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1 Introduction 
This report is aim at producing a manual which is a comprehensive guideline for creating the 

code implementation setup of the research on “Distributed Intrusion Detection System for 

Cloud Environments Using Deep Learning Machine Algorithms”. The research was carried 
out to investigate how well deep learning and machine learning algorithm can classify a 

network traffic as attack traffic or a non-attack traffic using historical dataset. In carrying out 

this experiment, three historic (3) datasets were used in this code implementation and the 

datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD dataset. Three machine 
learning algorithms (Logistic Regression, Random Forest Classifier and Gradient Boost 

Classifier) and a deep learning algorithm (Artificial Neural Network) were used to analyse the 

datasets in this research experiment. 
 

The rest of this report is presented as follows: Section 2 discusses system specifications for 

hardware and software components used in this code implementation, Section 3 covers 

software installation, Anaconda environment setup and the installation of Python libraries used 
in this code implementation. Section 4 will discuss code implementation and evaluation of 4 

model implemented and how well the models performed with the analysis of each dataset, 

Section 5 discusses the concluding or final statements and Section 6 contains a list of 

references. 
 

2 System Specification 

2.1 System Hardware Requirement 

The PC used in implementing the code for this work has the following configuration settings 

RAM: 16GB 

Processor Type:  Intel core i7 with 1.99GHz processing speed 

Storage Capacity: 512GB SSD. 

2.2 System Software Requirement 

2.2.1 Operating System (Microsoft windows 10) 

Windows 10 OS is the underlying platform on which the other software used for the project 

implementation will be installed. 

2.2.2 Anaconda Navigator V2.1.1 

Anaconda Navigator is package manager for Python programming language and it is used 

manage Python versions and manage different work space on a single machine. 

https://studentncirl-my.sharepoint.com/:v:/g/personal/x20165765_student_ncirl_ie/EYNMFBuvGkJKrBZmBElhy9sBaQyp7UqGyo08qjGHawArDQ?e=ufNcYG
https://studentncirl-my.sharepoint.com/:v:/g/personal/x20165765_student_ncirl_ie/EYNMFBuvGkJKrBZmBElhy9sBaQyp7UqGyo08qjGHawArDQ?e=ufNcYG
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2.2.3 Jupyter Notebook V.6.4.5 

Jupyter Notebook is the programming IDE that interpretes code segment interactively on the 

browser. 

2.2.4 Web Browser (Mozilla Firefox Browser V.98.0.2) 

Mozilla Firefox is used by Jupyter Notebook display the code snippet and the output of the 

code snippet. 
 

3 Software Installation, Environment Setup and Python 

Libraries 

3.1 Software Installation for Anaconda 

STEP 1: 

Go to Anaconda website and download Anaconda installer file 

 

 

STEP 2: 

Locate the downloaded installer file and double click it to launch the installer. On the welcome 

to Anaconda page, click on “Next” button. 

 

 

Figure 1.  Anaconda installer welcome page 

 

 

STEP 3: 

On the license agreement, read the licensing terms and click on the button labelled “I Agree” 

to continue 
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Figure 2.  Anaconda installer license agreement page 

 

 

STEP 4: 

Click on the button labelled “Next” on the Select installation type page 

 

 

Figure 3.   Anaconda installer select installation type 

STEP 5: 

Click on the button labelled “Next” on the Choose install location 

 

 

Figure 4. Anaconda installer choose install location page 

 

STEP 6: 

Click on the button labelled “Install” on the Advanced installation options 

 

 

Figure 5. Anaconda installer advance installation options page  

STEP 7: 
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On the Installation Complete page, allow the installation to run to completion and click on the 

button labelled “Next” 

 

 

Figure 6.  Anaconda installer installation complete page 

 

 

 

STEP 8: 

Click on the button labelled “Next” on the Install PyCharm 

 

 

Figure 7. Anaconda installer pycharm install option page 

STEP 9: 

Click on the button labelled “Finish” on the Thank you page 

 

 
 

Figure 8.  Anaconda installer completing anaconda3 setup 
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3.2 Environment Setup and Python Libraries 

The Anaconda installation created an environment called “base” pre-installing some of 

Python’s libraries needed to carry out this coding implementation of the project work. Some 

other libraries will be installed to completely setup the environment for carrying out this coding 

exercise 

 

STEP 1: 

Click on the Windows icon, expand Anaconda folder and click on Anaconda Prompt to start 

Anaconda command line. 

 

 

Figure 9.  launch anaconda prompt 

 

STEP 2: 

Create a new conda environment for carrying out this code implementation using the following 

command “conda create -n venv python=3.6”. Following the instruction on command 

prompt to complete the installation. After a successful creation of the venv environment, enter 

the following command “conda activate venv” to activate the newly created environment  

 

 

Figure 10.  Anaconda prompt showing the create environment command and conda 

command for activating the created environment 

   

STEP 3: 

After activating the venv environment, use the following commands to install all Python’s 

libraries used in this code implementation 

• “conda install -c conda-forge notebook” 

• “conda install -c conda-forge jupyterlab” 

• “conda install -c conda-forge nb_conda_kernels” 

• “conda install -c anaconda pandas” 

• “conda install -c conda-forge seaborn” 

• “conda install -c intel scikit-learn” 
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• “conda install scikit-learn-intelex” 

• “conda install -c conda-forge imbalanced-learn” 

• “conda install -c conda-forge keras” 
 

 

4 Implementation and Evaluation 
After a successful installation Anaconda and installing all libraries required to carry out this 

code implementation, this section shows the actual code implementation for this research work 

as shown below: 

4.1 Start a new project 

On the launch Anaconda main page, click on the button labelled “Launch” on the cell with the 

Jupyter Notebook load the interactive Python IDE on the browser 

 

 

Figure 11. Launched anaconda navigator home page 

 

 

On the Jupyter Notebook start up page, locate the new button on top right corner and click the 

button and click also on the “Python 3” to start up a new project 

 
 

 

Figure 12.  Jupyter notebook home page showing how to start up a new project 

 

4.2 Import libraries 

After successfully launching a new project, on the first code snippet all Python libraries used 

to carry out this project will be added to this code snippet. Every time this block is updated, the 

button labelled “Run” should be clicked to import the library into the IDE 
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Figure 13.  The code snippet showing all Python libraries for carrying out this code 

implement 

 

4.3 Defined global variables used to track data generated while executing 

codes 

Also, the second cell was dedicated to declaring global variables that will be used to store and 

track output generated by executing codes in different blocks as they are being executed. Figure 

14 below shows all global variables defined while implementing the code base for this research 

work. 
 

 

Figure 14.  The code snippet showing all global variable used to store data generate while 

executing code snippets  

 

 

4.4 Defined functions  

In carrying out this research code implementation, 3 different datasets will be used in the 

analysis, meaning that tasks repetition will be a common occurrence and code reuse will be a 

way to minimize the amount of code written. Functions were defined to implement code reuse 

and minimize the number of codes written while carrying out this project code implementation. 

 

 

Figure 15 below shows the function in the code implementation of the project that is used to 

retrieve column names for a given dataset. The function is used to remove space character, 

underscore character, hyphen and forward slash character that is present in the column name 

of the dataset. 
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Figure 15.  The function to generate the list of column names from the dataset 

 

 

Figure 16 below shows the function in the code implementation of the project that is used to 

remove all missing values in a given dataset. The function uses numpy’s properties to remove 

rows with missing values and return all rows that have been determined to have valid data.  
 

 

Figure 16.  The function to remove missing value from a dataset 

 

Figure 17 below shows the function in the code implementation of the project that is used to 

rename columns in a dataset. The function accepts 3 arguments namely the dataset with column 

names to be changed, a list of column names to be changed and a list of the names to update 

the column names. 
 

 

Figure 17. The function to rename column name in a dataset 

 

 

Figure 18 below shows the function in the code implementation of the project that is used to 

plot the pie chart for the 3 datasets showing attack traffics to non-attack traffics. The function 

received five arguments and these arguments includes a tuple data structure containing the 3 

datasets, a tuple containing the titles for the 3 plots, a list containing the class label for 

categorizing a traffic as an attack or a non-attack, a main title and the dependent variable 

column name. 
 

 

Figure 18.  The function to plot a pie chart for given set of datasets 
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Figure 19 below shows the function in the code implementation of the project that is used to 

show the correlation chart for all the features excluding the dependent column for the 3 datasets. 

The function receives 1 argument, a tuple containing the independent variables in each dataset 

for all dataset. 
 

 

Figure 19.  The function to plot the correlation heat map for a given set of datasets 

 

Figure 20 below shows the function in the code implementation of the project that is used to 

retrieve the column names of highly correlated features (independent variables) in the dataset. 

The function receives two arguments and they include the dataset whose independent variable 

correlation values will be tested and threshold used to determine the highly correlated features. 
 

 

Figure 20.  The function used to estimate the correlation between features in a given dataset 

 

 

Figure 21 below shows the function in the code implementation of the project that is used to 

retrieve categorical variable in the dataset. The function receives the dataset as an argument 

and retrieves a list of the column names of all categorical variables. 
 

 

Figure 21.  The function used to retrieve column names for all categorical variables 

 

Figure 22 below shows the function in the code implementation of the project that is used to 

split a dataset into a train set and a test set. The function receives two arguments the 

independent variables (features) and dependent variable  
 

 

Figure 22. The function used to split dependent and independent variables into training and testing 

dataset 
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Figure 23 below shows the function in the code implementation of the project that is used to 

performs Logistic Regression analysis. The function accepts two arguments which is a 

dictionary data structure containing all datasets and another dictionary to track analysis result. 

The function also invokes another function perform_model_analysis which helps to train the 

model and use the test set evaluate the performance of the model.  
 

 

 

Figure 23.  The function used to implement Logistic Regression (LR) classification analysis 

 

Figure 24 below shows the function in the code implementation of the project that is used to 

perform Random Forest classification analysis. The function accepts two dictionary data 

structure as argument with one argument containing all datasets and another argument to track 

analysis result. The function also invokes another function perform_model_analysis which 

helps to train the model and use the test set evaluate the performance of the model. 
 

 

 

Figure 24.  The function used to implement Random Forest (RFC) classification analysis 

 

Figure 25 below shows the function in the code implementation of the project that is used to 

perform Gradient Boost classification analysis. The function accepts two dictionary data 

structure as argument with one argument containing all datasets and another argument to track 

analysis result. The function also invokes another function perform_model_analysis which 

helps to train the model and use the test set evaluate the performance of the model. 
 

 

Figure 25.  The function used to implement Gradient Boost (GBC) classification analysis 

 

Figure 26 below shows the function in the code implementation of the project that is used to 

perform model analysis by the three machine learning algorithms implemented in this project. 
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The function accepts four argument and these includes the model to be analysed, the dataset 

dictionary, the key to accessing the dataset in the dictionary and the label used to mark the 

model. The function invokes two other functions name train_model to train the target model 

and run_analysis to evaluate model perform after training the model. The function displays 

the summary information showing all performance metric for visualising how well the model 

performed. 
 

 

Figure 26.  The function used by the implemented models (LR, RFC, GBC) to perform training and 

testing for given datasets and display results 

 

 

Figure 17 below shows the function in the code implementation of the project that is used to 

train model being analysed. The function accepts four arguments and these includes model 

which is the instance of the model being analysed, x_train is the independent variables of the 

training dataset, y_train is the dependent variable of the training set and model_key is the 

labelled name for the model used in analysis. The function returns a trained model instance 

after a successful training.  
 

 

Figure 27.  The function used for training model using the training set of a target dataset 

 

Figure 28 below shows the function in the code implementation of the project that is used to 

evaluate the performance of a trained machine learning model.  The function accepts four 

arguments and these includes model which has already been trained, x_test is the independent 

variables of the used in prediction or evaluate the trained model, dataset_key is used to identify 

the dataset being analysed and model_key is the labelled name for the model used in analysis. 

The function returns a prediction generated by the model. 
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Figure 28. The function used for testing model and generating predictions for a testing set of a target 

dataset 

 

 

Figure 29 below shows the function in the code implementation of the project that is used to 

build an artificial neural network (ANN) model. The function uses keras Sequential module 

and keras layer Dense module to build the neural network using input_dim argument to update 

the input_dim for the implemented model. The function also returns the model instance created. 
 

 

 

Figure 29.  The function used to build ANN model 

 

Figure 30 below shows the function in the code implementation of the project that is used to 

instantiate ANN model, run model analysis and display the result of the generated analysis for 

different dataset being analysed. The function accepts two dictionary data structure as argument 

with one argument containing all datasets and another argument to track analysis result. The 

function also uses a for loop to create new ANN model when analysing a dataset, train the 

model by invoking run_ANN_analysis() function and generates a prediction by using the 

model to evaluate the test set. After a successful evaluation, the model will then present and 

display model performance using different metrics. 
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Figure 30. The function used to implement ANN analysis by training and testing the model for a given 

datasets and display results 

 

Figure 31 below shows the function in the code implementation of the project that is used to 

train ANN model. The function accepts four arguments and these includes model which is the 

instance of the ANN model being analysed, target_dataset_dict contains the training dataset 

dependent and independent variables used to train the model, dataset_key is used to identify 

the dataset being analysed and model_key is the labelled name for the model used in analysis. 

The function returns a trained model instance after a successful training. 
 

 

 

Figure 31.  The function used for training ANN model using the training set of a target dataset 

 

Figure 32 below shows the function in the code implementation of the project that is used to 

set the content of a table data. The function accepts four arguments which includes text the data 

to be displayed on the table cell, pos the table cell position were the table data will occupy, 

item_count the cell count for table for displaying summary and count_size is cell maximum 

size. 
 

 

 
 

Figure 32. The function used to set table content while draw summary for output of an analysis 

 

Figure 33 below shows the function in the code implementation of the project that is used to 

draw summary table for a target dataset on all machine learning and neural network models 

implemented against all evaluation metrics. The function accepted four arguments which 

included dataset a unique id for identifying a dataset, analysis_result used to hold all output 

from analysing models, model_list holds a list of all models analysed and metric_list holds a 

list of all evaluation metrics used evaluate the performance of each model 
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Figure 33.  The function used to generate analysis output summary table for a particular dataset 

 

Figure 34 below shows the function in the code implementation of the project that is used to 

iteratively draw the summary tables for all dataset used in this code implementation for this 

research project showing all machine learning and neural network models implemented against 

all evaluation metrics. The function accepted four arguments which included dataset_list used 

to store a list of all dataset, analysis_result used to hold all output from analysing models, 

model_list holds a list of all models analysed and metric_list holds a list of all evaluation 

metrics used evaluate the performance of each model 
 

 

 

Figure 34.  The function used to generate analysis output summary table for all dataset 

 

Figure 35 below shows the function in the code implementation of the project that is used to 

convert a metric score to percentage with two decimal place value. The function accepts one 

argument num which is the number to be displayed as a percentage with two decimal places 
 

 

 

Figure 35.  The function used to convert analysis score to percentage with two decimal places 

 

Figure 36 below shows the function in the code implementation of the project that is used to 

render a plot for all evaluation metrics for a particular model and dataset. The function accepts 

five arguments and uses Python matplotlib library to plot a bar chart. 
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Figure 36.  The function used to plot bar chart for particular model and a particular dataset 

 

Figure 37 below shows the function in the code implementation of the project that is used to 

generate four set of bar chart for a particular dataset. The function iteratively create bar chart 

for the list of model implement to analyse a dataset by invoke 

plot_performance_for_target_model() function as shown in figure 36 above. The function 

accepts four arguments and these includes dataset, analysis_result, model_list and metric_list. 
 

 

 

Figure 37.  The function is used to generate the data used to plot the bar chart and display the bar 

chart for a particular model and a particular dataset 

 

Figure 38 below shows the function in the code implementation of the project that is used to 

iteratively generate bar chat for all dataset analysed in this research work. The function accepts 

four arguments which includes dataset_list used to store a list of all dataset, analysis_result 

used to hold all output from analysing models, model_list holds a list of all models analysed 

and metric_list holds a list of all evaluation metrics used evaluate the performance of each 

model. 
 

 

Figure 38.  The function is used to display the bar chart for all implemented models and datasets 

 

Figure 39 below shows the function in the code implementation of the project that is used to 

generate multiple bar chart for a particular dataset for all evaluation metrics group by models 
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implemented. The function accepts four arguments and they include dataset, analysis_result, 

model_list and metric_list and uses Python matplotlib library to plot multiple bar chart. 
 

 

 

Figure 39. The function is used to plot a multiple bar chart for all implemented models and a 

particular dataset 

 

Figure 40 below shows the function in the code implementation of the project that is used to 

iteratively generate multipe bar chat for all dataset analysed in this research work. The function 

accepts four arguments which includes dataset_list, analysis_result, model_list and 

metric_list. The function also invokes show_multiple_plot_for_current_dataset() as it help in 

the multiple bar chart creation. 
 

 

 
 

Figure 40. The function is used to display multiple bar chart for all implemented models and datasets 

 

4.5 Read dataset using Pandas’ read_csv() method 
 

In carrying out the code implementation, three well datasets were used to analyse the models 

implemented and these datasets includes KDD99 dataset, CIC IDS dataset and NSL KDD 

dataset.  These datasets were downloaded from Kaggle website and Python’s Pandas library 

was used load the datasets as Panda’s dataframe into the Jupyter notebook IDE. Figure 41 

below show the code snippet used to import all datasets into the IDE 
 

https://www.kaggle.com/
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Figure 41.   code snippet used to import dataset into the IDE 

 

 

4.6 Data Exploration, Run Experiments and Experiment Result 

After successfully importing the datasets into the Jupyter notebook IDE, the datasets were pre-

processed, missing values were removed and column names were modified by removing space 

characters, hyphen characters, underscore characters, other special characters. Figures 42, 43 

and 44 below shows the first five rows in each dataset used in model analysis. 
 

 

Figure 42.  A view of the first five records in the KDD99 dataset 
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Figure 43.  A view of the first five records in the NSL KDD dataset 

 

 

 

 

Figure 44.  A view of the first five records in the CIC IDS dataset 

 

 

Figure 45 below shows the use of the plot_pie_chart_for_dependent_variable() function to 

generate pie chart displaying percentage ratio for Attack traffic to Non Attack traffic in each 

dataset used in this project code implementation. From the pie chart labelled KDD 99 dataset, 

80.3% of the network traffic were Attack and 19.7% were Non-Attack traffic. The CIC IDS 

dataset had 56.7% of the network traffic were Attack and 43.3% were Non-Attack traffic and 

NSL KDD dataset had 49.1% of the network traffic were Attack and 50.9% were Non-Attack 

traffic. 
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Figure 45.  Pie charts showing the Attack traffic to Non Attack traffic ratio in each dataset used in 

this code implementation 

 

 

Figure 46 below shows the use of the plot_data_correlation() function to generate correlation 

chart using Python Seaborn heatmap() method and Pandas dataframe corr() method on each 

dataset used in this code implementation. The function displays three correlation charts as 

shown figures 47, 48 and 49 below. 
 

 

Figure 46.  The code snippet showing the invocation plot_data_correlation() function 

 

 

 

Figure 47.  Correlation heat map for KDD99 dataset 

 

 

 

 

Figure 48.  Correlation heat map for CIC IDS dataset 
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Figure 49.  Correlation heat map for NSL KDD dataset 

 

Figure 50 below shows the use of the estimate_correlation_without_negative_correlation() 

function to generate a list highly correlated features column names from independent variables 

in KDD99 dataset. The generated list of highly correlated features will be used to drop the 

columns from the KDD99 dataset. 
 

 

Figure 50.  Code snippets used to retrieve highly correlated features in KDD99 dataset 

 

Figure 51 below shows the use of the estimate_correlation_without_negative_correlation() 

function to generate a list highly correlated features column names from independent variables 

in CIC IDS dataset. The generated list of highly correlated features will be used to drop the 

columns from the CIC IDS dataset. 
 

 

 

Figure 51.  Code snippets used to retrieve highly correlated features in CIC IDS dataset 

 

Figure 52 below shows the use of the estimate_correlation_without_negative_correlation() 

function to generate a list highly correlated features column names from independent variables 

in NSL_KDD dataset. The generated list of highly correlated features will be used to drop the 

columns from the NSL_KDD dataset. 
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Figure 52.  Code snippets used to retrieve highly correlated features in NSL KDD dataset 

 

Figure 53 below shows the use of generated list of highly correlated features for the three 

datasets to remove or drop the column on the generated lists. This operation is done by invoking 

the drop() on each dataset instance use in this code implementation. 
 

 

Figure 53.  Code snippets used to drop highly correlated features in all dataset 

 

Figure 54 below shows the use of get_categorical_attributes() generate a list categorical 

attributes in the KDD99 dataset. 
 

 

Figure 54.  Code snippets used to retrieve categorical variable in KDD99 dataset 

 

Figure 55 below shows the use of get_categorical_attributes() generate a list categorical 

attributes in the CIC IDS dataset. 

 

 

Figure 55.  Code snippets used to retrieve categorical variable in CIC IDS dataset 

 

Figure 56 below shows the use of get_categorical_attributes() generate a list categorical 

attributes in the NSL KDD dataset. 
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Figure 56.  Code snippets used to retrieve categorical variable in NSL KDD dataset 

 

Figure 57 below shows the use of split_dataset_into_train_test_set() to split all datasets into 

their training dataset and testing dataset respectively. The training set is labelled X_train and 

y_train, while the testing set is labelled X_test and y_test and the names of the dataset is 

appended to the variables used to store these data. The variable having the “X” character 

attached to the variable names are the independent variable while character “y” denotes the 

dependent variable. 
 

 

 

Figure 57.  Code snippets for splitting datasets into training and testing sets 

 

Figure 58 below shows the use MinMaxScalar module to normalize dataset values before 

attempting to use the dataset in analysing the models implemented. To normalize the dataset, 

an instance of the MinMaxScaler module from Python’s sklearn.preprocessing library was 

created. The fit_transform() method of the instance MinMaxScalar is called and the 

independent variables in the training and testing set are used as argument on each dataset to 

normalize the dataset. 
 

 

Figure 58.  Code snippets used for normalizing the independent variables in of all dataset 

 

Figure 59 below shows the use SMOTE module remove the imbalance in the dataset. To 

remove the imbalance in the dataset, an instance of the SMOTE module from Python 

imblearn.over_sampling library was created and fit_resample() method was applied to training 

set for each dataset. 
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Figure 59.  Code snippets used to remove imbalance in the datasets 

 

Figure 60 below shows the addition all normalized and balanced dataset to a dictionary data 

structure in order to store all datasets record in a single variable. 
 

 

Figure 60. Code snippets for adding both training and testing dataset to analysis_dataset variable 

 

Figure 61 below shows the code execution to run logistic regression analysis for all datasets 

in this project code implementation. 
 

 

Figure 61.  Code snippets for executing Logistic Regression analysis 

 

Figure 62 below shows the code execution to run random forest classification analysis for all 

datasets in this project code implementation. 
 

 

Figure 62.  Code snippets for executing Random Forest classification analysis 

 

 

Figure 63 below shows the code execution to run gradient boost classification analysis for all 

datasets in this project code implementation. 
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Figure 63.  Code snippets for executing Gradient Boost classification analysis 

 

Figure 64 below shows the code execution to run artificial neural network (ANN) analysis for 

all datasets in this project code implementation. 
 

 

Figure 64.  Code snippets for executing Artificial Neural Network (ANN) analysis 

 

Figure 65 below shows the code execution for displaying tabular summary of all dataset 

analysed showing the four model implement and the four evaluation metrics used in the 

analysis. 
 

 

 

Figure 65.  Code snippets used to display model analysis tables for all dataset 
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Figure 66.  Summary table showing all implemented models and all evaluation metrics for NSL KDD 

dataset 

 

Figure 67.  Summary table showing all implemented models and all evaluation metrics for KDD99 

dataset 

 

 

Figure 68.  Summary table showing all implemented models and all evaluation metrics for CIC IDS 

dataset 

 

 

Figure 69 below shows the code execution for displaying all bar chart of all dataset analysed 

showing the four model implement and the four evaluation metrics used in the analysis. 
 

 

 
 

Figure 69.  Code snippets used to display bar charts for all model and evaluation metrics for all 

dataset 

 

 

Figure 70 below shows the output of the execution of figure 69 above for the NSL KDD dataset 

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression 

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for 

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis. 
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Figure 70.  Bar plots for all models implemented and evaluation metrics for NSL KDD dataset 

 

 

Figure 71 below shows the output of the execution of figure 69 above for the KDD 99 dataset 

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression 

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for 

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 71.  Bar plots for all models implemented and evaluation metrics for KDD 99 dataset 

 

 

Figure 72 below shows the output of the execution of figure 69 above for the CIC IDS dataset 

for the four models implemented. The plot labelled A is the bar chart for Logistic Regression 

analysis, B is the bar chart for Random Forest classification analysis, C is the bar chart for 

Gradient Boost classification analysis and D is for Artificial Neural Network (ANN) analysis. 
 

 

 

 

 

A B 

C D 

A B 

C D 
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Figure 72.  Bar plots for all models implemented and evaluation metrics for CIC IDS dataset 

 

 

Figure 73 below shows the code execution for displaying all multiple bar chart of all dataset 

analysed showing the four model implement and the four evaluation metrics used in the 

analysis. 
 

 

Figure 73.  Code snippets used to display multiple bar charts for all model and evaluation metrics for 

all dataset 

 

 

 

Figure 74.  Multiple bar plots for all models implemented and evaluation metrics for NSL KDD 

dataset 
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Figure 75.  Multiple bar plots for all models implemented and evaluation metrics for KDD 99 dataset 

 

 

Figure 76.  Multiple bar plots for all models implemented and evaluation metrics for CIC IDS dataset 

 

5 Conclusion 
The guidelines enumerated in this configuration manual documentation will aid researcher who 

intends to implement same code implementation as described in this research report using all 

three datasets is guaranteed to get the same outcomes as the result obtained in this work. The 

code snippets, the charts generated and summary table shown in this report were used to 

achieve the objectives and goal as set form the outset of the project work.  
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