

Configuration Manual for Distributed

Intrusion Detection System for Cloud

Environments Using Deep Learning

Machine Algorithms

MSc Research Project

Masters in Cloud Computing

Oyindeinbofa Pibowei

Student ID: x20165765

School of Computing

National College of Ireland

Supervisor: Prof. Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Oyindeinbofa Pibowei

Student ID:

X20165765

Programme:

Master of Science in Computing

Year:

2022

Module:

……………Research Project……….………

Lecturer:

……………Prof. Vikas Sahni.………

Submission Due Date:

………………26th APRIL 2022……….………

Project Title:

Configuration Manual for Distributed Intrusion Detection System for

Cloud Environments Using Deep Learning Machine Algorithms

Word Count:

5305 Page Count: 31

I hereby certify that the information contained in this (my submission) is information pertaining to research I

conducted for this project. All information other than my own contribution will be fully referenced and listed in

the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing

Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)

and may result in disciplinary action.

Signature:

 ……Oyindeinbofa Pibowei……………

Date:

…………26th APRIL 2022………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) □

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box

located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual for Distributed Intrusion Detection
System for Cloud Environments Using Deep Learning

Machine Algorithms

Oyindeinbofa Pibowei

X20165765

Link to Video: Oyindeinbofa_Pibowei_x20165765_Research_Project_Presentation-20220421_105510-

Meeting Recording.mp4

1 Introduction
This report is aim at producing a manual which is a comprehensive guideline for creating the

code implementation setup of the research on “Distributed Intrusion Detection System for

Cloud Environments Using Deep Learning Machine Algorithms”. The research was carried
out to investigate how well deep learning and machine learning algorithm can classify a

network traffic as attack traffic or a non-attack traffic using historical dataset. In carrying out

this experiment, three historic (3) datasets were used in this code implementation and the

datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD dataset. Three machine
learning algorithms (Logistic Regression, Random Forest Classifier and Gradient Boost

Classifier) and a deep learning algorithm (Artificial Neural Network) were used to analyse the

datasets in this research experiment.

The rest of this report is presented as follows: Section 2 discusses system specifications for

hardware and software components used in this code implementation, Section 3 covers

software installation, Anaconda environment setup and the installation of Python libraries used
in this code implementation. Section 4 will discuss code implementation and evaluation of 4

model implemented and how well the models performed with the analysis of each dataset,

Section 5 discusses the concluding or final statements and Section 6 contains a list of

references.

2 System Specification

2.1 System Hardware Requirement

The PC used in implementing the code for this work has the following configuration settings

RAM: 16GB

Processor Type: Intel core i7 with 1.99GHz processing speed

Storage Capacity: 512GB SSD.

2.2 System Software Requirement

2.2.1 Operating System (Microsoft windows 10)

Windows 10 OS is the underlying platform on which the other software used for the project

implementation will be installed.

2.2.2 Anaconda Navigator V2.1.1

Anaconda Navigator is package manager for Python programming language and it is used

manage Python versions and manage different work space on a single machine.

https://studentncirl-my.sharepoint.com/:v:/g/personal/x20165765_student_ncirl_ie/EYNMFBuvGkJKrBZmBElhy9sBaQyp7UqGyo08qjGHawArDQ?e=ufNcYG
https://studentncirl-my.sharepoint.com/:v:/g/personal/x20165765_student_ncirl_ie/EYNMFBuvGkJKrBZmBElhy9sBaQyp7UqGyo08qjGHawArDQ?e=ufNcYG

2

2.2.3 Jupyter Notebook V.6.4.5

Jupyter Notebook is the programming IDE that interpretes code segment interactively on the

browser.

2.2.4 Web Browser (Mozilla Firefox Browser V.98.0.2)

Mozilla Firefox is used by Jupyter Notebook display the code snippet and the output of the

code snippet.

3 Software Installation, Environment Setup and Python

Libraries

3.1 Software Installation for Anaconda

STEP 1:

Go to Anaconda website and download Anaconda installer file

STEP 2:

Locate the downloaded installer file and double click it to launch the installer. On the welcome

to Anaconda page, click on “Next” button.

Figure 1. Anaconda installer welcome page

STEP 3:

On the license agreement, read the licensing terms and click on the button labelled “I Agree”

to continue

3

Figure 2. Anaconda installer license agreement page

STEP 4:

Click on the button labelled “Next” on the Select installation type page

Figure 3. Anaconda installer select installation type

STEP 5:

Click on the button labelled “Next” on the Choose install location

Figure 4. Anaconda installer choose install location page

STEP 6:

Click on the button labelled “Install” on the Advanced installation options

Figure 5. Anaconda installer advance installation options page

STEP 7:

4

On the Installation Complete page, allow the installation to run to completion and click on the

button labelled “Next”

Figure 6. Anaconda installer installation complete page

STEP 8:

Click on the button labelled “Next” on the Install PyCharm

Figure 7. Anaconda installer pycharm install option page

STEP 9:

Click on the button labelled “Finish” on the Thank you page

Figure 8. Anaconda installer completing anaconda3 setup

5

3.2 Environment Setup and Python Libraries

The Anaconda installation created an environment called “base” pre-installing some of

Python’s libraries needed to carry out this coding implementation of the project work. Some

other libraries will be installed to completely setup the environment for carrying out this coding

exercise

STEP 1:

Click on the Windows icon, expand Anaconda folder and click on Anaconda Prompt to start

Anaconda command line.

Figure 9. launch anaconda prompt

STEP 2:

Create a new conda environment for carrying out this code implementation using the following

command “conda create -n venv python=3.6”. Following the instruction on command

prompt to complete the installation. After a successful creation of the venv environment, enter

the following command “conda activate venv” to activate the newly created environment

Figure 10. Anaconda prompt showing the create environment command and conda

command for activating the created environment

STEP 3:

After activating the venv environment, use the following commands to install all Python’s

libraries used in this code implementation

• “conda install -c conda-forge notebook”

• “conda install -c conda-forge jupyterlab”

• “conda install -c conda-forge nb_conda_kernels”

• “conda install -c anaconda pandas”

• “conda install -c conda-forge seaborn”

• “conda install -c intel scikit-learn”

6

• “conda install scikit-learn-intelex”

• “conda install -c conda-forge imbalanced-learn”

• “conda install -c conda-forge keras”

4 Implementation and Evaluation
After a successful installation Anaconda and installing all libraries required to carry out this

code implementation, this section shows the actual code implementation for this research work

as shown below:

4.1 Start a new project

On the launch Anaconda main page, click on the button labelled “Launch” on the cell with the

Jupyter Notebook load the interactive Python IDE on the browser

Figure 11. Launched anaconda navigator home page

On the Jupyter Notebook start up page, locate the new button on top right corner and click the

button and click also on the “Python 3” to start up a new project

Figure 12. Jupyter notebook home page showing how to start up a new project

4.2 Import libraries

After successfully launching a new project, on the first code snippet all Python libraries used

to carry out this project will be added to this code snippet. Every time this block is updated, the

button labelled “Run” should be clicked to import the library into the IDE

7

Figure 13. The code snippet showing all Python libraries for carrying out this code

implement

4.3 Defined global variables used to track data generated while executing

codes

Also, the second cell was dedicated to declaring global variables that will be used to store and

track output generated by executing codes in different blocks as they are being executed. Figure

14 below shows all global variables defined while implementing the code base for this research

work.

Figure 14. The code snippet showing all global variable used to store data generate while

executing code snippets

4.4 Defined functions

In carrying out this research code implementation, 3 different datasets will be used in the

analysis, meaning that tasks repetition will be a common occurrence and code reuse will be a

way to minimize the amount of code written. Functions were defined to implement code reuse

and minimize the number of codes written while carrying out this project code implementation.

Figure 15 below shows the function in the code implementation of the project that is used to

retrieve column names for a given dataset. The function is used to remove space character,

underscore character, hyphen and forward slash character that is present in the column name

of the dataset.

8

Figure 15. The function to generate the list of column names from the dataset

Figure 16 below shows the function in the code implementation of the project that is used to

remove all missing values in a given dataset. The function uses numpy’s properties to remove

rows with missing values and return all rows that have been determined to have valid data.

Figure 16. The function to remove missing value from a dataset

Figure 17 below shows the function in the code implementation of the project that is used to

rename columns in a dataset. The function accepts 3 arguments namely the dataset with column

names to be changed, a list of column names to be changed and a list of the names to update

the column names.

Figure 17. The function to rename column name in a dataset

Figure 18 below shows the function in the code implementation of the project that is used to

plot the pie chart for the 3 datasets showing attack traffics to non-attack traffics. The function

received five arguments and these arguments includes a tuple data structure containing the 3

datasets, a tuple containing the titles for the 3 plots, a list containing the class label for

categorizing a traffic as an attack or a non-attack, a main title and the dependent variable

column name.

Figure 18. The function to plot a pie chart for given set of datasets

9

Figure 19 below shows the function in the code implementation of the project that is used to

show the correlation chart for all the features excluding the dependent column for the 3 datasets.

The function receives 1 argument, a tuple containing the independent variables in each dataset

for all dataset.

Figure 19. The function to plot the correlation heat map for a given set of datasets

Figure 20 below shows the function in the code implementation of the project that is used to

retrieve the column names of highly correlated features (independent variables) in the dataset.

The function receives two arguments and they include the dataset whose independent variable

correlation values will be tested and threshold used to determine the highly correlated features.

Figure 20. The function used to estimate the correlation between features in a given dataset

Figure 21 below shows the function in the code implementation of the project that is used to

retrieve categorical variable in the dataset. The function receives the dataset as an argument

and retrieves a list of the column names of all categorical variables.

Figure 21. The function used to retrieve column names for all categorical variables

Figure 22 below shows the function in the code implementation of the project that is used to

split a dataset into a train set and a test set. The function receives two arguments the

independent variables (features) and dependent variable

Figure 22. The function used to split dependent and independent variables into training and testing

dataset

10

Figure 23 below shows the function in the code implementation of the project that is used to

performs Logistic Regression analysis. The function accepts two arguments which is a

dictionary data structure containing all datasets and another dictionary to track analysis result.

The function also invokes another function perform_model_analysis which helps to train the

model and use the test set evaluate the performance of the model.

Figure 23. The function used to implement Logistic Regression (LR) classification analysis

Figure 24 below shows the function in the code implementation of the project that is used to

perform Random Forest classification analysis. The function accepts two dictionary data

structure as argument with one argument containing all datasets and another argument to track

analysis result. The function also invokes another function perform_model_analysis which

helps to train the model and use the test set evaluate the performance of the model.

Figure 24. The function used to implement Random Forest (RFC) classification analysis

Figure 25 below shows the function in the code implementation of the project that is used to

perform Gradient Boost classification analysis. The function accepts two dictionary data

structure as argument with one argument containing all datasets and another argument to track

analysis result. The function also invokes another function perform_model_analysis which

helps to train the model and use the test set evaluate the performance of the model.

Figure 25. The function used to implement Gradient Boost (GBC) classification analysis

Figure 26 below shows the function in the code implementation of the project that is used to

perform model analysis by the three machine learning algorithms implemented in this project.

11

The function accepts four argument and these includes the model to be analysed, the dataset

dictionary, the key to accessing the dataset in the dictionary and the label used to mark the

model. The function invokes two other functions name train_model to train the target model

and run_analysis to evaluate model perform after training the model. The function displays

the summary information showing all performance metric for visualising how well the model

performed.

Figure 26. The function used by the implemented models (LR, RFC, GBC) to perform training and

testing for given datasets and display results

Figure 17 below shows the function in the code implementation of the project that is used to

train model being analysed. The function accepts four arguments and these includes model

which is the instance of the model being analysed, x_train is the independent variables of the

training dataset, y_train is the dependent variable of the training set and model_key is the

labelled name for the model used in analysis. The function returns a trained model instance

after a successful training.

Figure 27. The function used for training model using the training set of a target dataset

Figure 28 below shows the function in the code implementation of the project that is used to

evaluate the performance of a trained machine learning model. The function accepts four

arguments and these includes model which has already been trained, x_test is the independent

variables of the used in prediction or evaluate the trained model, dataset_key is used to identify

the dataset being analysed and model_key is the labelled name for the model used in analysis.

The function returns a prediction generated by the model.

12

Figure 28. The function used for testing model and generating predictions for a testing set of a target

dataset

Figure 29 below shows the function in the code implementation of the project that is used to

build an artificial neural network (ANN) model. The function uses keras Sequential module

and keras layer Dense module to build the neural network using input_dim argument to update

the input_dim for the implemented model. The function also returns the model instance created.

Figure 29. The function used to build ANN model

Figure 30 below shows the function in the code implementation of the project that is used to

instantiate ANN model, run model analysis and display the result of the generated analysis for

different dataset being analysed. The function accepts two dictionary data structure as argument

with one argument containing all datasets and another argument to track analysis result. The

function also uses a for loop to create new ANN model when analysing a dataset, train the

model by invoking run_ANN_analysis() function and generates a prediction by using the

model to evaluate the test set. After a successful evaluation, the model will then present and

display model performance using different metrics.

13

Figure 30. The function used to implement ANN analysis by training and testing the model for a given

datasets and display results

Figure 31 below shows the function in the code implementation of the project that is used to

train ANN model. The function accepts four arguments and these includes model which is the

instance of the ANN model being analysed, target_dataset_dict contains the training dataset

dependent and independent variables used to train the model, dataset_key is used to identify

the dataset being analysed and model_key is the labelled name for the model used in analysis.

The function returns a trained model instance after a successful training.

Figure 31. The function used for training ANN model using the training set of a target dataset

Figure 32 below shows the function in the code implementation of the project that is used to

set the content of a table data. The function accepts four arguments which includes text the data

to be displayed on the table cell, pos the table cell position were the table data will occupy,

item_count the cell count for table for displaying summary and count_size is cell maximum

size.

Figure 32. The function used to set table content while draw summary for output of an analysis

Figure 33 below shows the function in the code implementation of the project that is used to

draw summary table for a target dataset on all machine learning and neural network models

implemented against all evaluation metrics. The function accepted four arguments which

included dataset a unique id for identifying a dataset, analysis_result used to hold all output

from analysing models, model_list holds a list of all models analysed and metric_list holds a

list of all evaluation metrics used evaluate the performance of each model

14

Figure 33. The function used to generate analysis output summary table for a particular dataset

Figure 34 below shows the function in the code implementation of the project that is used to

iteratively draw the summary tables for all dataset used in this code implementation for this

research project showing all machine learning and neural network models implemented against

all evaluation metrics. The function accepted four arguments which included dataset_list used

to store a list of all dataset, analysis_result used to hold all output from analysing models,

model_list holds a list of all models analysed and metric_list holds a list of all evaluation

metrics used evaluate the performance of each model

Figure 34. The function used to generate analysis output summary table for all dataset

Figure 35 below shows the function in the code implementation of the project that is used to

convert a metric score to percentage with two decimal place value. The function accepts one

argument num which is the number to be displayed as a percentage with two decimal places

Figure 35. The function used to convert analysis score to percentage with two decimal places

Figure 36 below shows the function in the code implementation of the project that is used to

render a plot for all evaluation metrics for a particular model and dataset. The function accepts

five arguments and uses Python matplotlib library to plot a bar chart.

15

Figure 36. The function used to plot bar chart for particular model and a particular dataset

Figure 37 below shows the function in the code implementation of the project that is used to

generate four set of bar chart for a particular dataset. The function iteratively create bar chart

for the list of model implement to analyse a dataset by invoke

plot_performance_for_target_model() function as shown in figure 36 above. The function

accepts four arguments and these includes dataset, analysis_result, model_list and metric_list.

Figure 37. The function is used to generate the data used to plot the bar chart and display the bar

chart for a particular model and a particular dataset

Figure 38 below shows the function in the code implementation of the project that is used to

iteratively generate bar chat for all dataset analysed in this research work. The function accepts

four arguments which includes dataset_list used to store a list of all dataset, analysis_result

used to hold all output from analysing models, model_list holds a list of all models analysed

and metric_list holds a list of all evaluation metrics used evaluate the performance of each

model.

Figure 38. The function is used to display the bar chart for all implemented models and datasets

Figure 39 below shows the function in the code implementation of the project that is used to

generate multiple bar chart for a particular dataset for all evaluation metrics group by models

16

implemented. The function accepts four arguments and they include dataset, analysis_result,

model_list and metric_list and uses Python matplotlib library to plot multiple bar chart.

Figure 39. The function is used to plot a multiple bar chart for all implemented models and a

particular dataset

Figure 40 below shows the function in the code implementation of the project that is used to

iteratively generate multipe bar chat for all dataset analysed in this research work. The function

accepts four arguments which includes dataset_list, analysis_result, model_list and

metric_list. The function also invokes show_multiple_plot_for_current_dataset() as it help in

the multiple bar chart creation.

Figure 40. The function is used to display multiple bar chart for all implemented models and datasets

4.5 Read dataset using Pandas’ read_csv() method

In carrying out the code implementation, three well datasets were used to analyse the models

implemented and these datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD

dataset. These datasets were downloaded from Kaggle website and Python’s Pandas library

was used load the datasets as Panda’s dataframe into the Jupyter notebook IDE. Figure 41

below show the code snippet used to import all datasets into the IDE

https://www.kaggle.com/

17

Figure 41. code snippet used to import dataset into the IDE

4.6 Data Exploration, Run Experiments and Experiment Result

After successfully importing the datasets into the Jupyter notebook IDE, the datasets were pre-

processed, missing values were removed and column names were modified by removing space

characters, hyphen characters, underscore characters, other special characters. Figures 42, 43

and 44 below shows the first five rows in each dataset used in model analysis.

Figure 42. A view of the first five records in the KDD99 dataset

18

Figure 43. A view of the first five records in the NSL KDD dataset

Figure 44. A view of the first five records in the CIC IDS dataset

Figure 45 below shows the use of the plot_pie_chart_for_dependent_variable() function to

generate pie chart displaying percentage ratio for Attack traffic to Non Attack traffic in each

dataset used in this project code implementation. From the pie chart labelled KDD 99 dataset,

80.3% of the network traffic were Attack and 19.7% were Non-Attack traffic. The CIC IDS

dataset had 56.7% of the network traffic were Attack and 43.3% were Non-Attack traffic and

NSL KDD dataset had 49.1% of the network traffic were Attack and 50.9% were Non-Attack

traffic.

19

Figure 45. Pie charts showing the Attack traffic to Non Attack traffic ratio in each dataset used in

this code implementation

Figure 46 below shows the use of the plot_data_correlation() function to generate correlation

chart using Python Seaborn heatmap() method and Pandas dataframe corr() method on each

dataset used in this code implementation. The function displays three correlation charts as

shown figures 47, 48 and 49 below.

Figure 46. The code snippet showing the invocation plot_data_correlation() function

Figure 47. Correlation heat map for KDD99 dataset

Figure 48. Correlation heat map for CIC IDS dataset

20

Figure 49. Correlation heat map for NSL KDD dataset

Figure 50 below shows the use of the estimate_correlation_without_negative_correlation()

function to generate a list highly correlated features column names from independent variables

in KDD99 dataset. The generated list of highly correlated features will be used to drop the

columns from the KDD99 dataset.

Figure 50. Code snippets used to retrieve highly correlated features in KDD99 dataset

Figure 51 below shows the use of the estimate_correlation_without_negative_correlation()

function to generate a list highly correlated features column names from independent variables

in CIC IDS dataset. The generated list of highly correlated features will be used to drop the

columns from the CIC IDS dataset.

Figure 51. Code snippets used to retrieve highly correlated features in CIC IDS dataset

Figure 52 below shows the use of the estimate_correlation_without_negative_correlation()

function to generate a list highly correlated features column names from independent variables

in NSL_KDD dataset. The generated list of highly correlated features will be used to drop the

columns from the NSL_KDD dataset.

21

Figure 52. Code snippets used to retrieve highly correlated features in NSL KDD dataset

Figure 53 below shows the use of generated list of highly correlated features for the three

datasets to remove or drop the column on the generated lists. This operation is done by invoking

the drop() on each dataset instance use in this code implementation.

Figure 53. Code snippets used to drop highly correlated features in all dataset

Figure 54 below shows the use of get_categorical_attributes() generate a list categorical

attributes in the KDD99 dataset.

Figure 54. Code snippets used to retrieve categorical variable in KDD99 dataset

Figure 55 below shows the use of get_categorical_attributes() generate a list categorical

attributes in the CIC IDS dataset.

Figure 55. Code snippets used to retrieve categorical variable in CIC IDS dataset

Figure 56 below shows the use of get_categorical_attributes() generate a list categorical

attributes in the NSL KDD dataset.

22

Figure 56. Code snippets used to retrieve categorical variable in NSL KDD dataset

Figure 57 below shows the use of split_dataset_into_train_test_set() to split all datasets into

their training dataset and testing dataset respectively. The training set is labelled X_train and

y_train, while the testing set is labelled X_test and y_test and the names of the dataset is

appended to the variables used to store these data. The variable having the “X” character

attached to the variable names are the independent variable while character “y” denotes the

dependent variable.

Figure 57. Code snippets for splitting datasets into training and testing sets

Figure 58 below shows the use MinMaxScalar module to normalize dataset values before

attempting to use the dataset in analysing the models implemented. To normalize the dataset,

an instance of the MinMaxScaler module from Python’s sklearn.preprocessing library was

created. The fit_transform() method of the instance MinMaxScalar is called and the

independent variables in the training and testing set are used as argument on each dataset to

normalize the dataset.

Figure 58. Code snippets used for normalizing the independent variables in of all dataset

Figure 59 below shows the use SMOTE module remove the imbalance in the dataset. To

remove the imbalance in the dataset, an instance of the SMOTE module from Python

imblearn.over_sampling library was created and fit_resample() method was applied to training

set for each dataset.

23

Figure 59. Code snippets used to remove imbalance in the datasets

Figure 60 below shows the addition all normalized and balanced dataset to a dictionary data

structure in order to store all datasets record in a single variable.

Figure 60. Code snippets for adding both training and testing dataset to analysis_dataset variable

Figure 61 below shows the code execution to run logistic regression analysis for all datasets

in this project code implementation.

Figure 61. Code snippets for executing Logistic Regression analysis

Figure 62 below shows the code execution to run random forest classification analysis for all

datasets in this project code implementation.

Figure 62. Code snippets for executing Random Forest classification analysis

Figure 63 below shows the code execution to run gradient boost classification analysis for all

datasets in this project code implementation.

24

Figure 63. Code snippets for executing Gradient Boost classification analysis

Figure 64 below shows the code execution to run artificial neural network (ANN) analysis for

all datasets in this project code implementation.

Figure 64. Code snippets for executing Artificial Neural Network (ANN) analysis

Figure 65 below shows the code execution for displaying tabular summary of all dataset

analysed showing the four model implement and the four evaluation metrics used in the

analysis.

Figure 65. Code snippets used to display model analysis tables for all dataset

25

Figure 66. Summary table showing all implemented models and all evaluation metrics for NSL KDD

dataset

Figure 67. Summary table showing all implemented models and all evaluation metrics for KDD99

dataset

Figure 68. Summary table showing all implemented models and all evaluation metrics for CIC IDS

dataset

Figure 69 below shows the code execution for displaying all bar chart of all dataset analysed

showing the four model implement and the four evaluation metrics used in the analysis.

Figure 69. Code snippets used to display bar charts for all model and evaluation metrics for all

dataset

Figure 70 below shows the output of the execution of figure 69 above for the NSL KDD dataset

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.

26

Figure 70. Bar plots for all models implemented and evaluation metrics for NSL KDD dataset

Figure 71 below shows the output of the execution of figure 69 above for the KDD 99 dataset

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.

Figure 71. Bar plots for all models implemented and evaluation metrics for KDD 99 dataset

Figure 72 below shows the output of the execution of figure 69 above for the CIC IDS dataset

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.

A B

C D

A B

C D

27

Figure 72. Bar plots for all models implemented and evaluation metrics for CIC IDS dataset

Figure 73 below shows the code execution for displaying all multiple bar chart of all dataset

analysed showing the four model implement and the four evaluation metrics used in the

analysis.

Figure 73. Code snippets used to display multiple bar charts for all model and evaluation metrics for

all dataset

Figure 74. Multiple bar plots for all models implemented and evaluation metrics for NSL KDD

dataset

A B

C D

28

Figure 75. Multiple bar plots for all models implemented and evaluation metrics for KDD 99 dataset

Figure 76. Multiple bar plots for all models implemented and evaluation metrics for CIC IDS dataset

5 Conclusion
The guidelines enumerated in this configuration manual documentation will aid researcher who

intends to implement same code implementation as described in this research report using all

three datasets is guaranteed to get the same outcomes as the result obtained in this work. The

code snippets, the charts generated and summary table shown in this report were used to

achieve the objectives and goal as set form the outset of the project work.

6 References

Docs.anaconda.com. 2022. Installing on Windows — Anaconda documentation. [online]

Available at: <https://docs.anaconda.com/anaconda/install/windows/> [Accessed 15 April

2022].

Docs.conda.io. 2022. Managing environments — conda 4.12.0.post33+077616b2

documentation. [online] Available at: <https://docs.conda.io/projects/conda/en/latest/user-

guide/tasks/manage-environments.html> [Accessed 15 April 2022].

En.wikipedia.org. 2022. Anaconda (Python distribution) - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Anaconda_(Python_distribution)> [Accessed 15 April 2022].

En.wikipedia.org. 2022. Project Jupyter - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook> [Accessed 15 April

2022].

Kaggle.com. 2022. CIC-IDS-2017. [online] Available at:

<https://www.kaggle.com/datasets/asthana12/cicids2017> [Accessed 15 April 2022].

29

Kaggle.com. 2022. KDD99 dataset. [online] Available at:

<https://www.kaggle.com/datasets/toobajamal/kdd99-dataset> [Accessed 15 April 2022].

Kaggle.com. 2022. NSL-KDD Anomaly detection. [online] Available at:

<https://www.kaggle.com/avk256/nsl-kdd-anomaly-detection/data> [Accessed 15 April

2022].

	1 Introduction
	2 System Specification
	2.1 System Hardware Requirement
	2.2 System Software Requirement
	2.2.1 Operating System (Microsoft windows 10)
	2.2.2 Anaconda Navigator V2.1.1
	2.2.3 Jupyter Notebook V.6.4.5
	2.2.4 Web Browser (Mozilla Firefox Browser V.98.0.2)

	3 Software Installation, Environment Setup and Python Libraries
	3.1 Software Installation for Anaconda
	3.2 Environment Setup and Python Libraries

	4 Implementation and Evaluation
	4.1 Start a new project
	4.2 Import libraries
	4.3 Defined global variables used to track data generated while executing codes
	4.4 Defined functions
	4.5 Read dataset using Pandas’ read_csv() method
	4.6 Data Exploration, Run Experiments and Experiment Result

	5 Conclusion
	6 References

