command to get to the

desired outcome (christianb93, 2021).

I collected dataset from different pages of Github which are listed below,

• https://github.com/smartbugs/SolidiFI-benchmark/tree/master/buggy_contracts/Re-

entrancy

• https://solidity-by-example.org/hacks/re-entrancy/

For doing the same thing with web3 I first import the web3 library, then I establish a

communication with the Ganache server when version string is called. Then, I checked

balance of the account that I created with Brownie, also the address and key of the user

account is copied by me for later use. The ether is then transferred to and called back between

the user account that I created and alice. Finally, we communicated with the smart contract

upon creating the smart contract application binary interface (christianb93, 2021).

For the verification of Slither tool I first installed the dependencies that it required which are

Python 3 and solidity compiler, the solidity compiler mentioned in the source link is wrong

which is solcjs but I had to install the solc-select for the tool to run successfully. Then, I

installed slither analyser and analysed a smart contract from a dataset mentioned below to

check for the efficiency and working of Slither, which then generated the output in the text

form in the terminal (trailofbits, 2022).

https://github.com/smartbugs/SolidiFI-benchmark/tree/master/buggy_contracts/Re-entrancy
https://github.com/smartbugs/SolidiFI-benchmark/tree/master/buggy_contracts/Re-entrancy
https://solidity-by-example.org/hacks/re-entrancy/

7

For the verification of the Mythril tool I first installed the tool using the pip3 command of

python 3. Upon successful completion of installation of the tool I ran the analysis on a

solidity smart contract file and it ran successfully, which then generated the output in the text

form in the terminal (ConsenSys, 2020).

Upon comparing both the tools we observe that Mythril takes more time than Slither but

accuracy of Mythril is more than that of Slither tool.

4 Design Specification

Brownie (christianb93, 2021):

The Brownie framework targets the Ethereum Virtual Machine and is based on Python. Its

functionalities include,

• Using Pytest, you can check the range via traces. Utilize stack-trace analysis to

analyse test ranges when writing unit tests in Python.

• Hypothesis-based testing of properties and states.

• One can set custom error strings and create tracebacks using Python-style tools.

• Quickly interact with your project with the built-in console.

• EthPM packages are supported.

• Create automated workflows for deploying smart contracts onto blockchains and

initializing or integrating them.

• For quick testing in a local environment or interaction with your smart contracts on

the mainnet, write scripts or use the console.

• To help you pinpoint the issue quickly, you will receive detailed information when a

transaction reverts.

Brownie makes it very easy to build, deploy and interact with smart contracts and testing for

vulnerabilities in the smart contracts, and Solidity and Vyper are fully supported.

Web3 (christianb93, 2021):

The web3.py library allows you to interact with Ethereum using Python such as interacting

with a smart contract that was created using Brownie upon defining the smart contract App

Binary Interface. The architecture of web3.py consists of 4 phases is given in the Figure

(Figure 3) below,

8

Figure 3: Architecture of Web3

1. Blockchain: Everyone can access and write to a blockchain, which is designed as a

state machine. Thus, this system belongs to the entire network collectively rather than

to a single entity. Furthermore, only additional information may be put to the

Ethereum blockchain; current data cannot be modified there.

2. Smart Contracts: Anyone can examine the application logic contained in a smart

contract because the Ethereum blockchain stores the smart contract script.

3. Ethereum Virtual Machine (EVM): Unlike high-level languages like Solidity and, the

EVM does not understand high-level languages like them. In order for the EVM to

execute the high-level language, you must compile it down into bytecode.

4. Frontend: As a final step, let's take a look at the front end. Additionally, it

communicates with the contract logic defined in the app logic, as we already

mentioned. There is a little more complexity to the interaction between both the front

end and contracts than seems in the figure above.

9

Slither (Feist, 2019):

Due to its adaptability, Slither is the perfect foundation for studying smart contract code and

allowing a wide range of applications. Current uses of the framework include,

• Automated vulnerability identification makes it possible to find a wide range of smart

contract issues without human input.

• Automated code optimisation detection makes it possible to find code improvements

that the compiler overlooks.

• Code understanding makes it possible to assist in the analysis of the codebase, printers

summarise and display the data from smart contracts.

• Assisted code review makes it possible for clients to communicate with Slither using

API.

The architecture of Slither is depicted in the image (Figure 4) below,

Figure 4: Architecture of Slither

A multistage static analysis procedure is used by Slither to analyse contracts. First, a Solidity

compiler is used to generate a Solidity Abstract Syntax Tree (AST) from the smart contract

source code. This AST is used as an initial input by Slither. After that, Slither first retrieves

essential smart contract information such as inheritance graphs, expression lists, and control

flow graphs (CFGs). The entire smart contract code is then converted into SlithIR, Slither's

internal representation language. For the computation of various code analyses, SlithIR

makes use of static single assessment (SSA). After that is complete, Slither finally starts the

actual code analysis. It calculates a group of pre-determined analyses that give essential

information to other modules. All of the above-mentioned stages are summarized in the

figure above.

Mythril (ConsenSys, 2020):

The Mythril tool analyses EVM bytecode for security issues. This tool detects security issues

in contracts developed for Ethereum, Quorum, Hedera, Vechain, Tron, Roostock, and other

EVM-compatible blockchains. To detect various forms of security issues, it uses symbolic

execution (SMT solving) and taint analysis. To prune the search space and to look for values

that allow exploiting smart contracts, ConsenSys uses concolic analysis, taint analysis, and

control flow verification of the EVM bytecode.

10

5 Implementation

Slither:

Slither is implemented on the smart contracts of a dataset which are taken from the following

link,

https://github.com/smartbugs/SolidiFI-benchmark/tree/master/buggy_contracts/Re-entrancy

The dataset contains 50 files that are written in solidity language and have a re-entrancy

vulnerability. This vulnerability has been induced in all the smart contracts present in the

dataset. In the screenshots below I have shown the analysis of slither analyser on a smart

contract taken from this dataset. I did have to change the version of the solidity compiler as

for slither to run successfully the version of the solidity compiler and the version in which the

smart contract is written should be the same. In the code of the smart contracts that I tested I

also tried modifying the code such as changing the functions of the code but most of the time

the code compiled with errors.

Continuous (Feist, 2019) integration is supported as well as developer toolboxes. AST

parsing of the smart contract under examination requires the latest version of the Solidity

compiler, which doesn’t have many dependencies.

Mythril:

Mythril is implemented on the smart contracts of a dataset which are taken from the

following link,

https://solidity-by-example.org/hacks/re-entrancy/

This smart contract code has been modified by me such as I increased the number of ethers

being transferred as given in the solidity file and then I used the mythril to analyse the smart

contact file and it successfully did the analysis with the output of re-entrancy vulnerability.

The mythril tool only works for the smart contracts written in solidity version >=0.8. So the

latest version of the solidity compiler needs to be downloaded for the mythril tool to run

successfully.

Both the tools slither and mythril gives the expected output as both tools identify the re-

entrancy vulnerability in the dataset/smart contracts file written in solidity.

6 Evaluation

I used Brownie and Web3 (christianb93, 2021) (christianb93, 2021) modules that are

included in the Python 3 package to do the following,

• Created a smart contract (or the smart contracts present in the ganache server can also

be utilized).

• Deployed the smart contract.

• Know the details about logs which are the subjects, data, and address, the

interpretation of logs i.e., events and information related to the smart contract such as

the block number, the gas price, the gas limit, the gas utilized, and even a complete

execution trace down to the level of individual commands.

• Append new user accounts to the key store once they are created.

• Managed accounts are viewed by getting a list of them.

• With a given user account, signed a transaction.

https://github.com/smartbugs/SolidiFI-benchmark/tree/master/buggy_contracts/Re-entrancy
https://solidity-by-example.org/hacks/re-entrancy/

11

• A private key of user account is used to import an account (also locking and

unlocking of user accounts).

• Finally ran tests for finding vulnerabilities with Brownie and in Web3 created smart

contract ABI for interaction with the smart contract.

After that, I ran tests for re-entrancy detection using Slither tool on the dataset mentioned

above and verified the efficiency of the tool, the results that I got upon running the tests are

about the vulnerabilities present in the code in text form in the terminal, this tool tests each

line of the smart contract dataset code written in solidity language.

Finally, I ran tests for re-entrancy detection using Mythril tool on the smart contract file

mentioned above and verified the efficiency of the tool, the results that I got upon running the

tests are about the vulnerabilities present in the code in text form in the terminal, this tool

tests each line of the smart contract dataset code written in solidity language.

6.1 Brownie

The results that I got from testing using brownie is shown in the figures (Figure 5, 6, 7, 8 and

9) below,

12

13

14

We can see from the above image that it gives all the information about the smart contract

such as the coverage report, methods invoked, and the gas used. The report of vulnerabilities

can be viewed through Brownie GUI.

6.2 Web3

The results that I got from using Web3 on the smart contract account created with Brownie is

shown in the image (Figure 10, 11, 12, 13, and 14) below,

15

16

17

We can see from the above image that the methods specified in the contracts ABI can be used

with Web3 such as to read and increment the value of Counter an example of interaction with

the smart contract.

6.3 Slither

The results that I got from testing using Slither analyser is shown in the figure (Figure 15, 16,

17, 18, and 19) below,

18

19

We can see from the above figure that it shows all the lines of code of the smart contract

chosen from above given dataset where the possibility of reentrancy vulnerability tool is

detected.

6.4 Mythril

The results that I got from testing using Mythril is shown in the figure (Figure 20, 21, 22, 23,

24, 25, 26, and 27) below,

20

21

22

23

We can see from the above figure that it shows all the lines of code of the smart contract file

where the possibility of reentrancy vulnerability tool is detected.

6.5 Discussion

I have verified two important reentrancy vulnerability detection tools, Slither and Mythril, in

searching for a new and ingenious solution. Since the tools were written in a programming
language version that is outdated and throwing errors, I debugged the code of these two tools

and some other tools too. I also experimented with brownie and python console on how to
build a smart contract, deploy them and interact with other smart contracts to learn how the
smart contracts work. I verified Slither and Mythril on different platforms, Kali Linux,

Ubuntu, and Windows OS with various different datasets. Slither was found to be taking less
time than Mythril in detecting reentrancy vulnerability on the dataset of smart contracts. The

link to installing the solidity compiler given in the source link for Slither is wrong it is the
solcjs installed through npm which will not work for the slither analyzer, for slither we need

solc-select and I found that I download the wrong solidity compiler after it threw error a few
times. Also, we have to give administrative privileges to the terminal/ command prompt on
which the slither is installed for it to access the directory to be stored. The Slither and Mythril

could have been built for even analysing all the smart contracts with pragma solidity less than
0.8 version or the latest version so the need to upgrade every code written in older versions of

solidity need not be upgraded to latest version. Mythril tool should have been built to take
less time in analysing a given smart contract code. Slither might act as a compiler by

converting SlithIR to EVM or bytecode. SlithIR's performance could be improved with
optimization. The intermediate representation can be used to implement symbolic execution
or bounded model checking, making validation for vulnerability identifiers and worst-case

gas price assessment easily accessible. Both tools should be modified to be implemented on a
whole dataset at once.

7 Conclusion and Future Work

24

In this research project I have tried to provide a novel solution/ verification reentrancy

detection tools. I have verified two important reentrancy vulnerability detection tools, Slither
and Mythril, in searching for a new and ingenious solution. Since the tools were written in a

programming language version that is outdated and throwing errors, I debugged the code of
these two tools and some other tools too. I also experimented with brownie and python
console on how to build a smart contract, deploy them and interact with other smart contracts

to learn how the smart contracts work. I verified Slither and Mythril on different platforms,
Kali Linux, Ubuntu, and Windows OS with various different datasets.

Testing with Brownie gives all the information about the smart contract such as the coverage
report, methods invoked, and the gas used. The report of vulnerabilities can be viewed
through Brownie GUI. I ran tests for re-entrancy detection using Slither and Mythril tool on

the dataset mentioned above and verified the efficiency of the tool, the results that I got upon
running the tests are about the vulnerabilities present in the code in text form in the terminal,

this tool tests each line of the smart contract dataset code written in solidity language. Both
tools shows all the lines of code of the smart contract file where the possibility of reentrancy

vulnerability tool is detected.
 For this project I have used Brownie and web3 to understand the logic of smart contract
implementation and I have verified the efficiency of two tools Slither and Mythril with some

debugging and modification. If I get a chance to work on this project again, I will develop
and implement a tool of my own which would detect the reentrancy with more efficiency

than the Slither and Mythril tool also, I will make it so that the false positives and false
negatives are less than all other tools that are already present. Finally, I will build such that it
is able to analyse all versions of solidity code and all the smart contracts present in the dataset

at once to be more efficient.

8 References

Bragagnolo, S. a. (2018). SmartInspect: solidity smart contract inspector. In 2018
International Workshop on Blockchain Oriented Software Engineering (IWBOSE)

(pp. 9-18). Campobasso, Italy: IEEE.

Cecchetti, E. a. (2021, 05 26). Compositional Security for Reentrant Applications. 2021 IEEE

Symposium on Security and Privacy (SP), pp. 1249-1267.

christianb93. (2021, 08 18). Fun with Solidity and Brownie. Retrieved from LeftAsExercise:

https://leftasexercise.com/2021/08/18/fun-with-brownie/

christianb93. (2021, 08 22). Using web3.py to interact with an Ethereum smart contract.

Retrieved from LeftAsExercise: https://leftasexercise.com/2021/08/22/using-web3-

py-to-interact-with-a-smart-contract/

ConsenSys. (2020, 03 23). Mythril. Retrieved from GitHub:

https://github.com/ConsenSys/mythril

Dannen, C. (2017). Solidity Programming. In T. Green (Ed.), Introducing Ethereum and

Solidity: Foundations of Cryptocurrency and Blockchain (pp. 69-88). Brooklyn, New

York, USA: Apress Media.

Eshghie, M. a. (2021). Dynamic Vulnerability Detection on Smart Contracts Using Machine

Learning. New York, NY, USA: Association for Computing Machinery.

Fatima Samreen, N. a. (2020). Reentrancy Vulnerability Identification in Ethereum Smart

Contracts. In 2020 IEEE International Workshop on Blockchain Oriented Software

Engineering (IWBOSE) (pp. 22-29). Ryerson University, Toronto, ON, Canada:

IEEE.

Feist, J. a. (2019). Slither: A Static Analysis Framework for Smart Contracts. In 2019

IEEE/ACM 2nd International Workshop on Emerging Trends in Software

25

Engineering for Blockchain (WETSEB) (pp. 8-15). Montreal, QC, Canada: IEEE

Press.

Groce, A. a. (2019). What are the Actual Flaws in Important Smart Contracts (And How Can

We Find Them)? In J. Bonneau (Ed.), Financial Cryptography and Data Security

(Vol. abs/1911.07567, pp. 634-653). New York City, NY, USA: Springer.

Li, Z. a. (2021). SolSaviour: A Defending Framework for Deployed Defective Smart

Contracts. New York, NY, USA: Association for Computing Machinery.

Lin, W.-T. a.-W. (2020). Runtime Hook on Blockchain and Smart Contract Systems. New

York, NY, USA: Association for Computing Machinery.

Liu, C. a. (2018). ReGuard: Finding Reentrancy Bugs in Smart Contracts. New York, NY,

USA: Association for Computing Machinery.

Luu, L. a.-H. (2016). Making Smart Contracts Smarter. (pp. 254-269). New York, NY, USA:

Association for Computing Machinery.

Mossberg, M. a. (2019). Manticore: A User-Friendly Symbolic Execution Framework for

Binaries and Smart Contracts. In 2019 34th IEEE/ACM International Conference on

Automated Software Engineering (ASE) (pp. 1186-1189). New York City, USA: IEEE

Press.

Mueller, B. (2021, 08 06). Mythril Documentation. Retrieved 04 03, 2022, from

https://readthedocs.org/projects/mythril-classic/downloads/pdf/master/

P. Qian, Z. L. (2020). Towards Automated Reentrancy Detection for Smart Contracts Based

on Sequential Models. IEEE Access, 8, 19685-19695.

Pan, Z. a. (2021). ReDefender: A Tool for Detecting Reentrancy Vulnerabilities in Smart

Contracts Effectively. In 2021 IEEE 21st International Conference on Software

Quality, Reliability and Security (QRS) (pp. 915-925). Jiangsu Province, P.R. China:

IEEE.

Tang, Y. a. (2021). Rethinking of Reentrancy on the Ethereum. In 2021 IEEE Intl Conf on

Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence

and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber

Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech) (pp. 68-

75). HongKong, China: IEEE.

Tantikul, P. a. (2020). Exploring Vulnerabilities in Solidity Smart Contract. Proceedings of

the 6th International Conference on Information Systems Security and Privacy

(ICISSP 2020), pp. 317-324.

Tikhomirov, S. a. (2018). SmartCheck: Static Analysis of Ethereum Smart Contracts. New

York, NY, USA: Association for Computing Machinery.

Torres, C. F. (2018). Osiris: Hunting for integer bugs in ethereum smart contracts. New York,

NY, USA: Association for Computing Machinery.

trailofbits. (2022, 04 21). Slither. Retrieved from GitHub:

https://github.com/crytic/slither#how-to-install

Tsankov, P. a.-C. (2018). Securify: Practical Security Analysis of Smart Contracts. New

York, NY, USA: ACM.

Xue, Y. a. (2020). Cross-Contract Static Analysis for Detecting Practical Reentrancy

Vulnerabilities in Smart Contracts. New York, NY, USA: Association for Computing

Machinery.

Ye, J. a. (2020). Clairvoyance: Cross-contract Static Analysis for Detecting Practical

Reentrancy Vulnerabilities in Smart Contracts. New York, NY, USA: Association for

Computing Machinery.

