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Detection of DDoS attacks in the IoT devices Using 

Machine Learning Models on Urban IoT Dataset 
 

Simon Onyebuchi Obetta 

x19152272 
  

 
 

Abstract 

As the Internet of Things (IoT) has grown in popularity in recent years, attackers are 

increasingly targeting IoT environments to perform malicious attacks such as DDoS. 

This is due to the inadequate security implementation and management of IoT devices. 

Sometimes, the infected IoT devices can be used as bots by attackers to launch a DDoS 

attack on a target. Although various security methods have been introduced recently for 

IoT devices, an effective detection method is still required.  This motivates the 

development of four machine learning models for DDoS detection. Using three modern 

neural network algorithms such as Feedforward Neural Network (FNN), Deep Neural 

Network (DNN), and Autoencoder and the conventional Random Forest for DDoS 

detection performance comparison. The detection system uses a public dataset, Urban 

IoT to detect attacks using these four algorithms. Experiment results show that DNN 

achieved the highest accuracy of 95.9%, while the Random Forest achieved the lowest 

accuracy of 94.2%. 

 

1 Introduction 
 

The Internet of Things (IoT) is a new technology innovation that connects smart electronic 

devices and gadgets to the internet for data collecting and transfer without human 

intervention (Steve, 2020). Presently a large number of IoT systems are interconnected with 

several sensors and maintain communication and exchange massive volumes of data. This is 

due to an increase in technological advancements. For instance, in the context of smart-home 

applications, large-scale IoT systems with numerous sensor nodes are being used and 

proposed. Most common network architectures that utilize IoT services include healthcare 

systems, institutions, organizations, and home network systems. For communication between 

the IoT devices and the controller, the majority of IoT implementations in smart homes rely 

heavily on home internet networks, either wireless or cable. IoT devices enable smarter and 

more efficient homes by allowing for automatic and remote control of household equipment. 

For example, modern CCTV cameras can now be monitored from afar using smartphones. 

With security, vulnerabilities associated with IoT devices, and it has been predicted to 

grow with time. This is the reason IoT technology is expected to become a major research 

focus in the realm of cybersecurity. The most prevalent IoT security threats comprise code 

injection, middle-man attack, sinkhole, Sybil attack, Denial of Service (DoS), and Distributed 

Denial of Service (DDoS) Vashi et al. (2017).  According to Cloudflare (2021), DDoS 

attacks occur when an attacker floods the target's network or application with fake requests 

from a compromised bot within a short period.  It takes advantage of the vulnerabilities in the 

internet system infrastructures like unsecured ports, use of default passwords, lack of security 
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updates, and so on to penetrate the targets' system (Douligeris and Mitrokotsa, 2004). The 

DDoS attackers aim to deny access to networks or applications from legitimate users by 

bringdown or slowing the network or application. 

Comparing the difference in the performance of different machine learning algorithms 

(MLA) have shown potential in detecting malware especially DDoS in the Internet traffic in 

modern anomaly-based detection studies. However, this is not enough in detecting real-life or 

Slow DDoS attacks, especially in IoT devices. 

This research aims to find an improvement in detecting DDoS attacks in IoT devices 

using the Urban IoT dataset. This will be performed by comparing the metrics performance 

of four MLA which include, simple Feedforward Neural Network (FNN), Deep Neural 

Network (DNN), Autoencoder Neural Network, and Random Forest. The first three belongs 

to Neural Network Machine Learning which is a branch of artificial intelligence, while the 

Random Forest is a traditional MLA. The goal is to generate and compare the results of the 

performance of the MLA on DDoS detection using the Urban IoT dataset. A model with high 

accuracy, precision, and recall rate will be proposed. These are some of the most important 

parameters in the neural network DDoS detection study right now.  

 

1.1. Motivation 

 
The IoT has grown in popularity as these technologies are employed for a variety of 

reasons while employing poor security standards. This increases the likelihood of DDoS 

attacks and other security threats. Because of insufficient security standards and policies, 

most security analysts regard IoT as a susceptible point for cyber-attacks (Tawalbeh et al., 

2020). For example, the largest DDoS attack that happened in 2016 on the Dyn's company 

server leveraged IoT devices using default username/password and unsecured ports 

vulnerabilities available to the attacker to launch an attack to one of the major web hosting 

company’s servers (Kumar and Lim, 2019). Because of these reasons, I have been motivated 

to carry out my research in this field. Nevertheless, numerous studies and procedures have 

been undertaken to detect and mitigate this from occurring, one of which is the employment 

of an MLA with excellent accuracy, recall, and precision. 

 

1.2. Research Question 

 
This paper aims to find a solution to these questions. 

"How well do Machine Learning Models perform at detecting DDoS attacks on the Internet 

of Things Devices using Urban IoT dataset?" 

This paper focuses on comparing different neural networks and Random Forest models 

for DDoS data classification. This strategy is based on the detection anomalies system.  

According to Tonkal et al. (2021), a neural network is a classification system that consists of 

multiple processing units called neurons. The units are organized by each layer. Each unit 

that occurs in a layer has a link to the previous layer. Random forest, on the other hand, is a 

traditional machine learning algorithm that works by building a decision tree out of many 

smaller trees. The results of each smaller tree are merged with a weighted value to generate 

an outcome using the bagging method (Pande et al. 2021).  
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1.3. Contribution 

 
My research aims to make the following contributions: 

• A comparison in performance of different machine learning algorithms in an attempt 

to detect DDoS attacks in an Urban IoT dataset. 

• Build two approaches for the models’ comparison; The first one is by using two 

different attack ratios, 0.8 and 1. While the second approach is by using different 

numbers of models to train 20 IoT nodes. 

The following are the layouts of the paper. Firstly, the related research works done in 

DDoS detection are addressed in Section 2. The theoretical basis and structure of the 

proposed models are presented in Section 3. The test design is also presented in section 4. 

While the implementation and evaluation will be found in sections 5 and 6 respectively.  The 

last section also contains the future work that can be considered. 

 

2. Related Work 
 

There have been numerous studies and efforts into using machine learning in DDoS 

detection. This section provides an overview of several public DDoS datasets as well as 

previous research papers on DDoS detection via machine learning methods. 

 

2.1. DDoS Datasets 

 

2.1.1. CIC DoS dataset (2017) 

 

This is an application layer DDoS attacks dataset generated by the University of New 

Brunswick team and it is available in the Canadian Institute for Cybersecurity database 

(Hadian et al., 2017). The dataset is a slow-rate DoS attack dataset that frequently exhibits as 

slow transmit and slow read. The attacks happened very slow with a slight effect on the 

targeted system, as the basic assumption of low-rate DDoS attacks. The resulting application-

layer DDoS attacks were mixed with attack-free traces from the ISCX-IDS dataset, yielding 8 

distinct application-layer DoS attack traces. The final generated dataset is 4.6 GB in size and 

contains 24 hours of network traffic. 

 

2.1.2. CIC-DDoS2019 dataset 

 

This dataset is also available in the Canadian Institute for Cybersecurity database 

created by team University of New Brunswick (Sharafaldin et al., 2019). The dataset includes 

benign and close-to real-life DDoS attacks. It also has different modern-day DDoS attacks 

such as UDP, SYN, DNS, and so on.  The attacks were then carried out over some time, with 

12 DDoS attacks on the training day and 7 attacks on the testing day. The DDoS traffic 

volume was so low, and the port scan had only been run on the testing day. The actual size of 

the dataset is 6.7Gb.  
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2.1.3. N-BaIoT dataset 

 

Meidan et al. (2018) from the Department of Software and Information Systems Engineering 

Ben-Gurion University of the Negev acquired these IoT botnet data in raw network traffic 

data from 9 different IoT devices from two families. The IoT devices are; babies' monitors, 

security cameras, doorbells, and thermostats. They captured the traffics from these devices to 

the central switch in pcap format by using a port mirroring tool.  

  

2.1.4. Urban IoT Data dataset 

 

The Stevens Centre for Innovation team at the University of Southern California created 

their first dataset from a genuine Urban IoT system in a large metropolis, consisting of 4060 

spatially distributed IoT nodes or sensors (Hekmatic et al., 2021). The data comprises nodes' 

binary activity status at a granularity of 30 seconds over a month in a benign (non-attacked) 

environment. The original dataset contains the node ID, the geolocation coordinates, and the 

time of the IoT node's activity status for a record of 1 month. 

 

2.2. Machine Learning Approach 

 

A Machine learning algorithm is classified into four sections; supervised learning, 

unsupervised learning, semi-supervised learning, and reinforcement learning, and their 

implementation is grouped into traditional machine learning (shallow learning) and deep 

learning (Wei, et al., 2019). Several studies have been conducted using these two 

implementation groups for DDoS detection.  

 

2.2.1. Traditional Machine Learning Approach in DDoS Detection 

 

A machine learning classifier was proposed by Ashi, et al. (2020) to detect DDoS 

attacks with an emphasis on cloud computing architecture. After collecting 256 Uniform 

Resource Locators, the authors used four different systems to simulate a DDoS attack 

simultaneously (URLs). After that, a dataset comprising the simulation's network traffic flow 

was created. After the data had been pre-processed and assessed, the Random Forest (RF) 

technique was utilized for model testing. 

Rahman, et al. (2019) created an SDN framework to identify and defend against 

DDoS attacks on the controller and the switch. To predict DDoS attacks, this framework 

requires training a machine learning model with recorded data. The mitigation script then 

uses the prediction to make decisions on their SDN network. With an open-source DDoS 

dataset, they tested and compared the results for Support Vector Machine (SVM), K-Nearest 

neighbours (K-NN), J48, and Random Forest. The results of their experiment revealed that 

J48 is the best classifier for their network with accuracy, F-1, and recall rate of 100%. 

Reddy and Thilagam, (2020) recommended using the Naive Bayes classifier to detect 

DDoS attack traffic by taking into account the five most influential DDoS attack network 

factors. Based on the probability of the DDoS attack value, the proposed DDoS attack 
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classifier is applied on all monitor nodes to process valid traffic and remove DDoS attack 

traffic. According to their simulation results, the proposed strategy reduces the intensity of 

DDoS attacks and allows network nodes to handle up to 80% of legal traffic. 

Misbahuddin and Zaidi, (2021) classified DDoS attacks by using a semi-supervised 

machine learning approach on the CICDS2017 dataset. They began with unlabelled traffic 

information collected against three aspects for victim-end defence, namely the webserver. 

Two distinct clustering methods cluster the unlabelled data, and a voting procedure 

determines the final classification of traffic flows. To detect DDoS attacks, the supervised 

learning algorithms K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), and 

Random Forest (RF) is applied to labelled data. The accuracy scores were 95%, 92%, and 

96.66% respectively in the experiments. 

Rios, et al. (2021) tested and compared the Multi-Layer Perceptron (MLP), K-Nearest 

Neighbors (K-NN), Support Vector Machine (SVM), and Multinomial Naive Bayes (MNB) 

machine learning methods for detecting reduction of quality (RoQ) attacks. They also 

suggested a method for detecting RoQ attacks that combines three models: Fuzzy Logic (FL), 

Multi-Layer Perceptron (MLP), and Euclidean Distance (ED). They tested these methods 

using both simulated and real-world traffic patterns. They demonstrated that using three 

parameters, namely the number of packets, entropy, and average inter-arrival time, results in 

the better categorization of the four machine learning algorithms than using only entropy. 

And found that MLP outperforms the other four machine learning algorithms when it comes 

to detecting RoQ attacks. 

Doshi, et al. (2018) proposed the approach of using multiple machine learning 

algorithms like K-Nearest neighbours (K-NN), Linear Support Vector Machine (LSVM), 

Decision Tree (DT), Random Forest (RF), and Neural Network (NN) for DDoS detection for 

the consumer IoT on the generated dataset. Their classification algorithm was based on the 

idea that system traffic conditions from these IoT nodes differ from those from well-studied 

non-IoT network nodes. They used data from a consumer IoT device that included both 

normal and DoS attack traffic to test five different machine learning classifiers. The results 

show variations in accuracy, F1, recall, and precision across the models. With K-NN, DT, 

RF, and NN having 99.9% accuracy while LSVM is 99.1%. 

Singh, (2021), proposed a comparative analysis of the DDoS detection method using 

machine learning algorithms. The author adopted Support Vector Machine (SVM) using 

linear and Radial Blasts function kernel, Decision Tree (DT), k-Nearest Neighbors (K-NN), 

Multi-layer Perceptron (MLP), Gaussian Naïve Bayes (GNB), and Random Forest (RF). For 

the simulation of this approach, Minimet emulation software was used while IPv4, 

Transmission Control Protocol (TCP), Internet Control Message Protocol (ICMP), and user 

Diagram protocol (UDP) were used for data extraction. SVM emerged as the most effective 

method for detecting DDoS attacks, as the result show accuracy, precision, and recall of 

100%. K-NN on the other hand gave the slowest rate out of all the machine learning 

algorithms used. 

Pérez-Díaz1 et al. (2020) proposed a flexible SDN-Based Architecture for the 

identification and mitigation of low-rate DDoS attacks. SDN framework enables more 

flexible and manageable environments by decoupling control and data planes. The adopted 

approach makes it possible for machine learning to fully make use of GPU which increases 
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training and classification speed. Their research was divided into two phases. The first phase 

is the intrusion prevention system (IPS) which consists of the flow management module 

which detects HTTP flows, the suspicious attackers’ management for managing the blacklist 

of potential attackers, and the mitigation management module. The second phase is the 

intrusion detection system (IDS) which consists of the identification API, the machine 

learning model selection, and the identification. The architecture simulation was carried out 

using the Minimet simulator. From the result, Multi-Layer Perceptron (MLP) gave an 

accuracy of 95%. 

Ali et al. (2020) presented DDoS detection using Support Vector Machine (SVM) and 

the SVM utilizing PCA filters on 200 DARPA datasets including solely DDoS attacks and 

1998 DARPA datasets containing normal traffic. Because SVM takes a longer time to train 

and develop the detection model, the authors proposed a novel architecture that uses PCA for 

dimensionality reduction. An approach for determining the best value for principal 

component selection, which will increase the SVM's performance in detecting DDoS attacks. 

Mishra et al (2021) proposed a classification-based machine learning for detecting 

DDoS attacks in cloud computing. The machine learning algorithms adopted for 

classification were K-Nearest Neighbour (K-NN), Naïve Bayes (NB), and Random Forest 

(RF). They generated a long feature vector by merging all feature vectors of interest. Their 

focus was more on supervised learning with the Random Forest having the best performance 

of 99.58% while Naive Bayes and K-NN having 93.69% and 97.89% respectively. 

Chen et al. (2020) presented a multi-layer DDoS detection system using Decision 

Tree (DT) machine learning for DDoS prevention in IoT gateways by numerically extracting 

aspects of four types of DDoS attacks, including sensor data flood, ICMP flood, SYN flood, 

and UDP flood. They demonstrate that the multi-layer DDoS detection system can accurately 

segregate normal packets from DDoS attack packets from IoT devices by launching DDoS 

attacks from eight smart poles in a genuine IoT scenario. The proposed system can detect 

DDoS attacks with a 97% accuracy using DT. 

Pande et al. (2021) proposed the use of a Random Forest (RF) algorithm to detect 

DDoS attacks in the generated DDoS attack dataset. The trained model resulted in 99.76% of 

correctly classified instances. 

Hekmatic et al. (2021) proposed a simple Feed-forward Neural Network for DDoS 

detection employing 20 nodes out of 4060 in the original dataset for the Urban IoT DDoS 

Data-main dataset. They also provide a script for creating a benign dataset from the original 

dataset to eliminate bias toward nodes with higher activity. The authors used attacked 

emulator to generate an artificial DDoS attack for the attack ratio of 1 on the 20 selected IoT 

nodes. They also generated the train and test datasets from the generated attacked data. The 

simple Feedforward Neural Network was applied on the train and test dataset with a mean 

accuracy of Testing and Train data of 94% and 88%, respectively. 

 

2.2.2. Deep Learning Approach in DDoS Detection 

 

Abdullah et al. (2020) used the CICDDoS2019 dataset which is divided into two 

categories: reflection and exploitation to propose the detection of DDoS attacks with a Feed-
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Forward Deep Neural Network algorithm. The model's accuracy for DDoS detection and 

classification is 99.9% for dataset1 and 94.5 percent for dataset2. 

Shaaban et al. (2019) proposed the use of a Convolutional Neural Network (CNN) for 

DDoS detection. For their research, the authors used two datasets: the generated dataset and 

the NSL-KDD dataset. CNN is used for the classification of normal traffic from DDoS 

attacks. According to the study and results, CNN performance for the classification is 99% 

accurate. This result was compared other machine models like Decision Trees (DT), Support 

Vector Machines (SVM), K-Nearest Neighbors (K-NN), and Neural Networks (NN).  the 

results of the comparison reveal that CNN is better at detecting DDoS. 

Ray et al. (2021) proposed a privacy-preserving methodology for detecting IoT 

malware that uses Federated Learning (FL) to train and analyse supervised and unsupervised 

models without exposing sensitive data in the N-BaIoT dataset. The result performance was 

compared as follow based on the model architecture: 1) A federated approach, in which each 

device owner trains their model, which is then aggregated in a server regularly; 2) A non-

privacy-preserving setup, in which the entire dataset is centralized and trained by the server; 

3) A local setup, in which each device owner trains one isolated and individual model. The 

utilization of more diversified and larger data, as done in the federated and centralized 

techniques, has a significant favourable impact on model performance in both supervised and 

unsupervised scenarios, according to this comparison. 

Soe et al. (2019) proposed the use of an Artificial Neural Network (ANN) for DDoS 

detection on the Bot-IoT dataset. The authors recommend using an ANN model for DDoS 

detection to achieve reliable detection performance. The attempt was to overcome the data 

imbalance problem. Before using neural network design, they applied the data re-sampling 

approach, Synthetic Minority Over-sampling Technique (SMOTE). From the result of the 

evaluation, the system is capable of identifying DDoS attacks with a single hidden layer and 

single output node artificial neural network with 100% accuracy. 

Meidan et al. (2018) and Tsimbalist, (2019) proposed using an Autoencoder deep 

learning model to detect Mirai and BASHLITE attacks in the N-BaIoT dataset containing 9 

IoT devices. They presumed that the predictability of traffic behaviour on IoT devices in the 

dataset may be immediately converted into anomaly detection performance measures. For 

example, an IoT device with a high level of traffic predictability would highlight any aberrant 

action, causing the True-Positive Rate (TPR) to rise and detection times to fall. 
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Table 1: Summary of DDoS detection research studies 

Reference Dataset Metrics 

 

Algorithms 

 

Accuracy 

 

Ashi et al., 

(2020) 

Generated dataset by simulating DDoS 

attack from 4 different servers to a target 

Accuracy, 

Recall, 

Precision, and 

F1-Score RF 100% 

Rahman et al. 

(2019) 

The simulation was done on a Virtual 

machine using Tshark to capture traffic in 

the RYU controller 

Accuracy, 

Recall, 

Precision, and 

F1-Score 

J48 100% 

RF 100% 

SVM 100% 

K-NN 100% 

Misbahuddin 

and Zaidi 

(2021) 
CICIDS2017 

Accuracy and 

Precision 

 

 

K-NN 95%, 

SVM 92% 

RF 96.66% 

Rios et al. 

(2021) 

Generated dataset captured from the 

emulated environment 

FP, TP, TN, FN, 

Recall, F1-score, 

and precision 

MLP 99.87% 

K-NN 99.58% 

SVM 99.49% 

MNB 96.02% 

Doshi et al. 

(2018) 

Generated dataset captured from IoT-

specific traffic in gateway router 
Precision, 

Recall, F1-score 

 

K-NN 96.7% 

LSVM 92% 

DT 97.7% 

RT 98.1% 

NN 93.9% 

Singh (2021) 

SDN-DDoS (ICMP, TCP, UDP) 

Accuracy, 

Precision, recall, 

and F1-score 

 

 

RSVM 100% 

LSVM 100% 

KNN 95.6% 

DTC 89.7% 

RFC 80.7% 

Pérez-Díaz1 et 

al. (2020) 

CAIDA DDoS 2007 

Precision, recall, 

F1-score, and 

false alarm rate 

 

RF 90.4% 

MLP 95% 

SVM 93.0% 

Ali et al. (2019) 

DARPA 

FP, Training 

Time, and 

Accuracy 

SVM 95.1% 

PCA+SVM 97.5% 

Mishra et al. 

(2021) Generated dataset captured virtual machines 

in the cloud environment  

FP, FN, Recall, 

F1-score, and 

precision 

NB 93.58% 

K-NN 97.69% 

RF 99.68% 
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Chen et al. 

(2020) 

Generated dataset from IoT devices 

True-positive 

(TP), False-

Positive (FP), 

False-Negative 

(FN), and True-

Negative (TN) 

 

Sensor Data 

flood 

97.39% 

Network 

data flood 

99.98% 

Hekmatic et al. 

(2021) Urban_IoT_DDoS_Data-main Mean Accuracy 

and Mean Recall 

NN 94% 

Soe et al. 

(2019) Bot-IoT dataset 
Precision, 

Recall, and 

Accuracy 

ANN 100% 

Abdullah et al. 

(2020) 
CICDDoS2019 

Precision, 

Recall, and 

Accuracy F-

Score 

DNN 

Dataset1 

99.9% 

DNN 

Dataset2 

94.5% 

Shaaban et al. 

(2019) 
Generated dataset and the NSL-KDD 

dataset 
Accuracy and 

Loss 

CNN 99% 

Pande et al. 

(2021) Generated dataset TP rate, FP rate, 

Precision, Recall 

RF 99% 

 

3.  Methodology 
 

This section covers the proposed methodology for detecting DDoS attacks using, simple 

Feed-Forward Neural Network (FNN), Deep Neural Network (DNN), Autoencoder Neural 

Network, and Random Forest (RF). Figure 1 below shows the steps performed starting from 

dataset selection, data pre-processing, models classifiers, and models evaluations. 
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Figure 1: Process flow of the methodology 

 

3.1. Dataset Selection 

 

The dataset used to perform this research work is Urban IoT. It was downloaded online in 

an open-source ANRG USC GitHub repository (github.com). The original data was captured 

from the activity status of genuine event-driven IoT nodes installed in a city (Hekmatic et al., 

2021). The data captured is the activity of 4060 IoT devices (nodes) for one month.  The 

dataset was used to perform this research because it is a very realistic dataset from IoT 

networks, which is appropriate for the proposed research question. In addition, it is very 

recent and was published on the GitHub website on 14th September 2021. The only paper 

publishment that used the dataset to conduct DDoS detection using simple Feedforward 

Neural Network was published recently on ACM on 15th November 2021 (Hekmatic et al., 

2021). As a result, there are open researches in this dataset that need to be done.  

The original dataset contains the following records; node ID, node's geolocations 

(Latitude and Longitude), and timestamp of the node's activity status. The dataset also 

comprises each node's binary activity status at 30 seconds throughout a month in a benign 

(non-attacked) environment. When a node's activity status changes, a record is appended to 

the original dataset. It was later supplemented with artificial attack emulation to make it 

usable for training machine learning models for DDoS detection. 
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From the dataset statistics, up to 65% of the nodes are activated at the mid-day, but by 

midnight, only approximately 20% of the nodes are active as shown in figure 2 below. 

 
Figure 2:  Active Nodes Percentage vs Time of the day 

 

3.2. Data Cleaning 

 

Data cleaning is part of the pre-processing activity carried out on the machine learning 

datasets. The reason why data cleaning is required in this method is that it has the potential to 

dramatically increase the efficiency and effectiveness of the training process. To emphasize 

the role of data cleaning in modern Machine Learning processes, it has been discovered that 

even when utilizing robust statistical techniques, the data cleaning methodology chosen can 

have a considerable impact on overall results (Krishnan, et al, 2016).  It comprises work such 

as removing extraneous data, dealing with missing values, label conversion, categorization, 

and data standardization. For example, this paper concentrated on 20 IoT nodes, therefore 

only important features were retained and extraneous ones were removed. Following the 

identification of significant characteristics, the next duty in the pre-processing step is to 

emulate the attack. 

 

3.3. Attack Emulator 

To enhance the dataset an artificial attack emulation is required to make it suitable for 

training machine learning models for DDoS detection. By modelling and emulating current 

and emerging DDoS attacks and the detection techniques, I believe it is possible to provide an 

answer to the best DDoS attack detection method. It is critical to employ appropriate models 

and emulation that allow researchers to thoroughly study various modes of DDoS attacks and 

detection mechanisms, implement novel approaches and assess detection performance (False-

Negatives, False-Positive Precision, Recall, and Accuracy). 

Emulation allows for the use of real nodes in an active state to carry out a DDoS attack. It 

creates real-time legitimate attack traffic to analyse attacks. Although emulation provides a 

realistic environment, it does have several drawbacks, such as a lack of hardware diversity, a 

lengthy setup time, and code errors. 
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3.4. Train Machine Learning Models 

Machine learning is a subset of Artificial Intelligence that allows a computer program to 

learn from massive amounts of historical data. When the software has analysed and processed 

the data, it can create future predictions (Merlin, 2018). The classification models employed 

in the experiment included one of the traditional machine learning algorithms, Random 

Forest (RF), and three neural network models; Feedforward Neural Network (FNN), Deep 

Neural Network (DNN), and Autoencoder. Each method has its hyper-parameter, which will 

be illustrated in section 5.  

 

Feed-Forward Neural Network Model:  This is a type of Neural Network with a single 

hidden layer. It is the simplest type of neural network (Goyal et al, 2017). The input layer 

sends a multi-dimensional request to the single hidden layer and is processed using a 

weighted summation and an activation function. It is trained using labelled data and a 

learning algorithm that optimizes the summation model's weights. The hidden layer is linked 

to the input layer and the output layer link to the hidden layer (Dertat, 2017).  

The aim of using this model is to reproduce the DDoS detection done by Hekmatic et al., 

(2021) using the same dataset (Urban_IoT). The major difference between the FNN and the 

other two neural networks used is that it has only one hidden layer of units (Jurafsky and 

Martin, 2021). The model's inability to deal with the complex dataset is the reason I thought 

of other models with multiple hidden layers that can produce better performance than the 

original work described below. 

 

 
Figure 3:  Simple Feed-Forward Neural Network Architecture (Nielsen, 2019) 

 

Deep Neural Network Model: This model is made up of Feedforward Neural 

Networks (FNN) that do not have any feedback connections. Just like the FNN, the DNN 

consists of the input and output layers, as well as the hidden layers (more than one). Each 

layer contains units with weights. The activation processes of the units from the previous 

layer are carried out by these units (Pande et al., 2021). 

Because the DNN model's structure combines feature extraction and classification 

operations, it benefits from both supervised and unsupervised learning (Pande et al., 2021). 
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The DNN model in Figure 1 has an input layer with the same unit as the selected feature.  For 

the input layer, the ReLU activation function is utilized. The second layer in the DNN model 

is the hidden layers which can be more than one. Each hidden layer also uses the ReLU 

activation. The output layer normally uses the Sigmoid or Softmax activation function.  

DNN is used to train the model because it can extract different abstraction levels at 

different processing layers without requiring human interaction, which is one of its primary 

advantages over traditional machine learning (Ortet Lopes et al., 2021). In addition, the 

multiple hidden layers architecture can automatically uncover complex correlations and 

mappings from input to output data that are not compatible with other none deep neural 

networks. This can lead to an increase in the overall performance. 

 

 
Figure 4:  Deep Neural Network Architecture (Nielsen, 2019) 

 

Autoencoder Neural Network Model: This is a type of neural network that shrinks 

multidimensional input data within a hidden region before reconstructing the data from the 

hidden region (Ozgur and Fatih, 2019). Figure 5 depicts a simple autoencoder with one n-unit 

input layer, three hidden layers of varying units, one reconstructs layer with n units, and an 

activation function that can be any nonlinear function. For example, in this research, the tanh 

activation function was used for model training. The autoencoder is divided into encoder, 

code, and decoder. The encoder is the region that sits between the input layer and the hidden 

layer. The encoding region enables the reduction of multidimensional data to a lower size. 

The decoding region on the other hand is located between the hidden space layer and the 

output layer. And the code region is between the encoder and decoder. By increasing the size 

of the shrunk hidden layers, the decoder attempts to reconstruct the input.  

The reason why an Autoencoder model is used is that it is also a multi-hidden layer 

Neural Network just like DNN which can uncover complex correlations and mappings of 

data and increase the metrics performance. For example, Ozgur and Fatih, (2019) used this 

model to propose DDoS attack detection in their study using the kdd99 dataset because the 

model has an advantage in terms of removing outliers and fixing complexes in a dataset 
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Figure 5:  Autoencoder neural network architecture (Jordan, 2018) 

 

Random Forest Model: This is one of the traditional machine learning algorithms that is 

based on the construction of numerous small trees in a decision tree (Pande et al. 2021). By 

using a bagging method, the results of each small tree are combined with a weighted value to 

provide a final prediction outcome. To reach the final predicted conclusion, this approach 

employs the mean of the individual small trees.  

The project, analysis is on the binary classification of the dataset (Y-value = 1 or 0), 

which is a type of supervised learning in which an algorithm tries to figure out which group 

an input belongs to. According to Mishra et al., (2021), Random Forest is recommended for 

the supervised learning approach since it produces much better results than other machine 

learning algorithms. This is because Random Forest is less prone to overfitting than the 

alternative Decision Tree since it employs an ensemble of Decision Trees, with the values in 

the tree being a random, independent sample. 

 

3.5. Generate Models Results 

 

The results are based on the metrics used to determine which of the four models achieved 

the best performance in the detection of DDoS attacks. They are; True-Positive (TP) and 

True-Negative (TN), False-Positive (FP) and False-Negative (FN), Accuracy, and Recall. The 

metrics derived from these elements are explained in the following sections. 

True-Positive and True-Negative: A True-Positive result is one in which the model 

accurately predicts the positive result. A true negative, on the other hand, is a result in which 

the model predicts the negative result. 

False Positive and False-Negative: A false positive occurs when the model forecasts the 

positive class inaccurately. While a false negative on the other hand is an outcome in which 

the model forecasts the negative class inaccurately. 

Accuracy: The metric measures the model's accuracy, or all right predictions. The model 

can correctly anticipate both positive and negative outcomes. 
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Accuracy = (TN + TP) / (TN + TP + FP + FN)                                                                  (1) 

 

Recall: This metric measures the performance of a positive result prediction. It may 

be similar to Accuracy only that this measures the positive results. 

 

Recall = TP/ (TP + FN)                                                                                                       (2) 

 

Precision: It is the percentage of correctly predicted True Positive value. It calculates 

the size of the relevant instance that is returned after classification has been done. A model 

with a high precision generates more accurate results than one with lower precision. 

 

Precision = TP/(TP + FP)                                                                                                    (3) 

 

4. Design Specification 
 

 
Figure 6: Project Implementation design 
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4.1. Data Pre-Process Design 

 

At this stage, the design carried out are by employing two attack ratio approaches 

during attack emulation. The first approach is by using an attack ratio of 1 while the second 

approach has an attack ratio of 0.8. This is the ratio of the IoT nodes subjected to DDoS 

attacks.  The reason for using high attack ratios is to have sufficient datasets for realistic and 

appropriate model analysis. 

 

4.2. Machine Learning Model Design 

 

Following the data selection and pre-processing for the two attack ratio groups, this paper 

recommended comparing the performance of DDoS detection in the generated trained and 

test datasets using four different machine learning models in two different techniques, as 

shown in figure 6. 

Approach 1:  This approach is to carry out the implementation for the four algorithms using 

20 models for the 20 IoT nodes.  

Approach 2:  This approach is to carry out the implementation for four algorithms using one 

model for the 20 IoT nodes. 

The reason for selecting these models and the design is to have a comprehensive performance 

comparison across the platforms. 

 

5. Implementation 
 

5.1. Tools Used 

The project codes were written in Python version 3.7.9. This is because, python is a 

lightweight, adaptable, and easy-to-use programming language that can handle complicated 

scripting. It also provides code that is both concise and readable more suitable for machine 

learning projects than other programming languages like Java. For the step-by-step 

implementation of the codes, I used Spyder IDE 5.1.5 and Anaconda prompt. They are also 

lightweight software, which means it is faster and uses fewer system resources during code 

execution. 

In addition, the test environment was performed on a Lenovo laptop on Windows 10 Pro 

operating system with 8.00GB of RAM. 

 

5.2. Data Cleansing 

 

This was implemented after the original dataset has been downloaded. The goal of this 

task was to create a benign dataset by selecting 20 IoT nodes at random from the original 

dataset over sometime. As a result, the original dataset was referenced and called in the 

python clean scripts. The next was to specify the beginning and end dates for the dataset that 

was generated. And also, setting the time step. This is the time between the beginning and the 

end date. The total number of IoT nodes to be trained was also set. In this research, 20 IoT 

nodes were used. After the script has been developed, it was executed in the Anaconda 
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Prompt, and benign data containing 20 IoT nodes for one-month activities records were 

generated and saved. The records include the IoT node's geo-locations, time, active status, 

and attack status. The count plot of the active state of the benign data is shown below. The 

number "0" represents inactive nodes, while "1" represents active nodes. 

 
Figure 7: Node’s active status’s count plot 

 

5.3. Attack Emulator 

 

In this section, a DDoS attack was artificially initiated on the generated benign dataset. 

Although the focus was on active status nodes alone because the efficacy of detecting DDoS 

attacks is difficult from a single node's traffic. This attack took into account the ratio of nodes 

under attack, the attack length, and the attack start date. The python script generated attacks 

that contains the following: 

Benign data: This is the dataset used for the attack. 

Attack duration: This is the duration of the attack which is set to have occurred for 1, 2, 4, 

8, and 16 hours every day on each node for one week of one month (80% train and 20% test 

data). 

The attack begins and attacks end date: This is the begin/end date of the attacks. In this 

work, the start and end date of the attack is from 2nd January 2021 to 10th January 2021.  

Attacked ratio nodes: This is the ratio of the nodes in the benign dataset to be attacked. In 

this research design, two attack ratio groups were set independently. They are 0.8 and 1.  

The attack starts times: The start times of the attacks within the attack begin and attack end 

date. The attack started at 2 AM every day and the end time depend on the duration. 

The output generated six attached data files on the train folder and test folders with the 

following records, Node ID, geolocation, time of the attack, node active status, attacked 

status, beginning and end date number of nodes, attacked ratios, and attacked duration.  

 

 

5.4. Generate Train and Test dataset 

After the attacked dataset has been generated, labelled training and test datasets were 

created from it by computing the average activity time of the IoT nodes in the chosen time 
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intervals. To compute the mean activity time of the nodes, in this research I analysed a list of 

12 different time frames, namely 1, 10, 30, in minutes interval and 1, 2, 4, 8, 16, 24, 30, 36, 

42, 48 in hours interval.  The result generated train and test datasets to be used for model 

analysis. 

 

5.5. Train Machine Learning Models 
 

As discussed, the machine learning models implementation is designed into two 
approaches. The first approach was by generating 20 models for the 20 IoT nodes. This was 
achieved by creating a for loop in the train models scripts for each node. The generated 
models’ files were saved in separate folders using the node ID as the folder name. The second 
approach was by using a single model for the 20 IoT nodes. The loop function was removed 
and modified the training script was to generate the only model. 
 

Simple Feed-Forward Neural Network Model: In this implementation stage, it consists 

of a 12-neuron input layer, followed by a single hidden layer with 8-neurons and ReLU 

activation. At the end of the hidden layer, a 20% dropout is employed, as well as batch 

normalization. A single neuron with the Sigmoid activation function is the output layer. To 

discover the attacked time slots in the dataset, the neural network model is trained for 500 

epochs for each node. 
 

Deep Neural Network Model: In this model, the input layer of the DNN 
implementation consists of 30 units with a ReLU activation function, followed by two hidden 
layers of 10 units each with a dropout of 0.4 and the ReLU activation function. The sigmoid 
activation function in the output layer. 
 
  Autoencoder Neural Network: The implementation, encoder is made up of three 
dense layers, which have 64, 32, and 16 units respectively, and the "tanh" activation function 
for each layer. The result of this encoder generates code that the decoder subsequently uses to 
reconstruct its input. The decoder on the other hand comprises three dense layers with the 
same units and tanh activation function. 
The output function processes the result of the input function using a single layer sigmoid 
activation. 
 

Random Forest: The random forest classifier uses ‘n_samples=1000’, ‘n_features=20’, 
'random state=3' and n split=10, n repeats=3, and n jobs =-1 to measure the homogeneity 
supplied by each variable node and leaf. The outcome of the target variable is (0, 1), with the 
first index indicating the probability of the data being attacked and not attacked. 

The results generated in each model are the initial and 20 nodes’ model packages’ or, 
initial and one model packages. It depends on the approach used. 
 
5.6. Generate Result 

 
The training and testing results have been created by merging data from time windows 

under DDoS attacks and normal conditions. The performance of the train and test were 
generated after the result generation script was executed for each 20 IoT nodes (accuracy, 
recall, and precision). 

6. Evaluation 
. 
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Following the generation of the results, it provides metrics such as Accuracy, Recall, and 
Precision for each of the IoT nodes. The average performance metrics were taken and 
compared among the four machine learning algorithms which were used to determine the best 
performing algorithm. 

 
6.1. Experiment 1: Models Comparison for Attack Ratio 1 

 
Table 2 is the mean results when using 20 training models for 20 IoT nodes while table 3 

is the mean results when using one model for 20 IoT nodes for four machine learning 
algorithms when the attack ratio is 1.   
 

Table 2:  Comparison for 20 models on 20 IoT nodes 

 

 Models Mean Accuracy Mean Recall Mean Precision 

Train dataset FNN 0.943 0.936 0.794 

DNN 0.959 0.942 0.842 

Autoencoder 0.957 0.936 0.839 

RF 0.942 0.936 0.842 

     

Test dataset FNN 0.870 0.835 0.680 

DNN 0.886 0.824 0.694 

Autoencoder 0.883 0.791 0.687 

RF 0.870 0.835 0.694 

 

Table 3:  Comparison for one model on 20 IoT nodes 

 

 Models Mean Accuracy Mean Recall Mean Precision 

Train dataset FNN 0.834 0.962 0.661 

DNN 0.874 0.894 0.645 

Autoencoder 0.846 0.955 0.666 

RF 0.846 0.955 0.664 

     

Test dataset FNN 0.828 0.946 0.699 

DNN 0.452 0.875 0.640 

Autoencoder 0.846 0.955 0.664 

RF 0.823 0.839 0.643 

 

6.2. Experiment 2: Models Comparison for Attack Ratios 0.8 
 

This is also the mean performance results across the four machine learning algorithms for 
the second approach used. That is for the attack ratio of 0.8. Table 4 illustrates the mean 
results when using 20 training models for 20 IoT nodes while table 5 illustrates the mean 
results when using one model for 20 IoT nodes.   
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Table 4: Comparison for 20 models on 20 IoT nodes 

 
 Models Mean Accuracy Mean Recall Mean Precision 

Train dataset FNN 0.933 0.942 0.726 

DNN 0.956 0.945 0.789 

Autoencoder 0.958 0.937 0.802 

RF 0.958 0.938 0.803 

     

Test dataset FNN 0.857 0.817 0.582 

DNN 0.883 0.801 0.610 

Autoencoder 0.885 0.762 0.616 

RF 0.885 0.762 0.616 

 

 

Table 5:  Comparison for one model on 20 IoT nodes 

 

 Models Mean Accuracy Mean Recall Mean Precision 

Train dataset FNN 0.832 0.593 0.622 

DNN 0.854 0.920 0.669 

Autoencoder 0.864 0.905 0.591 

RF 0.854 0.920 0.569 

     

Test dataset FNN 0.827 0.624 0.605 

DNN 0.832 0.917 0.554 

Autoencoder 0.345 0.894 0.574 

RF 0.832 0.917 0.554 

 

 

 
Figure 8: DNN training Dataset Attack Prediction vs Time for 1 attack ratio on 20 models 

 



21 
 

 

 
Figure 9: DNN training Dataset Attack Prediction vs Time for 0.8 attack ratio on 20 models 

 

 
Figure 10: DNN training Dataset Attack Prediction vs Time for 1 attack ratio on one model 

 

Figures 8 and 9 show the mean total nodes vs. time for true attack (T), attack predictions true 

positive (TP), and false positives (FP) when applying an average of 20 models on 20 nodes 

for both training datasets. And figure 10 shows the metrics when using one model on 20 

nodes.  The attack duration was set to 16 hours in these numbers. The attacked nodes are 

detected extremely effectively in both training datasets, but there are a few FP in figure 8, 

that is attack ratio of 1. 
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6.3. Discussion 
 
Tables 2 and 3 illustrate the outcomes of the first approach for the four machine learning 

techniques used on the attack ratio of 1. And table 4 and 5 are on the attack ratio of 0.8. The 

results are separated into two. That is when 20 models are used to train 20 IoT nodes, and 

when one model is used to train 20 nodes. From the general performance, Deep Neural 

Network (DNN) on ratio 1 produced the accuracy of 95.9% and 88.6% for train and test 

datasets, respectively with a fewer False-Positive value within the attacked windows. These 

results also exceeded the results of prior work on the same dataset that used a Feedforward 

Neural Network to identify DDoS, with accuracy and recall of 94% and 88%, respectively 

(Hekmatic et al. 2021). Random Forest (RF) on the other hand, produced the lowest 

percentage of 94.2% and 87.0%. 

Overall, the algorithms show high performance (accuracy, recall, and precision) when the 

approach of 20 models on 20 nodes than when the approach for one model on 20 nodes 

across the four machine learning algorithms used, as demonstrated in the tables and figures 

above. The training dataset's accuracy performance for 20 models on the 20 nodes approach, 

for example, ranges from 94.2% to 94.9%, whereas accuracy performance for one model on 

20 nodes runs from 83.4% to 87.4%. In plot figure 10, the explanation for the poor 

performance of the one node 20 nodes architecture is as a result of low True-Positive (TP) 

value during the attack windows when compared to 20 models on 20 nodes in figures 8 and 9. 

These results are based on data from 20 IoT nodes out of a total of 4060 IoT nodes, and 

only for two attack ratios. As a result, future studies are still required that could employ more 

IoT nodes and different attack ratios.  
 
 

7. Conclusion and Future Work 
 

The research addresses the improvement in the performance of machine learning models 

at detecting DDoS attacks on Internet of Things Devices using the Urban IoT dataset. To 

show the practical implementation of this project, four machine learning models were 

analysed: Feedforward Neural Network (FNN), Deep Neural Network (DNN), Autoencoder, 

and Random Forest (RF). The research was carried out to compare the performance of these 

four algorithms. This was conducted through the use of several design concepts. Firstly, a 

single model was used to train and test 20 nodes, followed by 20 models used to train and test 

20 nodes. Secondly, by using different attack ratios (0.8 and 1). The project implementation 

processes entailed data cleaning, attack emulation, train and test data generation, models 

training, matrices results generation, and result comparisons. 

It has been shown from the result that DNN can classify DDoS data with better accuracy 

than the other three algorithms. Therefore, this has provided an answer to the research 

question; that is Deep Neural Network (DNN) machine learning performs well in detecting 

DDoS attacks on the Internet of Things Devices using the Urban IoT dataset.  However, 

when compared to the other algorithms, the DNN took a long time to train and test. As a 

result, there is an opportunity for improvement, and fine-tuning the model that may enable it 

to train faster. 

In the future study, I intend to use a deep learning model such as Convolutional Neural 

Networks (CNN) with larger IoT nodes to do further research on the same dataset. However, 

I will build up the implementation in a more resource-intensive environment. 
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