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1 Introduction

This report is aim at producing a manual which is a comprehensive guideline for creating the
code implementation setup of the research on “Distributed Intrusion Detection System for
Cloud Environments Using Deep Learning Machine Algorithms”. The research was carried
out to investigate how well deep learning and machine learning algorithm can classify a
network traffic as attack traffic or a non-attack traffic using historical dataset. In carrying out
this experiment, three historic (3) datasets were used in this code implementation and the
datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD dataset. Three machine
learning algorithms (Logistic Regression, Random Forest Classifier and Gradient Boost
Classifier) and a deep learning algorithm (Artificial Neural Network) were used to analyse the
datasets in this research experiment.

The rest of this report is presented as follows: Section 2 discusses system specifications for
hardware and software components used in this code implementation, Section 3 covers
software installation, Anaconda environment setup and the installation of Python libraries used
in this code implementation. Section 4 will discuss code implementation and evaluation of 4
model implemented and how well the models performed with the analysis of each dataset,
Section 5 discusses the concluding or final statements and Section 6 contains a list of
references.

2 System Specification

2.1 System Hardware Requirement

The PC used in implementing the code for this work has the following configuration settings
RAM: 16GB
Processor Type: Intel core i7 with 1.99GHz processing speed
Storage Capacity: 512GB SSD.

2.2 System Software Requirement

2.2.1 Operating System (Microsoft windows 10)

Windows 10 OS is the underlying platform on which the other software used for the project
implementation will be installed.

2.2.2 Anaconda Navigator V2.1.1

Anaconda Navigator is package manager for Python programming language and it is used
manage Python versions and manage different work space on a single machine.
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2.2.3 Jupyter Notebook V.6.4.5

Jupyter Notebook is the programming IDE that interpretes code segment interactively on the
browser.

2.2.4 Web Browser (Mozilla Firefox Browser V.98.0.2)

Mozilla Firefox is used by Jupyter Notebook display the code snippet and the output of the
code snippet.

3 Software Installation, Environment Setup and Python
Libraries

3.1 Software Installation for Anaconda

STEP 1:
Go to Anaconda website and download Anaconda installer file

STEP 2:
Locate the downloaded installer file and double click it to launch the installer. On the welcome
to Anaconda page, click on “Next” button.

Welcome to Anaconda3 2021.11
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2021.11 (64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Next to continue.

") ANACONDA.

Next > Cancel
| d

Figure 1. Anaconda installer welcome page

STEP 3:
On the license agreement, read the licensing terms and click on the button labelled “I Agree’
to continue

b

license Agreement
) ANACONDA Please review the license terms before instaling Anaconda3

2021.11 (64-bit)

Press Page Down to see the rest of the agreement.

Copyright 2015-2021, Anaconda, Inc

Al rights

served under the 3-cdause BSD License:

This End User License Agreement (the “Agreement”) is a legal agreement between you
land Anaconda, Inc. ("Anaconda®) and governs your use of Anaconda Individual Edition
(which was formerly known as Anaconda Distribution).

If you accept the terms of the agreement, dick I Agree to continue. You must accept the
agreement to install Anaconda3 2021. 11 (64-bit)

< Back I Agree Cancel



Figure 2. Anaconda installer license agreement page

STEP 4:
Click on the button labelled “Next” on the Select installation type page

>

Select Installation Type

Please select the type of installation you would like to perform for
Anaconda3 2021. 11 (64-bit).

) ANACONDA

Install for:

© Just Me (recommended)

(O Al Users (requires admin privileges)

< Back Next > Cancel

Figure 3. Anaconda installer select installation type

STEP 5:
Click on the button labelled “Next” on the Choose install location

®]

install Location
Choose the foider in which to install Anaconda3 2021.11 (64-bit).

() ANACONDA

Setup will install Anaconda3 2021. 11 (64-bit) in the following foider. To install in a different
folder, dick Browse and select another folder. Click Next to continue.

Destination Folder

C:\Users'\cody \anaconda3 Browse...

Space required: 3.0GB
Space avalable: 327.4G8

< Back Next > Cancel

Figure 4. Anaconda installer choose install location page

STEP 6:
Click on the button labelled “Install” on the Advanced installation options

»

Advanced Installation Options
_) ANACONDA.  customize how Anaconda integrates with Windows

Advanced Options
|_J Add Anaconda3 to my PATH environment variable

Not recommended. Instead, open Anaconda3 with the Windows Start
menu and select "Anaconda (64-bit)". This “add to PATH" option makes
Anaconda get found before previously nstalled software, but may
cause problems requiring you to uninstall and reinstall Anaconda.

8 Register Anaconda3 as my default Python 3.9

This will allow other programs, such as Python Tools for Visual Studio
PyCharm, Wing IDE, PyDev, and MSI binary packages, to automatcally
detect Anaconda as the primary Python 3.9 on the system.

< Back Install Cancel

Figure 5. Anaconda installer advance installation options page
STEP 7:



On the Installation Complete page, allow the installation to run to completion and click on the
button labelled “Next”

2

In=tallation Complete
(D) ANACONDA.  scup was compieted successfully.

Completed

Show details

Next >

. l

Figure 6. Anaconda installer installation complete page

STEP 8:
Click on the button labelled “Next” on the Install PyCharm

>

Anaconda3 2021.11 (64-bit)
__) ANACONDA Anaconda + JetSrains

Working with Python and Jupyter notebooks is a breeze with PyCharm Pro, designed to
be used with Anaconda. Download now and have the best data tools at your
fingertips.

https: //www.anaconda.com/pycharm

) ANACONDA. irc

Next > Cancel
L 4

Figure 7. Anaconda installer pycharm install option page

STEP 9:
Click on the button labelled “Finish” on the Thank you page

)

Completing Anaconda3 2021.11
(64-bit) Setup

Thank you for installing Anaconda Individual Edition.

Here are some helpful tips and resources to get you started.
We recommend you bookmark these links so you can refer
back to them later.

8 Anaconda Individual Edition Tutorial

B Getting Started with Anaconda

") ANACONDA.

< Back Firuish

Figure 8. Anaconda installer completing anaconda3 setup



3.2 Environment Setup and Python Libraries

The Anaconda installation created an environment called “base” pre-installing some of
Python’s libraries needed to carry out this coding implementation of the project work. Some
other libraries will be installed to completely setup the environment for carrying out this coding

exercise

STEP 1:

Click on the Windows icon, expand Anaconda folder and click on Anaconda Prompt to start

Anaconda command line.

STEP 2:

Create a new conda environment for carrying out this code implementation using the following
command “conda create -n venv python=3.6". Following the instruction on command
prompt to complete the installation. After a successful creation of the venv environment, enter
the following command “conda activate venv’ to activate the newly created environment

Figure 10. Anaconda prompt showing the create environment command and conda

STEP 3:

After activating the venv environment, use the following commands to install all Python’s

Figure 9. launch anaconda prompt

S —

]

command for activating the created environment

libraries used in this code implementation

“conda
“conda
“conda
“conda
“conda
“conda

install
install
install
install
install
install

—-C

conda-forge notebook”
conda-forge jupyterlab”
conda-forge nb conda kernels”
anaconda pandas”

conda-forge seaborn”

intel scikit-learn”
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e “conda install scikit-learn-intelex”
e “conda install -c conda-forge imbalanced-learn”
e “conda install -c conda-forge keras”

4 Implementation and Evaluation

After a successful installation Anaconda and installing all libraries required to carry out this
code implementation, this section shows the actual code implementation for this research work
as shown below:

4.1 Start a new project

On the launch Anaconda main page, click on the button labelled “Launch” on the cell with the
Jupyter Notebook load the interactive Python IDE on the browser

Figure 11. Launched anaconda navigator home page

On the Jupyter Notebook start up page, locate the new button on top right corner and click the
button and click also on the “Python 3” to start up a new project

* Jupyter

Figure 12. Jupyter notebook home page showing how to start up a new project

4.2 Import libraries

After successfully launching a new project, on the first code snippet all Python libraries used
to carry out this project will be added to this code snippet. Every time this block is updated, the
button labelled “Run” should be clicked to import the library into the IDE



In [1]: M import os
import time
import itertools
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import MinMaxScaler, StandardScaler
from sklearn.metrics import accuracy_score, precision_score, recall_score, r<
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import GradientBoostingClassifier
from imblearn.over_sampling import SMOTE
from keras.models import Sequential
from keras.layers import *
from keras.wrappers.scikit_learn import KerasClassifier
from keras.metrics import *

from IPython.core.interactiveshell import InteractiveShell
3

Figure 13. The code snippet showing all Python libraries for carrying out this code
implement

4.3 Defined global variables used to track data generated while executing
codes

Also, the second cell was dedicated to declaring global variables that will be used to store and
track output generated by executing codes in different blocks as they are being executed. Figure
14 below shows all global variables defined while implementing the code base for this research
work.

ids_category_label - [ 'Non Attack', ‘Artack’]

Figure 14. The code snippet showing all global variable used to store data generate while
executing code snippets

4.4 Defined functions

In carrying out this research code implementation, 3 different datasets will be used in the
analysis, meaning that tasks repetition will be a common occurrence and code reuse will be a
way to minimize the amount of code written. Functions were defined to implement code reuse
and minimize the number of codes written while carrying out this project code implementation.

Figure 15 below shows the function in the code implementation of the project that is used to
retrieve column names for a given dataset. The function is used to remove space character,
underscore character, hyphen and forward slash character that is present in the column name
of the dataset.



In [3]: M def generate_column_names_for_dataset(df, key, df_column_names):
col_names = [col.lower().replace(’ ', '').replace('_", '').replace('-'
df_column_names[kay] = col_names
df.reset_index(drop=True, inplace = True)
return col_names
3

Figure 15. The function to generate the list of column names from the dataset

Figure 16 below shows the function in the code implementation of the project that is used to
remove all missing values in a given dataset. The function uses numpy’s properties to remove
rows with missing values and return all rows that have been determined to have valid data.

In [4]: M def operattion_to_remove_missing_or_nan_from_dataset(df):
df .dropna(inplace=True)
df = df.replace([np.inf, -np.inf], np.nan)
df .dropna(inplace=True)
return df

Figure 16. The function to remove missing value from a dataset

Figure 17 below shows the function in the code implementation of the project that is used to
rename columns in a dataset. The function accepts 3 arguments namely the dataset with column
names to be changed, a list of column names to be changed and a list of the names to update

the column names.

In [5]: WM def rename_columns_in_dataset(df, list_old_col names, list_new_col_names):
col_names_replacement_dict dict()

if not (len(list_old_col_names) == len(list_new_col_names)):
print("\n Column names was not change due to differences in the lengi
pass
else:
for i in range(len(list_old_col_names)):
col_names_replacement_dict[str(list_old_col_names[1]).lower()] =

df.rename(columns~-col_names_replacement_dict, inplace-True)

return df

Figure 17. The function to rename column name in a dataset

Figure 18 below shows the function in the code implementation of the project that is used to
plot the pie chart for the 3 datasets showing attack traffics to non-attack traffics. The function
received five arguments and these arguments includes a tuple data structure containing the 3
datasets, a tuple containing the titles for the 3 plots, a list containing the class label for
categorizing a traffic as an attack or a non-attack, a main title and the dependent variable

column name.

In [6]: M def plot_pie_chart_for_dependent_variable(df_tuple, title_tuple, ids_category

colors = {1: 'r", 8: 'g
print(colors)

fig, axes - plt.subplots(1l, 2, figsize-(28,1@), dpi-144, tight_layout-Fa
plt.suptitle(main_title)

for ax, df, title in zip(axes, df_tuple, title_tuple):

count - df[dependent_variable_col_name].value_counts().to_frame().sol
print(count.index)
ax.pie{count[dependent_variable_col_name], labels-ids_category_label

ax.set_title(title)

3

Figure 18. The function to plot a pie chart for given set of datasets



Figure 19 below shows the function in the code implementation of the project that is used to
show the correlation chart for all the features excluding the dependent column for the 3 datasets.
The function receives 1 argument, a tuple containing the independent variables in each dataset
for all dataset.

In [7]: M def plot_data_correlation(df_tuple):
fig, axes = plt.subplots(3, 1,tight_layout=False)

for ax, df in zip(axes, df_tuple):
df = df[[col for col in df if df[col]l.nunique() > 1]]
corr = df.corr()
plt. Figur‘e(Figsi e= (1 12))
#sns.heatmap(cor no ue, annot_kws={"size": 14})
sns. heatmap((mr‘r)
sns.set_style(“white")

#plt.xticks(font.
#plt.yticks _]' ontsize=

plt.show()

Figure 19. The function to plot the correlation heat map for a given set of datasets

Figure 20 below shows the function in the code implementation of the project that is used to
retrieve the column names of highly correlated features (independent variables) in the dataset.
The function receives two arguments and they include the dataset whose independent variable
correlation values will be tested and threshold used to determine the highly correlated features.

In [9]: M def estimate_correlation_without_negative_correlation(df, threshold):

col_corr = set()

corr_matrix = df.corr()

for 1 in range(len(corr_matrix.columns)):

for § in range(i):
if (corr_matrix.iloc[i,j]) > threshold:

col_name corr_matrix.columns[i]
col_corr.add(col_name)

return col_corr

Figure 20. The function used to estimate the correlation between features in a given dataset

Figure 21 below shows the function in the code implementation of the project that is used to
retrieve categorical variable in the dataset. The function receives the dataset as an argument
and retrieves a list of the column names of all categorical variables.

In [18]: M | def get_ca rical_attributes(df):
= list

ical_ t:r-1h tes

numeric_cols = df.select_dtypes( number”).
categorical_cols df.select_dtypes(” %J <t ) columns

numeric <01 11 r( (1 amer 1: _cols))
categorical_attrib list({set({categorical_cols))

-F[col \ane] nunique()

u.ub utes.append(col_name}
return categorical_attribu

Figure 21. The function used to retrieve column names for all categorical variables

Figure 22 below shows the function in the code implementation of the project that is used to
split a dataset into a train set and a test set. The function receives two arguments the
independent variables (features) and dependent variable

In [12]: W def split_dataset_into_train_test set(X, y):
return train_test split(X, y, test size = 8.3, random state = @)

Figure 22. The function used to split dependent and independent variables into training and testing
dataset



Figure 23 below shows the function in the code implementation of the project that is used to
performs Logistic Regression analysis. The function accepts two arguments which is a
dictionary data structure containing all datasets and another dictionary to track analysis result.
The function also invokes another function perform_model_analysis which helps to train the
model and use the test set evaluate the performance of the model.

In [13]: M def perform_logistic_regression_modelling_and_analysis(dataset_dict, analysi:
model_label = "LR"

for key in dataset_dict:
1r = None
1r = LogisticRegression(max_iter=1208668)
result = perform_model_analysis(lr, dataset_dict[key], key, model_la
analysis_result[key][model label] = result
print()
print()

3

Figure 23. The function used to implement Logistic Regression (LR) classification analysis

Figure 24 below shows the function in the code implementation of the project that is used to
perform Random Forest classification analysis. The function accepts two dictionary data
structure as argument with one argument containing all datasets and another argument to track
analysis result. The function also invokes another function perform_model _analysis which
helps to train the model and use the test set evaluate the performance of the model.

In [14]: M def perform_random_forest_classifier_modelling_and_analysis(dataset_dict, an:
model_label = "RFC"
for key in dataset_dict:
rfc = None
rfc = RandomForestClassifier(n_estimators=38)
result = perform_model_analysis(rfc, dataset_dict[key], key, model 1:
analysis_result[key][model_label] = result
print()
print()

»

Figure 24. The function used to implement Random Forest (RFC) classification analysis

Figure 25 below shows the function in the code implementation of the project that is used to
perform Gradient Boost classification analysis. The function accepts two dictionary data
structure as argument with one argument containing all datasets and another argument to track
analysis result. The function also invokes another function perform_model_analysis which
helps to train the model and use the test set evaluate the performance of the model.

In [15]: M  def perform_gradient_boost_classifier_modelling_and_analysis(dataset_dict, ar
modal label = "GBC"

for key in dataset_dict:

gbc = None

gbc = GradientBoostingClassifier(random_state=2)

result = perform_model_analysis(gbhc, dataset_dict[key], key, model_ l:
analysis_result[key][model label] = result

print()

print()

»

Figure 25. The function used to implement Gradient Boost (GBC) classification analysis

Figure 26 below shows the function in the code implementation of the project that is used to
perform model analysis by the three machine learning algorithms implemented in this project.
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The function accepts four argument and these includes the model to be analysed, the dataset
dictionary, the key to accessing the dataset in the dictionary and the label used to mark the
model. The function invokes two other functions name train_model to train the target model
and run_analysis to evaluate model perform after training the model. The function displays
the summary information showing all performance metric for visualising how well the model
performed.

orti\n")
ort(pred, target_dataset_dict['y_test'], target_names=["Normal®, “Attac

n"y
x(target_dataset_dict['y_test'], pred)

ax_plot.yaxis.set_ticklabels(["Negative", “Positive"])
plt.show()

Figure 26. The function used by the implemented models (LR, RFC, GBC) to perform training and
testing for given datasets and display results

Figure 17 below shows the function in the code implementation of the project that is used to
train model being analysed. The function accepts four arguments and these includes model
which is the instance of the model being analysed, x_train is the independent variables of the
training dataset, y_train is the dependent variable of the training set and model_key is the
labelled name for the model used in analysis. The function returns a trained model instance
after a successful training.

In [17]: M def train model(nodel, x train, y train, dataset key, model key):
start_time = tine.tine()
model, fit(x_train, y_train.values.ravel())
end time = tine
print("Training time for " + model key + " model on " + dataset key + " dataset: ", end time-st
return mode]

3

Figure 27. The function used for training model using the training set of a target dataset

Figure 28 below shows the function in the code implementation of the project that is used to
evaluate the performance of a trained machine learning model. The function accepts four
arguments and these includes model which has already been trained, x_test is the independent
variables of the used in prediction or evaluate the trained model, dataset_key is used to identify
the dataset being analysed and model_key is the labelled name for the model used in analysis.
The function returns a prediction generated by the model.
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Figure 28. The function used for testing model and generating predictions for a testing set of a target
dataset

Figure 29 below shows the function in the code implementation of the project that is used to
build an artificial neural network (ANN) model. The function uses keras Sequential module
and keras layer Dense module to build the neural network using input_dim argument to update
the input_dim for the implemented model. The function also returns the model instance created.

build_ANN_model{input_dim):

Figure 29. The function used to build ANN model

Figure 30 below shows the function in the code implementation of the project that is used to
instantiate ANN model, run model analysis and display the result of the generated analysis for
different dataset being analysed. The function accepts two dictionary data structure as argument
with one argument containing all datasets and another argument to track analysis result. The
function also uses a for loop to create new ANN model when analysing a dataset, train the
model by invoking run_ANN_analysis() function and generates a prediction by using the
model to evaluate the test set. After a successful evaluation, the model will then present and
display model performance using different metrics.

1t M| def run_awy_model(dataset_dict, analysis_result):
model_label = "Ann"

for key in dateset_dict:
input_dim = dataset_dict[key]['x_train’'].shape[1]
ann - build_ann_model(input_dim)
ann = Kerasclassifier(lambda: build_ANM_mcdel(input_dim), epochs=188, batch_size-1@@)
ANN = FUN_ANN_analycis(ann, dataset_gict[key], key, model_label)

_pred, dotaset_dict[key]['y_test'], target_names=[“Normal",

y_test®], ann_pred}

n_|
1, ann_pred)
t'], ann_prea)

analysis_resultlkey]l[model label] = result

print()
print()

12



Figure 30. The function used to implement ANN analysis by training and testing the model for a given
datasets and display results

Figure 31 below shows the function in the code implementation of the project that is used to
train ANN model. The function accepts four arguments and these includes model which is the
instance of the ANN model being analysed, target_dataset_dict contains the training dataset
dependent and independent variables used to train the model, dataset_key is used to identify
the dataset being analysed and model_key is the labelled name for the model used in analysis.
The function returns a trained model instance after a successful training.

In [21]: M def run o analysiz(model, target dataset dict, dataset key, model key):
start = time.ti
model. fit(target dataset dict['x_train'], target dataset dict['y train'].values.ravel())
end = time.time()
return model

Figure 31. The function used for training ANN model using the training set of a target dataset

Figure 32 below shows the function in the code implementation of the project that is used to
set the content of a table data. The function accepts four arguments which includes text the data
to be displayed on the table cell, pos the table cell position were the table data will occupy,
item_count the cell count for table for displaying summary and count_size is cell maximum
size.

Figure 32. The function used to set table content while draw summary for output of an analysis

Figure 33 below shows the function in the code implementation of the project that is used to
draw summary table for a target dataset on all machine learning and neural network models
implemented against all evaluation metrics. The function accepted four arguments which
included dataset a unique id for identifying a dataset, analysis_result used to hold all output
from analysing models, model_list holds a list of all models analysed and metric_list holds a
list of all evaluation metrics used evaluate the performance of each model

13



table_data += horizontal_bar

print(table_data)

Figure 33. The function used to generate analysis output summary table for a particular dataset

Figure 34 below shows the function in the code implementation of the project that is used to
iteratively draw the summary tables for all dataset used in this code implementation for this
research project showing all machine learning and neural network models implemented against
all evaluation metrics. The function accepted four arguments which included dataset_list used
to store a list of all dataset, analysis_result used to hold all output from analysing models,
model_list holds a list of all models analysed and metric_list holds a list of all evaluation
metrics used evaluate the performance of each model

nalysis_result, dataset_list, model_list, metric_list):

analysis_result, model_list, metric_list)

Figure 34. The function used to generate analysis output summary table for all dataset

Figure 35 below shows the function in the code implementation of the project that is used to
convert a metric score to percentage with two decimal place value. The function accepts one
argument num which is the number to be displayed as a percentage with two decimal places

In [55]: M def to tuo decimal place(num):
mul val = 16 * num

return "{:.2f}".format(mul_val)

Figure 35. The function used to convert analysis score to percentage with two decimal places

Figure 36 below shows the function in the code implementation of the project that is used to
render a plot for all evaluation metrics for a particular model and dataset. The function accepts
five arguments and uses Python matplotlib library to plot a bar chart.

14



In [26]: W def plot performance for target model{dataset, analysis result, model, names, values):
fig = plt.figure()
ax = fig.add axes([@,0,1,1])
&x. bar names,\
plt.xlabel(E
plt.ylabel( P
plt.title("Differ
plt.shou()
print()
print()
print()

Figure 36. The function used to plot bar chart for particular model and a particular dataset

Figure 37 below shows the function in the code implementation of the project that is used to
generate four set of bar chart for a particular dataset. The function iteratively create bar chart
for the list of model implement to analyse a dataset by invoke
plot_performance_for_target model() function as shown in figure 36 above. The function
accepts four arguments and these includes dataset, analysis_result, model_list and metric_list.

In [27]: M def show plot for current dataset(dstaset, analysis result, model list, metric List):
for model in model list:
nangs = list()

values = list()

for retric in metric list:
names. append(metric)
values.append(analysis_result[dataset] [model][metric])

plot performance for target model(dataset, analysis result, model, names, values)

Figure 37. The function is used to generate the data used to plot the bar chart and display the bar
chart for a particular model and a particular dataset

Figure 38 below shows the function in the code implementation of the project that is used to
iteratively generate bar chat for all dataset analysed in this research work. The function accepts
four arguments which includes dataset_list used to store a list of all dataset, analysis_result
used to hold all output from analysing models, model_list holds a list of all models analysed
and metric_list holds a list of all evaluation metrics used evaluate the performance of each
model.

In [25]: M def shou_mode] performance plot(analysis result, dataset list, model list, metric list):
for dataset in dataset_list:

1 Performance Plot for " + dataset.upper() + " dataset”)
gt

 plot_for_current_dataset(dataset, analysis_result, model list, metric_list)

:ri".EJ

Figure 38. The function is used to display the bar chart for all implemented models and datasets

Figure 39 below shows the function in the code implementation of the project that is used to
generate multiple bar chart for a particular dataset for all evaluation metrics group by models
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implemented. The function accepts four arguments and they include dataset, analysis_result,
model_list and metric_list and uses Python matplotlib library to plot multiple bar chart.

In [29]): M def s ti| current_dataset(dataset, analysis_result, model_list, metric_list):
- - y

sult[dataset][model] [metric])
esult[dataset][model][metric])
esult[dataset][model] [metric])

nalysis_result[dataset][model][metric])

#pLt.title
plt.legend()
plt.show()

P

Figure 39. The function is used to plot a multiple bar chart for all implemented models and a
particular dataset

Figure 40 below shows the function in the code implementation of the project that is used to
iteratively generate multipe bar chat for all dataset analysed in this research work. The function
accepts four arguments which includes dataset list, analysis_result, model list and
metric_list. The function also invokes show_multiple_plot_for_current_dataset() as it help in
the multiple bar chart creation.

[38]: M def show model performance_in_one_plot(analysis_result, dataset list, model list, metric_list):
for dataset in datase st:

el Performance Using Multiple Bar Plot for " + dataset.upper() + " dataset”

3
J

print(
show multiple plot for_current dataset(dataset, analysis result, model list, metric list)
print()
print()
print()
print()
print()

Figure 40. The function is used to display multiple bar chart for all implemented models and datasets

4.5 Read dataset using Pandas’ read_csv() method

In carrying out the code implementation, three well datasets were used to analyse the models
implemented and these datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD
dataset. These datasets were downloaded from Kaggle website and Python’s Pandas library
was used load the datasets as Panda’s dataframe into the Jupyter notebook IDE. Figure 41
below show the code snippet used to import all datasets into the IDE
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In [31]: M |ids_nslkdd_filename_1 = °KDDTrain+.txt'
ids_nslkdd_filename_2 - 'KDDTest+.txt'
ids_nslkdd_filename_3 KDDTra

ids_kdass_filename "ids_kddeupss .csu'

ids_cic_filename = ‘ids_cic.csv’

ids_nslkdd_columns ={["dura
» "o

.

try:
ids_mslkdd_df_1 pd.read_csv(os.getcwd() + + ids_nslkdd_filename_1)
ids_nslkdd_df 2 = pd.read_csv(os.getcwd() + ids_nslkdd_filename_z)
ids_nslkdd_df_3 = pd.read_csv(os.getcwd() + "/ + ids_nslkdd_filename_3)
ids_kdd9s_df - pd.read_cswv(os.getcwd(} + "/dataset/" + ids_kdd9o_filename)
ids_cic_df = pd.read_csv(es.getcwd() + "/dataset/" + ids_cic_filename}
ids_mslkdd_df_1.columns ids_nslkdd_columns
ids_nslkdd_df_2.columns = ids_nslkdd_columns
ids_mslkdd_df_3.columns = ids_nslkdd_coclumns
ids_nslkdd_df - pd.concat([ids_nslkdd_d#_1, ids_nslkdd_df_2, ids_nslkdd_df_3]1, ignore_index-Tru
ids_nslkdd_df.columns - ids_nslkdd_df.columns.str.strip()
ids_nslkdd_df.columns = ids_nslkod_df.columns,str.replaced', s ‘')
ids_nslkdd_df.columns = ids_nslkdd_df.columns.str.replace(' ‘. '_")

except MameErraor:
ids_kddes_df = None
ids_nslkdd_df = None
ids_c<ic_af = None

print
print
print

print Data set files is not in the root directory.™}
print("
Please use the URL to download the dotaset from kaggle ——=>>>

IdEUpI9_Csv . CSV

ion/dats

Figure 41. code snippet used to import dataset into the IDE

4.6 Data Exploration, Run Experiments and Experiment Result

After successfully importing the datasets into the Jupyter notebook IDE, the datasets were pre-
processed, missing values were removed and column names were modified by removing space
characters, hyphen characters, underscore characters, other special characters. Figures 42, 43
and 44 below shows the first five rows in each dataset used in model analysis.

In [48]: W ids_kddog df.head()
Out[48]: duration protocoltype service flag srcbytes dstbytes land wrongfragment urgent hot .. dsthostsamesrvrate dsthostdiffsrvrate dsthostsamesrcpe
0 0 fcp hitp SF 181 5450 0 0 0 0. 10 0.0
1 0 tep hitp SF 238 486 0 0 0 0. 10 0.0
2 0 o hip SF 235 12337 0 0 0 0. 10 00
3 0 ttp  hip SF 219 130 0 0 0. 10 00
4 0 o hip SF 217 02 0 0 0 0. 10 00
5 rows x 43 columns
»

Figure 42. A view of the first five records in the KDD99 dataset
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In [49]: M ids_nslkdd_df.head()

Out[49]: duration protocoliype service flag srcbytes dstbytes land wrongfragment urgent hot .. dsthostdiffsrvrate dsthostsamesrcportrate dsthostsrvdifi
0 0 udp other SF 146 00 0 0 0 . 0.60 088
1 0 icp private SO 0 0 0 0 00 0.05 0.00
2 0 fep hitp SF 232 8153 0 0 00 0.00 0.03
3 0 ttp  hip SF 199 20 0 0 00 0.00 0.00
4 0 tcp private REJ 0 00 0 00 0.07 0.00

5 rows x 44 columns

Figure 43. A view of the first five records in the NSL KDD dataset

In [58]: M ids_cic_df.head()

out[se]: destinationport flowduration totalfwdpackets fotalbackwardpackets offwdpackets totall kets fwdpac fwdpacketien
0 54865 3 2 0 12 0 ]
1 55054 109 1 1 B & 6
1 55055 52 1 1 ] (] ]
3 46236 M 1 1 ] ] ]
4 54863 3 2 0 12 0 6

3 rows x 80 columns

Figure 44. A view of the first five records in the CIC IDS dataset

Figure 45 below shows the use of the plot_pie_chart_for_dependent_variable() function to
generate pie chart displaying percentage ratio for Attack traffic to Non Attack traffic in each
dataset used in this project code implementation. From the pie chart labelled KDD 99 dataset,
80.3% of the network traffic were Attack and 19.7% were Non-Attack traffic. The CIC IDS
dataset had 56.7% of the network traffic were Attack and 43.3% were Non-Attack traffic and
NSL KDD dataset had 49.1% of the network traffic were Attack and 50.9% were Non-Attack
traffic.

In [51): M dataset_tuple - ids_kddoo_df, ids_cic_df, ids_nslkdd_df
title_tuple - "KDD §% DATASET", "CIC IDS DATASET", "NSL KDD DATASET'

plot_pie_chart_for_dependent_variable(dataset_tuple. title tuple, ids_category_label. "Attack to Non-Attack Ratio in all data

{1: 'r", @ ‘gray’}

Inté4Index([@, 1], dtype="inté4’)
Int64Index([@, 1], dtype='ints4')
Inté4Index([@, 1], dtype='ints4'}

Attack to Non-Attack Ratio in all dataset

KD 99 DATASET CIC 105 DATASET NSLKDD DATASET
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Figure 45. Pie charts showing the Attack traffic to Non Attack traffic ratio in each dataset used in
this code implementation

Figure 46 below shows the use of the plot_data_correlation() function to generate correlation
chart using Python Seaborn heatmap() method and Pandas dataframe corr() method on each
dataset used in this code implementation. The function displays three correlation charts as
shown figures 47, 48 and 49 below.

In [54]: W dataset_tuple = festures_ids kdd9d, features ids cic, features_ids_nslkdd
plot_data_correlation(dataset_tuple)

Figure 46. The code snippet showing the invocation plot_data_correlation() function

Figure 48. Correlation heat map for CIC IDS dataset
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Figure 49. Correlation heat map for NSL KDD dataset

Figure 50 below shows the use of the estimate_correlation_without_negative _correlation()
function to generate a list highly correlated features column names from independent variables
in KDD99 dataset. The generated list of highly correlated features will be used to drop the
columns from the KDD99 dataset.

In [55]: M corr_features_ids_kddse - estimate correlaticn without negative correlation(festures_ids_kddsa, @.85)
corr_features_ids_kddsg

out[55]: {'dsthostrerrorrate’,
"dsthostsamesrcportrate”,
‘dsthostsamesrvrate’,
‘dsthostserrorrate’,
‘dsthostsrvcount’,
‘dsthostsrvrerrorrate’,
‘dsthostsrvserrorrate’,
‘lnumroot”,
‘srvcount”,
‘srvrerrorrate”,
“sruserrorrate’

Figure 50. Code snippets used to retrieve highly correlated features in KDD99 dataset

Figure 51 below shows the use of the estimate_correlation_without_negative_correlation()
function to generate a list highly correlated features column names from independent variables
in CIC IDS dataset. The generated list of highly correlated features will be used to drop the
columns from the CIC IDS dataset.

In [56]: M |corr_features_ids_cic = estimate_correlation_without_negative_correlation(features_ids_cic, @.85)
corr_features_ids_cic

OUt[Sel: {'actdata
a

erlength’,
length.1',

Figure 51. Code snippets used to retrieve highly correlated features in CIC IDS dataset

Figure 52 below shows the use of the estimate_correlation_without_negative_correlation()
function to generate a list highly correlated features column names from independent variables
in NSL_KDD dataset. The generated list of highly correlated features will be used to drop the
columns from the NSL_KDD dataset.
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In [57] M corr_features_ids_nslkdd = estimate_correlation_without_negative_correlation(features_ids_nslkdd, @.85)
ns

Figure 52. Code snippets used to retrieve highly correlated features in NSL KDD dataset

Figure 53 below shows the use of generated list of highly correlated features for the three
datasets to remove or drop the column on the generated lists. This operation is done by invoking
the drop() on each dataset instance use in this code implementation.

In [58]: M features_ids_kdde9.drop{corr_features_ids_kdd99, axis=1, inplace = True)
In [53]: M | features_ids_cic.drop{corr_features ids cic, axis=1, inplace = True)

In [&2]: M features_ids_nslkdd.drep(corr_features_ids_nslkdd, axis=1, inplace = True)

Figure 53. Code snippets used to drop highly correlated features in all dataset

Figure 54 below shows the use of get categorical_attributes() generate a list categorical
attributes in the KDD99 dataset.

In [611: M cat_var_ids_kdd9s = get_categorical_attributes(features_ids_kddos)
ids_kddss

‘attacktype',
‘protocoltype’,
. cessfiles'

wrongfragment”,

‘ failedlogins',
*loggedin®,
‘lsuattempted’,
‘lnumshells ',
i in',

* Inumoutboundcmds * ]

Figure 54. Code snippets used to retrieve categorical variable in KDD99 dataset

Figure 55 below shows the use of get categorical_attributes() generate a list categorical
attributes in the CIC IDS dataset.

In [7e]: M cat_var_ids_cic = get_categorical_attributes(features_ids_cic)
c i cic

‘Finflagcount: ]

Figure 55. Code snippets used to retrieve categorical variable in CIC IDS dataset

Figure 56 below shows the use of get categorical_attributes() generate a list categorical
attributes in the NSL KDD dataset.
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Im [73]: M cat_wvar_ids nslkdd = get categorical attributes(features ids nslkdd)
cat_wvar_ids_nslkdd

ot [72] ['flag",
"service”,
"attacktype’,
"protocoltype”,
"land",
‘rootshell”,
"numcutboundcmds ',
"wrongfragment”®,
"‘mumfailedlogins’,
*loggedin®,

‘numshells"]

Figure 56. Code snippets used to retrieve categorical variable in NSL KDD dataset

Figure 57 below shows the use of split_dataset_into_train_test_set() to split all datasets into
their training dataset and testing dataset respectively. The training set is labelled X _train and
y_train, while the testing set is labelled X test and y_test and the names of the dataset is
appended to the variables used to store these data. The variable having the “X” character
attached to the variable names are the independent variable while character “y” denotes the
dependent variable.

In [88]: M
¥ _train_ids kddes, X_test ids kddss, v train ids kdd9s, y test_ids kddsg - split_dataset_into_train_test_set(features_ids_kdc
¥ train_ids_cic, X test ids_cic, y_train_ids cic, y test_ids cic = split dataset_into train_test_set(features_ids_cic, targel
¥ _train_ids nslkdd, X test ids nslkdd, y_train_ids_nslkdd, y_test_ids nslkdd - split_dstaset into train_test_set(festures_ide

3

Figure 57. Code snippets for splitting datasets into training and testing sets

Figure 58 below shows the use MinMaxScalar module to normalize dataset values before
attempting to use the dataset in analysing the models implemented. To normalize the dataset,
an instance of the MinMaxScaler module from Python’s sklearn.preprocessing library was
created. The fit_transform() method of the instance MinMaxScalar is called and the
independent variables in the training and testing set are used as argument on each dataset to
normalize the dataset.

In [87]: M  sc = MinMaxsScaler(}

# sc = standardscaler()

¥_train_ids_kddoss = sc.fit_transform{¥_traim_ids_ kddso)
X_test_ids_kddos = sc.fit_transform(x_test_ids_kddoos)

¥_fEtrain_ids_cic = sc.fit_transform{x_train_ids_cic}
¥ _ftest_ids «ic = sc.fit_transform{x_test_ids_cic)

¥_train_ids_mnslkdd = sc.fit_transform{¥_train_ids_nslkdd)
X_test_ids_mslkdd = sc.fit_transform{¥_test_ids nslkdd)

Figure 58. Code snippets used for normalizing the independent variables in of all dataset

Figure 59 below shows the use SMOTE module remove the imbalance in the dataset. To
remove the imbalance in the dataset, an instance of the SMOTE module from Python
imblearn.over_sampling library was created and fit_resample() method was applied to training
set for each dataset.

In [28]: M random_oversampler = SMOTE()
¥_train_ids_kddss, y_train_ids_kddss = random_oversampler.fit_resample(X_train_ids_kddss, y_train_ids_kddsg)
X_train_ids_cic, y_train_ids_cic = random_oversampler.fit_resample(X_train_ids cic, y_train_ids_cic)

¥_train_ids_nslkdd, y_train_ids_nslkdd = random_cversampler.fit_resample{X_train_ids_nslkdd, y_train_ids_nslkdd)
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Figure 59. Code snippets used to remove imbalance in the datasets

Figure 60 below shows the addition all normalized and balanced dataset to a dictionary data
structure in order to store all datasets record in a single variable.

In [22]: M analysis_dataset[kdd2s_colname][x_train_label] = X_train_ids_kddss
analysis_dataset[kdd2s_colname][x_test_label] = X_test_ids_kddss
analysis_dataset[kdd92_colname][y_train_label] = y_train_ids_kddas
analysis_dataset[kdd2s_colname][y_test_label] = y_test_ids_kddss

analysis_dataset[cic_colname][x_train_label] = X_train_ids_cic
analysis_dataset[cic_colname][x_test_label] = X_test_ids_cic
analysis_dataset[cic_colname][v_train_label] = y_train_ids_cic
analysis_dataset[cic_colname][v_test_label] = y_test_ids_cic

analysis_dataset[nslkdd_colname][x_train_label] = X_train_ids_nslkdd
analysis_dataset[nslkdd_colname] [x_test_label] = X_test_ids_nslkdd
analysis_dataset[nslkdd_colname][y_train_label] = y_train_ids nslkdd

analysis_dataset[nslkdd_colname] [y_test_label] = y_test_ids_nslkdd

Figure 60. Code snippets for adding both training and testing dataset to analysis_dataset variable

Figure 61 below shows the code execution to run logistic regression analysis for all datasets
in this project code implementation.

In [23]: M perform_legistic_regression_modelling_and_analysis(analysis_dataset, analysis_result)

Training time for LR model on kdd99 dataset: 13.574@6177528752
Testing time for LR model on kddo9 dataset: @.82180229263385664

Analysis summary for LR model on kddoa dataset

Classication Report

precision recall fl-score  support

Hormal 1.e0 2.98 2.99 38054
Attack 2.9% l.28 l.ea 118152
accuracy 2.99 148206
macro avg 1.e0 2.99 2.99 148206
weighted avg 8.99 8,99 8.99 148206

Figure 61. Code snippets for executing Logistic Regression analysis

Figure 62 below shows the code execution to run random forest classification analysis for all
datasets in this project code implementation.

In [92]: M perform_random forest_classifier_modelling and_analysis(analysis_dataset, analysis_result)

Training time for RFC model on kddss dataset: 14.852149486541748
Testing time for RFC model on kddss dataset: e.37799978256225588

analysis Suemary for RFC model on kdd9s dataset

classication Report

precision  recall fl-score  suppert

Hormal 1.00 1.88 1.0 28355
attack 1.00 1.28 1.00 118851
accuracy 1.00 148208
macro avg 1.00 1.88 1.e@ 148206
weighted avg 1.08 1.ee 1.0 148206

Figure 62. Code snippets for executing Random Forest classification analysis

Figure 63 below shows the code execution to run gradient boost classification analysis for all
datasets in this project code implementation.
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In [95]: M

perform_gradient_boost_classifier_modelling_and_analysis(analysis_dataset, analysis_result)

Training time for GBC model on kdd9s dataset: 106.18539543327332
Testing time for GBC model on kddse dataset: e.23292682523536133

Analysis Susmary for GBC model on kddss dataset

Classication Report

precision recall fi-score support

Normal 1.e0 1.ee 1.e0 29355
Attack 1.00 1.08 1.80 118851
accuracy 1.86 148268
macro avg 1.00 1.88 1.80 148206
weighted avg 1.00 1.ee 1.00 148206

Figure 63. Code snippets for executing Gradient Boost classification analysis

Figure 64 below shows the code execution to run artificial neural network (ANN) analysis for

all datasets in this project code implementation.

Figure 64.

Figure 65 below shows the code execution for displaying tabular summary of all dataset
analysed showing the four model implement and the four evaluation metrics used in the

analysis.

In [97]:

In [96]: M | run_ANN_model(analysis_dataset, analysis_result)
Mcdel: “sequential®
Layer (type) Output Shape Param #
dense (Dense) (Mone, =21) 292
dense_1 (Dense) (None, 1) 3z
dense_z (Dense} Crone, 23 =

Total params: 1,028
Trainable params: 1,028
Mon-trainable params: @

Model: “sequential_i-

Output Shape Faram =

(Nene, 213 232

Code snippets for executing Artificial Neural Network (ANN) analysis

M |dataset_list = [
nslkdd_colname, kdd99_colname, cic_colname

» "GBC', 'ANN'
metric_list = [

Accuracy', 'Precision’, 'Recall’, ‘Auc'

1

drav_summary_table_dataset_evaluation{analysis_result, dataset list, model list, metric_list)

Figure 65. Code snippets used to display model analysis tables for all dataset

Model Summary for NSLKDD dataset

| | Accuracy Precision Recall | Auc

| R | 9o.68 99.42 09.75 | 9o.58
| RFC | 188.88 180.88 108.80 | 128.80
| GBC | 1e8.88 100.08 180.088 | 1e8.00
| ANN | 1ee.ee 100.00 100.008 | 100.00
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Figure 66. Summary table showing all implemented models and all evaluation metrics for NSL KDD

dataset
Model Summary for KDD99 dataset
Accuracy Precision Recall | Auc
LR 96.48 99.97 90.38 | 99.63
RFC 160.08 160.00 160.00 | 188.00
GBC 160.08 160.00 160.00 | 1e0.09
ANN 99.99 92.98 100.00 | 98.97

Figure 67. Summary table showing all implemented models and all evaluation metrics for KDD99

dataset
Model Summary for CIC dataset
Accuracy Precision Recall Auc
LR 10@.80 109.00 160.00 lee.08
RFC 10e.80 109.00 180.00 168.08
GBC 188.e0 lee.ee 100.80 1ee.08
ANN 10e.80 109.00 180.00 168.08

Figure 68. Summary table showing all implemented models and all evaluation metrics for CIC IDS
dataset

Figure 69 below shows the code execution for displaying all bar chart of all dataset analysed
showing the four model implement and the four evaluation metrics used in the analysis.

In [98]: M show model performance plot{analysis_result, dataset_list, model list, metric_list)

MnAdz1 Darfnrmznra Dlat £am MO AR Aztacot

Figure 69. Code snippets used to display bar charts for all model and evaluation metrics for all
dataset

Figure 70 below shows the output of the execution of figure 69 above for the NSL KDD dataset
for the four models implemented. The plot labelled A is the bar chart for Logistic Regression
analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for
Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.
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Figure 70. Bar plots for all models implemented and evaluation metrics for NSL KDD dataset

Figure 71 below shows the output of the execution of figure 69 above for the KDD 99 dataset
for the four models implemented. The plot labelled A is the bar chart for Logistic Regression
analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for
Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.

Futmarca magarsé m Pacartagn |
Parminece measursd n Parostagel

e o a s 2
H H H H H

Porbmancs mssred n Perattage

Feftmasce nzaursd n Femlags %

Figure 71. Bar plots for all models implemented and evaluation metrics for KDD 99 dataset

Figure 72 below shows the output of the execution of figure 69 above for the CIC IDS dataset
for the four models implemented. The plot labelled A is the bar chart for Logistic Regression
analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for
Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis.
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Figure 72. Bar plots for all models implemented and evaluation metrics for CIC IDS dataset

Figure 73 below shows the code execution for displaying all multiple bar chart of all dataset

analysed showing the four model implement and the four evaluation metrics used in the
analysis.

In [99]: M show model performance_in one_plot(analysis_result, dataset list, model list, metric_list)

unAda1l DarfArmznrz licine Ml+inla Dar Dl FAr MO VTN Aadacad

Figure 73. Code snippets used to display multiple bar charts for all model and evaluation metrics for
all dataset

Hodel Performance Using Multiple Bar Plot for WSLKDD datase T

Figure 74. Multiple bar plots for all models implemented and evaluation metrics for NSL KDD
dataset
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Model Performance Using Multiple Bar Plat for KDD99 dataset

i
;
i

Figure 75. Multiple bar plots for all models implemented and evaluation metrics for KDD 99 dataset

Figure 76. Multiple bar plots for all models implemented and evaluation metrics for CIC IDS dataset

5 Conclusion

The guidelines enumerated in this configuration manual documentation will aid researcher who
intends to implement same code implementation as described in this research report using all
three datasets is guaranteed to get the same outcomes as the result obtained in this work. The
code snippets, the charts generated and summary table shown in this report were used to
achieve the objectives and goal as set form the outset of the project work.
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