

Secured proxy re-encryption with post-

quantum cryptography for android and its

performance bottlenecks

MSc Research Project

MSc Cyber Security

Waleed Mustafa

Student ID: x20251785

School of Computing

National College of Ireland

Supervisor: Michael Pantridge

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Waleed Mustafa…………………………………………………………………………………………

Student ID:

x20251785…………………………………………………………………………………………..……

Programme:

MSc Cyber Security……………………………………

Year:

2021/2022…………..

Module:

MSc Research Project / Internship………………………………………………….………

Supervisor:

Michael Pantridge…………………………………………………………………………….………

Submission

Due Date:

15/08/2022……………………………………………………………………………………….………

Project Title:

Secured proxy re-encryption with post quantum cryptography for

android and its performance bottlenecks……………………………………….………

Word Count:

6250……………………………… Page Count 18……………………………………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

waleed……………………………………………………………………………………………………

Date:

04/08/2022……………………………………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,

both for your own reference and in case a project is lost or mislaid. It is

not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Secured proxy re-encryption with post quantum

cryptography for android and its performance

bottlenecks

Waleed Mustafa

x20251785

MSc cyber security

National College of Ireland

Abstract

The purpose of this report is to research the secure proxy re-encryption method by utilizing post-

quantum cryptography. The disadvantages of this method are also evaluated by making an android

application and testing this method on different models. The major bottleneck of this method is large

encryption keys which take more time to encrypt data. There are three different parts of this

methodology owner, user, and SRS (Setup and Re-encryption Server). Public cloud storage is also used

in the implementation but that is only used to store data. The owner uploads their encrypted data into

the cloud storage and controls the access by ACL (Access Control List). Users can download that data

and SRS is responsible for generating encryption key pairs. In this whole process, the encryption key is

never shared with CSP (Cloud Service Provider), and SRS has no access to owners’ data. The

encryption and decryption processes are handled by the end-user applications. Our method of sharing

data is also secured against any type of post-quantum attacks.

2

Table of Contents
1 Introduction .. 3

2 Literature review .. 4

2.1 Introduction .. 4

2.2 Key Definitions .. 4

2.2.1 Proxy re-encryption .. 4

2.2.2 Post Quantum Cryptography (PQC) ... 4

2.3 Related Work .. 5

2.3.1 Critical analysis of the papers related to proxy re-encryption... 5

2.3.2 Critical analysis of papers related to post-quantum cryptography .. 6

2.4 Gap Analysis .. 7

2.5 Conclusion ... 8

3 Model Explanation .. 8

3.1 Preliminaries ... 8

3.2 Model Detail .. 9

3.2.1 Android Devices ... 9

3.2.2 Cloud Storage ... 9

3.2.3 Proxy re-encryption .. 9

3.2.4 Setup and re-encryption server (SRS) ... 10

3.3 Technical Analysis ... 11

3.3.1 Java ... 11

3.3.2 Firebase Cloud Storage ... 11

3.3.3 NTRU ... 11

4 Evaluation ... 12

4.1 Experimental Setup ... 12

4.2 Results ... 13

4.2.1 Key Generation ... 13

4.2.2 Encryption and Decryption ... 14

4.2.3 Turnaround Time .. 15

5 Conclusions and Future Work ... 16

6 References .. 16

3

1 Introduction
In the space of IT, one of the most developing fields is cloud computing. In this field data is

stored in the pools of storage known as “the cloud”. In this scenario, CSP provides the hardware

and storage over the Internet. Users have no access to the real hardware. The security of this

hardware is also managed by the CSP. For the hosting of clients’ applications and storing data

organizations lease or purchase the storage from the CSP. The main issue arises when CSP

stores data in the storage with symmetric key cryptography. Due to this process, CSP has access

to our plain data. The security issue is that any of the internal employees have access to plain

data.

A new technique was introduced to remove this security issue known as proxy re-encryption.

In this technique, the encrypted data is uploaded to the cloud platform, but the decryption key

will not be shared with CSP. Other methods are used to send the decryption key to 2nd user.

The user requests the encrypted data from the CSP while at the same time the decryption key

is also shared by the owner. There are many ways to share the private key with users sometimes

with the help of email. The most reliable and efficient way to share the private is using a

dedicated server that manages all key distribution between owner and user. One of the main

benefits of using the dedicated server is the owner doesn’t have to remain online for 24 hours

to share the key.

Our technique is the most secure way of sharing data on the public cloud known as secured

proxy re-encryption. This technique is powered by NTRU which is secured against quantum

cryptography. The application is built for the android platform. Android devices are turning

into a significant piece of our life. Seventy-five percent of cell phone market shares are covered

by android. According to different surveys, there are more than 2.8 billion android clients. Most

of the smart home appliances are also using android based operating systems.

All methods of conventional cryptography are now susceptible to quantum attacks. The most

recent generation of computers that do so is known as quantum computers which substitute

Qbits for conventional bits. Qbits are more powerful than regular bits because they can exist in

a superposition state. Qbits may be both zero and one simultaneously. The true threat to all

widely used security measures is posed by the quantum computer, which offers enormous

processing capabilities.

We are going to use the proxy re-encryption approach with quantum-proof cryptography to

prevent the threat posed by quantum computers. In the field of computers, each approach has

benefits and disadvantages of its own. Because of the huge key sizes required by the quantum-

proof encryption, this will defend us from quantum attacks. These huge keys need a highly

expensive processing power that also has certain performance drawbacks. The setup and re-

encryption server, public cloud storage, and end-user devices are the main three players in our

approach. The data will be encrypted before uploading into the cloud storage. The keys will be

managed by the SRS server.

4

The following are the main contributions of our work:

• Quantum secured proxy re-encryption for android users in which user can share their

files in the cloud.

• NTRU encryption scheme is used in the implementation of this methodology which is

secured against quantum attacks.

• A dedicated server is used for maintaining the encryption keys and ACL (Access

Control List).

• Benchmarking of this methodology is done to access the bottlenecks of the proposed

system.

2 Literature review

2.1 Introduction

The primary goal of this review of the literature is to examine earlier research on post-quantum

cryptography, proxy re-encryption, and significant advancements in this area. The

development of quantum computing has made all current, widely used classical encryptions

vulnerable. Although several academics have contributed their discoveries in this field, their

research studies all have significant flaws. Some people employ a vulnerable technique for

using proxy re-encryption. In their research, the other researchers employed antiquated

cryptographic methods. Therefore, the most significant studies on this topic as well as its

shortcomings have been discussed in this literature review.

2.2 Key Definitions

2.2.1 Proxy re-encryption

The data owner uses this technology to encrypt his data and put it in public cloud storage. So,

the cloud is where the encrypted data is kept. The decoding key is not in the possession of the

CPP. No one possesses the key to decode the data in the event of an accident, theft, or leak.

When a legitimate user requests data from cloud storage, the user receives the plain text after

the data has been decrypted. There are several methods for doing this; in some, the owner will

send the key to the user through email upon request, while in others, a dedicated server is used.

The administration and distribution of keys that this server must do. The encrypted data is

obtained from the cloud when a legitimate user wants it, and the proxy key needed to decode

it is obtained from another proxy server. (Ali et al., 2014; Ateniese et al., 2006; Chen et al.,

2011).

2.2.2 Post Quantum Cryptography (PQC)

The latest generation of computers, known as quantum computers, uses quantum computation

to address issues. To function, they have interference, entanglement, and other quantum state

features (Ladd et al., 2010). They provided a user with a significant amount of computing

power that could somehow break all of the established cryptographic methods now in use.

Assume an attacker possesses a powerful quantum computer that can defeat all current types

5

of cryptography. We require a quantum-proof cryptography method for this situation

(Bernstein and Lange, 2017). The National Institute of Standards and Technology (NIST) is

holding a competition to establish standards for quantum-proof cryptography. The majority of

the remaining competitors use lattice-based encryption. Fully homomorphic lattice-based

encryption has been proven to be quantum-proof up until this point.

2.3 Related Work

This section is a presentation of earlier work that is relevant to our study. In this part, the main

flaws and holes in each relevant study are explored.

The data is simply uploaded to the public by the researchers (Kandukuri and Paturi, 2009;

Pecarina et al., 2012) using a regular device. They used a conventional, public key-based

encryption method to upload their important data to the somewhat trustworthy cloud. Their

medical histories are among the data. Using the key provided by the CPP, the user encrypts the

data. The data is then decrypted by CPP using their private key. Then, re-encrypt the data using

the symmetric encryption method, and put it in the storage with the location index. This is the

problem—this method does not guarantee data confidentiality. The major security concern is

that cloud service provider employees may quickly decode data. Therefore, the proxy re-

encryption method we have suggested is far more secure than this method since it guarantees

the privacy of every user's data.

2.3.1 Critical analysis of the papers related to proxy re-encryption

(Li et al.,2013) presented a novel method called attribute-based encryption to address this

problem. With this method, the author uses an ephemeral key pair (SKE) to dynamically

regulate who may access the information stored in the cloud. The automatic revocation of the

user is the most crucial component of this method. To prevent key management, they only have

a limited relationship with the users. There is a flaw in this plan as well. To allow users to

access data, the data owner must always be online. If the owner has not been online, the user

cannot access the data using this method. Our method does not have any partial relationship

problems; therefore, the owner does not need to be online continuously for the user to have

access to the data.

To increase the security of data in the cloud, other researchers (Jafari et al., 2011) suggested a

Digital Right Management (DRM) strategy. They utilized Content Key Encryption (CKE),

which leverages the license to provide the user access to the data. The most secure method,

proxy re-encryption, was then presented by (Liang et al., 2009). The safest method for sharing

data in the cloud as of right now is this one, however, it does make use of ciphertext

characteristics and ciphertext size. With repeated usage, the ciphertext grows in length. It was

exceedingly challenging to handle the data as it grew to be too huge. The method used by

(Xhafa et al., 2015) also makes use of the ciphertext policy ABE (CP-ABE), which has the

same issue with ciphertext length when handling excessive data. When processing a lot of data,

this approach has a very serious problem. In our suggested method, this is avoided, hence the

owner should not be concerned about the length of the ciphertext.

6

Authors (Ali et al., 2021) developed the Setup and Re-encryption Server (SRS) as a novel

proxy re-encryption technique to address this problem. They utilized a separate server that was

just responsible for managing keys. Data is exported to any public cloud after being initially

encrypted by the user using their key. Transmit parameters to the Setup and Re-encryption

Server concurrently. when a legitimate user requests information from the cloud. The third

proxy server provides the user with the decryption key. They are encrypting the data using El-

Gamal Encryption, which is not a quantum-proof cryptographic method and is only suggested

for computers, not for android devices. Additionally, this technique is limited to Personal

Health Records exclusively (PHR).

2.3.2 Critical analysis of papers related to post-quantum cryptography

El-Gamal encryption's semi-homomorphic lattice-based cryptography security can be

compromised if you can compute discrete logarithms accurately. Finding the value of x in the

equation αx = β (mod p) allows us to transform a public key into a private one with ease.

Utilizing Shor's algorithm makes this simple to do (Lanyon et al., 2007; Tsiounis and Yung,

1998). However, completely homomorphic Lattice-based cryptography methods such as Ring-

LWE key exchange, FrodoKEM, NTRU, and LWE key exchange are quantum-proof

(Bernstein and Lange, 2017; Septien-Hernandez et al., 2022). In our suggested method, proxy

re-encryption as presented by (Ali et al., 2021) is made more secure by using quantum-proof

encryption. To protect against quantum attacks, the new proxy re-encryption strategy proposes

using a high key size, However, this will also have some bottlenecks on low power android

devices.

Researchers (Ali et al., 2014) also suggested an incremental proxy re-encryption strategy,

although they do it using a methodology that is more suitable for editing existing files than for

uploading new ones securely. As a result, the same authors (Ali et al., 2021) developed a new

proxy re-encryption scheme, however, it still has the same drawbacks of security difficulties

brought on by quantum computers.

It has already been attempted by certain researchers to assess the efficiency of quantum-proof

encryption. Different quantum cryptography algorithms are used by the authors (Khalid et al.,

2019), who test their effectiveness on embedded computers. On a cheap FPGA, they used

FrodoKEM-640 and FrodoKEM-976. We may conclude from the data that this is the least

preferred option for embedded devices. They also addressed the lattice-based cryptography's

performance problem in the section on challenges. These systems are battling post-quantum

cryptography.

Researchers (Tamilmani et al., 2018) investigated post-quantum cryptography performance

concerns on android mobile devices. They make use of a computer with a three GB primary

memory and an octa-core CPU. Today's smartphones are powerful enough to manage post-

quantum cryptography in some way. Additionally, the majority of the techniques they have

utilized have previously been invalidated by the NIST because of security concerns (Computer

Security Division, 2017). However, they only track the effectiveness of post-quantum

7

cryptography when experimenting on a power-full device. On low-end devices like android

devices, we'll track how well the safe proxy re-encryption mechanism performs.

Some researchers (Cheng et al., 2020) present a novel cryptographic approach for power-

efficient devices to address these issues based on NTRU Prime cryptography. Great results

were obtained when they tried this with an 8-bit AVR microcontroller. This was the response

to the query we raised above, however, in the NIST competition's first round, NTRU Prime

was disqualified because of security issues. Only four finalists for the public key encryption

category survive in the final round of the NIST competition: Kyber, NTRU, SABER, and

Classic Mceliece (Computer Security Division, 2020; O. Saarinen, 2020).

2.4 Gap Analysis

In gap analysis, we attempt to list all the drawbacks and benefits of earlier research in

comparison to the suggested technique in this section.

Table 2.1 Gap Analysis

Related Work Advantages Disadvantages

• (Li et al., 2013) • Quicker because of

smaller keys

• To allow access, the

owner must be

reachable online for 24

hours.

• Not secure

• (Liang et al., 2009)

• (Xhafa et al., 2015)

• Quicker because of

smaller keys

• The issue to handle

large files due to large

ciphertext length

• Not secure

• (Ali et al., 2021) • Most trustworthy

than the previously

suggested plans

because of SRS

• Only works with PHR

• Not available for low-

power devices

• Not secure

• Our approach • It is more secure than

any other suggested

methods due to post-

quantum

cryptography

• Not restricted to

PHRs

• Owners don’t have

to be online for 24

hours because of

SRS

• Have performance

issues on large data

due to a huge number

of files created after

the encryption process

• The key size is very

large

• Does not have a

support of continuous

data

8

2.5 Conclusion

Some doubts about the significance of using the proxy re-encryption process result from the

research above. What if we just utilize a public encryption key that the CPP provides? There is

a well-known incident when a US DVA employee obtained the personal health information of

26.5 million people without their consent. Since this occurrence, HIPAA has made it a

requirement that no one interferes with the privacy of computerized personal health data (Ali

et al., 2021). We already know that post-quantum encryption is a challenge for the Internet of

Things. We go one step further and test this on a little bit more powerful device than IoT. We

have implemented our suggested secure proxy re-encryption on android devices and measured

their performance.

3 Model Explanation
Figure 3.1 is the model diagram of our implemented methodology.

Figure 3.1 Model Diagram

Major components of this technique

• Android device

• Cloud storage

• Proxy re-encryption

• Setup and re-encryption server (SRS)

3.1 Preliminaries

The proxy re-encryption that is being suggested is the most secure one ever implemented. We

used NTRU which is post-quantum cryptography to increase the security of proxy re-

9

encryption, which was proposed in (Ali et al., 2021). Everything has benefits and drawbacks.

It has performance constraints on low-end devices due to very high key sizes, making it

potentially inappropriate for low-end devices, it is developed for android smartphones.

However, the focus of this research is not on network security. The sockets used for

communication between the SRS and android devices are not encrypted.

3.2 Model Detail

3.2.1 Android Devices

The primary device in the implemented proxy re-encryption must perform the majority of the

work. An individual must first register for the app. After that, he may upload any file. The file

will be divided into parts of 65 bytes. Then, using the NTRU cryptography encryption key

provided by the SRS, each of these parts is encrypted independently. Then every part is saved

in a different file by using base 64 encoding and uploaded to the firebase public cloud. The

user must enter the username to whom they want to see the file before uploading it. Following

then, together with information about which user this file is permitted to decrypt, the

parameters for the decryption key will be sent to the server for re-encryption.

On the other hand, the user will ask the SRS for the decryption key and the cloud for the data

at the same time. The only data that is uploaded for that user will be decrypted. The data that

the owner uploads for one user will be accessible to only that user. The SRS will not disclose

the data decryption key to the other users. Android Studio is used to write the code of the

android application.

3.2.2 Cloud Storage

We can utilize any publicly accessible cloud storage for our project. Other researchers have

tested their applications on Google Cloud and Microsoft Azure and employ various types of

public cloud storage (Xhafa et al., 2015). On AWS S3, the authors of (Ali et al., 2021) tested

their application. Here, it is considered that the public cloud is an unreliable source, hence only

encrypted data will be uploaded to its storage. The encryption key is not made available to

CPP. In most cases, users encrypt data using the CPP's public key, and the CPP subsequently

decodes it using their private key. The data is once again encrypted using symmetric encryption

before being stored (Yandong and Yongsheng, 2012), yet the CPP has complete access to our

raw data. The encryption and decryption are carried out on the end devices under the suggested

technique, meaning that CPP does not have access to our plain data. As we have implemented

our technique for the android device firebase has the best support for the android platform. So,

we are using firebase cloud storage.

3.2.3 Proxy re-encryption

This method involves a third semi-trusted party across the entire model to guarantee that data

security is never affected. In this method, plain data is available to both end parties. The semi-

trusted server and CPP have no access to any plain data. Despite having encrypted data, the

CPP lacks the decryption key. Although the decryption key is on the re-encryption server, the

10

data is not accessible. As a result, we also refer to it as end-to-end encryption with cloud storage

capability.

3.2.4 Setup and re-encryption server (SRS)

The server that will handle all keys used to encrypt and decrypt data is semi-confidential. Each

time a user uploads data to a cloud storage system the SRS receives the parameters for the

decryption key. The owner also provides the username for which data is uploaded. The owner

never shares data with the SRS since it is a semi-trusted server. The SRS will get just create an

encryption key pair whenever new user signup. The SRS will offer the key whenever the user

uploads or wants any data from the cloud. In this instance, our simple data is not accessible to

SRS or Cloud. On the end devices, encryption and decryption take place. The SRS oversees all

keys. This server is also in charge of access control because of the ACL. Because the cloud is

not a reliable party in our circumstance, this server is not set up on any public cloud platforms.

Any entity, such as a group of people may manage the SRS. The communication between the

SRS and end application is done by sockets however sockets are not encrypted because network

security is not in the scope of this research. NetBeans IDE is used to write the code of SRS.

Figure 3.2 Shows all the internal activity of our implemented methodology.

Figure 3.2 Activity Diagram

The user first registers for the application. A new encryption key pair is generated and stored

in the database every time a new user registers with the application. The user program splits

11

the data into many 65 bytes portions before encrypting each part with the user's public keys,

which the SRS has supplied. After each component has been encrypted, it is stored into

numerous base 64-encoded files and sent to the cloud storage. The program sends the

parameters indicating which data is uploaded for which user in the last stage. The Android

application will carry out the entire process. The second entity in this diagram is SRS. SRS is

the second element in this diagram. For every new user, SRS produces the encryption key pairs.

The parameters from the application will be sent to SRS. After that, it will wait for the

decryption key request. SRS will verify the ACL to make sure that this user has access to

decrypt data when it gets a request for the decryption key. It will transmit the decryption key

to the user if they are listed in the ACL. The server will ignore the request if the user is not

listed in the ACL.

The application on the other end of this activity diagram initially makes a cloud-based data

request. The public cloud storage will be used to download the encrypted data. Now that it

requires a decryption key, which the SRS has, this program will ask the SRS for the decryption

key. The program will decrypt all the data files, combine them, and then provide the user with

meaningful information.

3.3 Technical Analysis

The NTRU encryption scheme will be used as the quantum-proof cryptography in the

implementation of this application, which will be implemented in the Java programming

language. The public cloud storage will be a firebase cloud storage.

3.3.1 Java

The high-level programming language Java gives you access to an object-oriented

methodology. Abstraction, polymorphism, inheritance, and encapsulation are the four

foundations of OOP. The Java programming language is a core tenet of the Android JDK. Java

is the language used to write any android application.

3.3.2 Firebase Cloud Storage

Firebase Cloud Storage service is used to store and download files created directly by clients.

There's no requirement for server-side code. The files are kept in Google Cloud Storage

buckets, providing access from both Google Cloud and Firebase.

3.3.3 NTRU

We have used NTRU encryption in this project. NTRU is based on the lattice-based

public/private key cryptography method created by Joseph H. Silverman, Jill Pipher, and

Jeffrey Hoffstein. NTRU completes the time-consuming private key task far more quickly than

RSA does. The time required to accomplish actions involving private keys in RSA also rises

as the square of key size does, whereas NTRU activity rises quadratically. The three main

parameters that make up the mathematical notation for NTRU (N, p, q). The polynomial that

has been reduced includes NTRU operations (Hoffstein et al., 1998; Lange, 2015).

12

Key pair

f ∈ Lf random polynomial.

To produce, you must compute fp ≡ f-1 and fq ≡ f-1 (mod of q).

A Polynomial g ∈ Lg at random.

To produce, you must compute h ≡ g* fq (mod of q).

The parameters for the public key are (N, h) and p, q, Lf, Lg, Lr, and Lm.

The private key will continue to exist (f, fp).

Encryption

The message will be m ∈ Lm.

A random polynomial r ∈ Lr.

It will be encrypted with the public key according to the formula e ≡ p * r * h + m (mod of q).

Decryption

The user will calculate a ≡ f * e. (mod of q).

The user must convert a to a polynomial in the range [-q/2, q/2 [.

Determine m ≡ fp * a. (mod of p).

Most lattice-based encryption methods are resistant to quantum attacks, as we know from

related research. In the NIST competition's last round, there aren't many remaining. The most

promising and effective substitute for today's most widely used encryption methods is NTRU,

which is quantum-proof (Computer Security Division, 2017; Guillen et al., 2017; Septien-

Hernandez et al., 2022).

4 Evaluation
We examined the secured proxy re-encryption technique’s performance from a variety of

perspectives, including key generation times, encryption and decryption times, and turnaround

times. The next sections give the specifics of the experimental design and findings.

4.1 Experimental Setup

Android client application development was used to assess the effectiveness of the secure proxy

re-encryption approach. Cloud storage, SRS, and users are some of the entities included in the

proposed secure proxy re-encryption. We stored data in the cloud using firebase cloud storage.

The SRS is implemented as a third-party server that generates the public/private key pairs and

the re-encryption keys. NTRU encryption is used with APR2011_439_FAST parameters which

offer 128 bits of security level. SRS is implemented on the computer having Intel Core i7-

10800H @ 2.60GHz (12 CPUs) with 32 GB ddr4 3200MHz memory.

13

On three separate Android emulators with Qualcomm SM7250 Snapdragon 765 processors,

Android applications are installed. The first emulator has a 2GB memory and 2 cores limit, the

second has a 4GB memory and 4 cores limit, and the third has an 8GB memory and 6 cores

limit. The application is developed on 26_2 API.

4.2 Results

Secure proxy re-encryption performance was assessed in terms of creation, encryption,

decryption, and turnaround time. Below is a discussion of the findings for each of the

evaluation criteria mentioned above.

4.2.1 Key Generation

The SRS is responsible for creating the private/public key pairs for the authorized users, as was

already mentioned. However, the duration of the key generation process for systems with a

high user density may have an impact on the system's overall performance. As a result, we

evaluated the secure proxy re-encryption efficiency in terms of how long the key generation

phase took for various user counts.

Fig 5.1 shows how long it takes to generate keys for 10, 100, 500, 1000, 5000, and 10,000

users.

Fig 4.1 Time consumption for users

Figure 5.1 shows that it takes 0.51 seconds to produce keys for 100 users, whereas it takes

1.672 seconds to generate keys for 1000 users. Similarly, the time required to generate keys for

10,000 users is 12.881 seconds, which is also acceptable given a large number of users. Since

these members-only sometimes join, the key creation time for them is likewise quite short,

therefore creating keys for a single user is an efficient procedure.

0.199 0.51
1.027

1.672

6.686

12.881

0

2

4

6

8

10

12

14

10 100 500 1000 5000 10000

Number of User

14

4.2.2 Encryption and Decryption

To evaluate the effectiveness of the Android application, we tested it on three distinct devices.

We have used a variety of metrics to evaluate system performance. Time spent during

encryption, decryption, and turnaround. The time needed to finish the entire procedure is

included in the turnaround time. Time is required to read a file, split it into separate 65-byte

portions, encrypt it, and save it into the file using base 64 encoding. Similarly reading encrypted

data from files using base64 decoding. After decrypting the data, all 65 bytes are combined to

form a single meaningful piece of information. Remember that the time it takes to upload and

download encrypted data is not included in the turnaround time because it heavily depends on

your network connection.

T1 = reading file + encryption + base64 encoding + saving into files

T2 = reading from files + base 64 decoding + Decryption + combing data

The files which are used to measure the performance of the system are 50KB, 100KB, 200KB,

500KB, 1024KB, 1500KB, and 2048KB. Time consumption on the different specifications is

given below. As we can see from Table 5.1, the time required for encryption of a 50KB file on

a device with 2GB of RAM and 2 cores is 0.39 seconds, which is practically the same across

all devices. A device with 4GB of RAM and 4 cores takes 0.41 seconds, and a device with 8GB

of RAM and 6 cores takes 0.4 seconds. The 2048KB file continues to follow a similar trend.

The smartphone with 2GB of RAM and 2 cores finished the test in roughly 8.27 seconds,

followed by the device with 4GB of RAM and 4 cores in 8.733 seconds, and the device with

the highest specifications, 8GB of RAM and 6 cores, in 9.112 seconds. All devices follow the

same pattern during the decryption procedure.

Table 4.1 Encryption and decryption time among different devices.

File

Size

The device with 2GB

ram and 2 cores

The device with 4GB

ram and 4 cores

The device with 8GB

ram and 6 cores

Encryption Decryption Encryption Decryption Encryption Decryption

50KB 0.39 0.41 0.41 0.37 0.405 0.392

100KB 0.462 0.402 0.547 0.492 0.467 0.495

200KB 1.036 0.846 0.995 0.843 1.011 0.892

500KB 2.309 2.055 2.494 2.07 2.323 2.014

1024KB 4.523 4.108 4.428 3.92 4.765 3.708

1500KB 6.187 5.986 6.524 5.780 6.404 5.973

2048KB 8.27 8.073 8.733 7.778 9.112 7.743

15

4.2.3 Turnaround Time

Table 5.1 only displays the encryption and decryption times for various file sizes across various

devices, while table 5.2 show the values for turnaround time are much different and quite

unsettling.

Table 4.2 Turnaround time among different devices.

File

Size

The device with 2GB

ram and 2 cores

The device with 4GB

ram and 4 cores

The device with 8GB

ram and 6 cores

T1 T2 T1 T2 T1 T2

50KB 1.201 0.997 1.244 1.076 1.446 1.053

100KB 1.846 2.058 2.228 1.942 2.203 2.069

200KB 4.056 5.03 3.7 5.067 4.211 5.219

500KB 11.216 18.142 10.628 20.021 11.619 18.504

1024KB 26.829 51.171 28.690 50.805 29.684 51.860

1500KB 41.289 90.067 42.745 90.023 41.762 90.253

2048KB 57.140 154.365 64.763 150.684 62.305 149.367

Here we can see that T2 is taking more time than T1. T2 involves the process of decryption

and T1 involves the process of encryption but the results are the opposite. The T1 on the device

with 8GB ram is 62.305 seconds for the 2048KB file and the T2 is 149.367 seconds which is

very poor performance. The main reason behind this poor performance is handling and reading

the huge number of files while decrypting. As we know the encryption process encrypts the

data into parts of 65 bytes and saves them into a different file. While encrypting the 2048KB

file it will create 32,264 new encrypted files and this will create the performance bottleneck for

the decryption process. The device with 2GB ram and 2 cores becomes unresponsive for a few

seconds in both encrypting and decrypting process when the file size increase from 1024KB.

Here, Table 5.2 clears that T2 is taking longer than T1. T1 involves encryption and T2 involves

decryption, but the outcomes are dramatically opposed. T1 for a 2048KB file on a device with

8GB of RAM is 62.305 seconds, and T2 is 149.367 seconds, which is a very poor performance.

The handling and reading of the enormous number of files during decrypting is the primary

cause of this poor performance. As far as we are aware, the encryption mechanism divides the

data into 65-byte segments and saves them to separate files. 32,264 additional encrypted files

will be created while encrypting a 2048 KB file, which may slow down the decryption process'

speed. When encrypting and decrypting files larger than 1024 KB, a device with 2GB of RAM

and 2 CPUs becomes unresponsive for a short period.

16

5 Conclusions and Future Work
The purpose of this study is to identify potential weaknesses in the previously suggested proxy

re-encryption approaches. There are a lot of conclusions from prior relevant work that can be

found with the use of a literature review. The earlier suggested techniques are vulnerable to

quantum attacks. Some of the schemes additionally demand that the owner stay online for the

entire 24 hours to provide the user access. The recently adopted approach promises to use SRS

and quantum-proof proxy re-encryption techniques so that the owner does not need to remain

online constantly. This strategy is put into practice using the Android platform. Due to the

creation of many encrypted files and high key sizes of NTRU cryptography. On the decryption

end, this approach suffers from a severe bottleneck. In the future, we will try to increase the

performance of this methodology by improving file management.

6 References
Ali, M., Abbas, A., Khan, M. usman S.K., Khan, S.U., 2021. SeSPHR: A Methodology for

Secure Sharing of Personal Health Records in the Cloud. IEEE Trans. 9, 347–359.

Ali, M., Madani, S.A., Kiah, M.L.M., Khan, A.N., Shamshirband, S., 2014. Incremental proxy

re-encryption scheme for mobile cloud computing environment. Springer 68, 624–651.

Ateniese, G., FU, kevin, Matthew, G., Susan, H., 2006. Improved proxy re-encryption schemes

with applications to secure distributed storage. ACM 9, 1–30.

Bernstein, D.J., Lange, T., 2017. Post-quantum cryptography. Nature 549, 188–194.

https://doi.org/10.1038/nature23461

Chen, Y., Tygar, J.D., Tzeng, W.-G., 2011. Secure group key management using uni-

directional proxy re-encryption schemes. IEEE 1952–1960.

Cheng, H., Dinu, D., Großschädl, J., Rønne, P.B., Ryan, P.Y.A., 2020. A Lightweight

Implementation of NTRU Prime for the Post-quantum Internet of Things, in: Laurent, M.,

Giannetsos, T. (Eds.), Information Security Theory and Practice. Springer International

Publishing, Cham, pp. 103–119. https://doi.org/10.1007/978-3-030-41702-4_7

Computer Security Division, I.T.L., 2020. PQC Third Round Candidate Announcement |

CSRC [WWW Document]. CSRC NIST. URL https://csrc.nist.gov/News/2020/pqc-third-

round-candidate-announcement (accessed 3.28.22).

Computer Security Division, I.T.L., 2017. Round 3 Submissions - Post-Quantum Cryptography

| CSRC | CSRC [WWW Document]. CSRC NIST. URL https://csrc.nist.gov/Projects/post-

quantum-cryptography/round-3-submissions (accessed 3.27.22).

Guillen, O.M., Pöppelmann, T., Bermudo Mera, J.M., Bongenaar, E.F., Sigl, G., Sepulveda, J.,

2017. Towards post-quantum security for IoT endpoints with NTRU, in: Design, Automation

Test in Europe Conference Exhibition (DATE), 2017. Presented at the Design, Automation

Test in Europe Conference Exhibition (DATE), 2017, pp. 698–703.

https://doi.org/10.23919/DATE.2017.7927079

17

Hoffstein, J., Pipher, J., Silverman, J.H., 1998. NTRU: A ring-based public key cryptosystem,

in: Buhler, J.P. (Ed.), Algorithmic Number Theory. Springer, Berlin, Heidelberg, pp. 267–288.

https://doi.org/10.1007/BFb0054868

Jafari, M., Safavi-Naini, R., Sheppard, N.P., 2011. A rights management approach to protection

of privacy in a cloud of electronic health records, in: Proceedings of the 11th Annual ACM

Workshop on Digital Rights Management, DRM ’11. Association for Computing Machinery,

New York, NY, USA, pp. 23–30. https://doi.org/10.1145/2046631.2046637

Kandukuri, B., Paturi, R., 2009. Cloud Security Issues. IEEE 200.

Khalid, A., McCarthy, S., O’Neill, M., Liu, W., 2019. Lattice-based Cryptography for IoT in

A Quantum World: Are We Ready?, in: 2019 IEEE 8th International Workshop on Advances

in Sensors and Interfaces (IWASI). Presented at the 2019 IEEE 8th International Workshop on

Advances in Sensors and Interfaces (IWASI), pp. 194–199.

https://doi.org/10.1109/IWASI.2019.8791343

Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., O’Brien, J.L., 2010.

Quantum computers. Nature 464, 45–53. https://doi.org/10.1038/nature08812

Lange, T., 2015. Initial recommendations of long-term secure post-quantum systems.

PQCRYPTOEU Horiz. 2020 ICT-645622.

Lanyon, B.P., Weinhold, T.J., Langford, N.K., Barbieri, M., James, D.F.V., Gilchrist, A.,

White, A.G., 2007. Experimental Demonstration of a Compiled Version of Shor’s Algorithm

with Quantum Entanglement. Phys. Rev. Lett. 99, 250505.

https://doi.org/10.1103/PhysRevLett.99.250505

Li, M., Yu, S., Zheng, Y., Ren, K., Lou, W., 2013. Scalable and Secure Sharing of Personal

Health Records in Cloud Computing Using Attribute-Based Encryption. IEEE Trans. Parallel

Distrib. Syst. 24, 131–143. https://doi.org/10.1109/TPDS.2012.97

Liang, X., Cao, Z., Lin, H., Shao, J., 2009. Attribute based proxy re-encryption with delegating

capabilities, in: Proceedings of the 4th International Symposium on Information, Computer,

and Communications Security, ASIACCS ’09. Association for Computing Machinery, New

York, NY, USA, pp. 276–286. https://doi.org/10.1145/1533057.1533094

O. Saarinen, M.-J., 2020. Mobile Energy Requirements of the Upcoming NIST Post-Quantum

Cryptography Standards, in: 2020 8th IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering (MobileCloud). Presented at the 2020 8th IEEE

International Conference on Mobile Cloud Computing, Services, and Engineering

(MobileCloud), pp. 23–30. https://doi.org/10.1109/MobileCloud48802.2020.00012

Pecarina, J., Pu, S., Liu, J.-C., 2012. SAPPHIRE: Anonymity for enhanced control and private

collaboration in healthcare clouds, in: 4th IEEE International Conference on Cloud Computing

Technology and Science Proceedings. Presented at the 4th IEEE International Conference on

Cloud Computing Technology and Science Proceedings, pp. 99–106.

https://doi.org/10.1109/CloudCom.2012.6427488

Pirandola, S., Pirandola, S., Andersen, U.L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R.,

Englund, D., Gehring, T., Lupo, C., Ottaviani, C., Pereira, J.L., Razavi, M., Shaari, J.S., Shaari,

J.S., Tomamichel, M., Tomamichel, M., Usenko, V.C., Vallone, G., Villoresi, P., Wallden, P.,

18

2020. Advances in quantum cryptography. Adv. Opt. Photonics 12, 1012–1236.

https://doi.org/10.1364/AOP.361502

Septien-Hernandez, J.-A., Arellano-Vazquez, M., Contreras-Cruz, M.A., Ramirez-Paredes, J.-

P., 2022. A Comparative Study of Post-Quantum Cryptosystems for Internet-of-Things

Applications. Sensors 22, 489. https://doi.org/10.3390/s22020489

Tamilmani, K., Rana, N.P., Dwivedi, Y.K., 2018. Mobile Application Adoption Predictors:

Systematic Review of UTAUT2 Studies Using Weight Analysis, in: Al-Sharhan, S.A.,

Simintiras, A.C., Dwivedi, Y.K., Janssen, M., Mäntymäki, M., Tahat, L., Moughrabi, I., Ali,

T.M., Rana, N.P. (Eds.), Challenges and Opportunities in the Digital Era. Springer International

Publishing, Cham, pp. 1–12. https://doi.org/10.1007/978-3-030-02131-3_1

Tsiounis, Y., Yung, M., 1998. On the security of ElGamal based encryption, in: Imai, H.,

Zheng, Y. (Eds.), Public Key Cryptography. Springer, Berlin, Heidelberg, pp. 117–134.

https://doi.org/10.1007/BFb0054019

What is Amazon S3? - Amazon Simple Storage Service [WWW Document], n.d. URL

https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html (accessed 4.6.22).

Xhafa, F., Feng, J., Zhang, Y., Chen, X., Li, J., 2015. Privacy-aware attribute-based PHR

sharing with user accountability in cloud computing. J. Supercomput. 71, 1607–1619.

https://doi.org/10.1007/s11227-014-1253-3

Yandong, Z., Yongsheng, Z., 2012. Cloud computing and cloud security challenges, in: 2012

International Symposium on Information Technologies in Medicine and Education. Presented

at the 2012 International Symposium on Information Technologies in Medicine and Education,

pp. 1084–1088. https://doi.org/10.1109/ITiME.2012.6291488

