===y

)
National
Collegeof

[reland

Configuration Manual

MSc Research Project
Cyber Security

Mamta Sawant
Student ID: X19221134

School of Computing
National College of Ireland

Supervisor: Dr Vanessa Ayala-Rivera

Student
Name:

Student ID:
Programme:
Module:
Lecturer:
Submission

Due Date:

Project Title:

Word Count:

‘-—
National College of Ireland \ National

College
Ireland

MSc Project Submission Sheet

School of Computing
Mamta Sanjay Sawant

Comparative Analysis of Supervised Machine Learning Models for
Phishing Detection

... Page Count: ...

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature:

Date:

Mamta Sanjay Sawant

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple | o

copies)

Attach a Moodle submission receipt of the online project m
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, o

both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Mamta Sawant
Student ID; X19221134

1 Introduction

The configuration manual focuses on the project's implementation and contribution, namely,
comparative analysis of supervised machine learning models for Phishing Detection. This
manual also includes information on various hardware and software requirements for the
project's successful completion. The primary goal of analyzing and evaluating three supervised
Machine learning models that are decision tree, KNN, Logistic Regression is to discover and
compare the best phishing detection solution in terms of accuracy and time required to train
the model. For this project, the phishing dataset is collected from a cloud-based repository, the
dataset as the total number of observations equal to 88647. It consists of data of phishing and
legitimate websites.

2 Requirements

To implement the code, a system should have an essential set of tools and settings configured.

2.1 System Requirement

It is important to select a system with hardware specifications that can handle the implementation of Machine
learning algorithms. The following are the required System Specifications:

For Windows:
e CPU: Intel i5 5th Gen and above
e RAM: 16GB DDR4 and above
e Storage: 1 HDD

2.2 Software Requirements
e Anaconda Navigator- Jupyter Notebook v6. 4.6

e Python 3.7. 6- Because it is open-source software, it is easily available for download
online.

e MS Excel- To analyse the dataset .csv files.

3 Dataset Information

The Phishing website dataset is used for this research. The dataset is available on the online
repository under the name dataset_full.csv. It comprises phishing and legitimate instances. The
total number of instances is 88647 (Vrbancic, 2020).

Figure 1 shows the license of the dataset i.e., CC BY 4.0 which means the dataset can be shared,
copied, or modified as long as the appropriate credits are given.

CC BY 4.0 license description

The files associated with this dataset are licensed under a Creative Commons
Attribution 4.0 International license.

What does this mean?

You can share, copy and modify this dataset so long as you give appropriate
credit, provide a link to the CC BY license, and indicate if changes were made, but
you may not do so in a way that suggests the rights holder has endorsed you or
your use of the dataset. Note that further permission may be required for any
content within the dataset that is identified as belonging to a third party.

Learn more Close

Figure 1: License of the dataset

Figure 2 illustrates the sample content of the dataset_full.csv dataset

A B C] E F G H 1 J K ! M N [¢] P Q R S T u v w 4

1 |aty_dot_u qty_hyphe qty_under qty_slash_aty_questi aty_equal_qty_at_url qty_and_u qty_exclar qty_space ty_tilde_iqty_commqty_plus_t qty_asteri:qty_hasht: gty_dollar qty_perce:qty_tid_ur length_url qty_dot_d qty_hyphe qty_under|gty_slash_qt: |
2 3 0 a 1 0 o o a 0 0 o o a 0 1] 0 0 1 25 2 0 1] 0
3 5 [1 3 0 3 0 2 0 0 0 0 0 0 0 [0 3 223 2 0 0 0
4 2 o a 1 0 o o o 0 0 0 o a 0 0 o o 1 15 2 0 0 o
5 4 o 2 5] o o a 0] 0 o a 0 o o a 1 a1 2 0] o
6 2 0 [0 0 [[[0 0] 0 0 0 0 0 [1 19 2 0 0 [
7 1 [[2 0 [i [0 0 0 [[0 0 [[1 2 1 0 0 [
8 2 0 o (1] 1] 0 o o 0 [1] 0 o a 0 [1] 0 o 1 27 2 0 [1] 0
9 2 o a 3 4] o o a] 1] o o a 0 1] 0 o 1 46 2 0 1] 0
10 2 0 [0 0 [0 [0 0 0 0 0 0 0 0 [1 16 2 0 0 0
n 1 0 [2 0 [0 [0 0 0 0 0 0 0 0 0 1 2 1 0 0 0
12 2 1 a 0 0 0 o a 0] 0 o a 0] o o 1 19 2 1] o
13 1 o a 3] o o a 0] o o a 0 0 o o 1 58 1 0 o o
14 2 2 [4 0 [0 [0 0] [[0 [) 0 0 1 45 1 1 0 [
15 2 0 o (1] 4] 0 0 0 0 [1] 0 o] 0 [1] 0 0 1 n 2 0 [1] 0
16 3 o o 2 4] o o a] 1] 0 o a 0 1] 0 o 1 33 3 0 1] o
17 3 0 1 5 0 3 0 2 0 0 0 0 0 0 0 0 o 1 213 2 0 0 0
18 2 1 0 0 0 0 0 [0 0 0 0 0 0 0 [0 1 13 2 1 0 0
19 3 o a 0 0 0 o a 0] o o a 0] o o 1 30 3 0] o
20 4 o a 2] 1 1 a 0] 0 o a 0 o o o 2 57 1 0 o o
21 3 [[0 0 [0 [0 0 [0 0 0 0 [[1 17 3 0 0 [
2 4 0 [0 0 0 0 [0 0 0 0 0 0 0 [[1 2 a 0 0 0
23 2 1 a 1 0 0 o a 0] 0 o a 0] o o 1 20 2 1] o
24 4 1 a 5] o o a 0] o o a 0] o a 1 81 2 0 o o
25 2 [[0 0) 0 [0 0] [[0 0 0 [1 13 2 0 0 [}
% 2 0 0 0 0 [0 [0 0 0 0 0 0 0 0 [1 13 H 0 0 0
27 3 o o 1 4] o o a 0 1] 0 o a 0 1] 0 o 1 n 3 0 1] 0

2 0 o 0 0 o o a] 0 o o o 0 [1] 0 0 1 2 0 1] 0

®

28 17
) [dataset_full 7 o

Figure 2: dataset_full.csv in MS Excel

4 Implementation of Code

4.1 Packages Required for code execution
The model is code using Python 3 language and implemented on the Jupyter notebook. Python
code includes below list of packages that are imported:

e Numpy

e Pandas version 1.4.0

e Matplotlib

e Seaborn

e Sklearn

e Train_test_split

e DecisionTreeClassifier
e Sklearn.metrics

e LogisticRegression

e KNeighborsClassifier

4.2 Evaluation of Code:

The entire model is implemented in several sections. Steps involved in the successful
execution of code are as follows:

Step 1: Import the dataset_full.csv

In [53]: phish_df = pd.read_csv(dataset full.csv')
phish_df.dataframelame = 'dataset_full.csw'

nRow, nCol = phish_df.shape
print{f'There are {nRow} rows and {nCol} columns')

There are 88647 rows and 112 columns

Figure 3: Importing the dataset

Step 2: Feature selection using correlation matrix

Initially, the feature selection is done on the entire dataset, where the correlation
coefficient method is used to select the best possible features. These features are then used to
train and test the three supervised machine learning models, and the results are evaluated in
terms of accuracy and speed to train the model for phishing detection

def plo \atrix(df, graphWidth):
#F1 ameName

ns') # drop columns with NaN

df = df[[col for col in df if df[col].nunique() > 1]] # keep columns where there are more then 1 unigue values

if df.shape[1] < 2:
print{f"No correlation plots shown: The number of non-MaM or constant columns ({df.shape[1]}) iz less than 2')
return

corr = df.corr()

plt.figure(num=None, figsize=(graphliidth, graphWidth), dpi=88, facecolor='w", edgecolor="k'}

corrMat = plt.matshow({corr, fignum = 1)

plt.xticks(range{len{corr.columns}), corr.columns, rotation=9@)

plt.yticks({range{len{corr.columns}), corr.columns)

plt.gcal).xaxis.tick_bottom()

plt.colorbar(corriat)

plt.title(f'Correlation Matrix for ', fontsize=15)

plt.show()

Fig 4: Correlation matrix function

In [54]: plotCorrelationMatrix(phish_df, 19)

Correlation Matrix for

ay aot ur 4
Faryeneny
ay_indedine=arl

-y sinsic o

*_qumticfimerk i
¥ Equal

Ty _sturl

ary_$ha-url

qty_exclamiation url

¥ space”wl

pace_pa
ay TURE B
@y plss_params
3 o3

I
s
o
Y. = 3
dy Tashiag params
abovRRk plishe
\

params lenge?
ta_present Params
Wy

-
Bme_doman_activation
Ume dornam expw aticn
Ty 1p rescived
mrreservers

s

ey oot Darems
Fy Pyghen o

@y_questicAmarnk hie
exclamabon Tie

aty_uhderine params

aues
-
P
@y
[ly_cpoe

Fig 5: PIofting of Correlation Matrix
Step 3: Check for infinite values, missing values, or NaN(Not a Number) values in the dataset.

In [55]: assert isinstance(phish_df, pd.DataFrame)
phish_df.dropna{inplace=True)

print{phish_df)

Fig 6 : Removing noisy or missing data

Step 4: Implementation of feature selelction to extract highly correlated features using
threshold=0.99

with the followir

it will

In [56]:

g function we can select highly correlated features
ve the first feature that is correlated with anything other feature

def correlation{dataset, threshold):

col_corr = set() # Set of all the nomes of correlated columns

corr_matrix = dataset.corr()

for i in range(len{corr_matrix.columns}):

for j in range(i):
if abs(corr_matrix.iloc[i, j]) > threshold: # we are interested in gbsolute coeff valu

colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(cclname)

return col_corr

m

In [57]: corr_features = correlation(phish_df, @.99)
len{set(corr_features)}

out[571: 21

In [58]: |corr_features

Out[38]: {'gty_and_file',
'qty_asterisk_params',
‘gty_at_file',
‘gty_comma_directory’,
'gty_comma_file',
'gty_comma_params ',
'gty_dollar_file',
'gty_dcllar_params',
'gty_equal_file',
'gty_exclamation_directory’,
'gty_exclamation_file",
'gqty_hashtag_directory’',
'qty_hashtag_file',
'gty_hashtag_params",
'gty_plus_file',
'gty_gquesticnmark_file',
‘gty_slash_file',
‘gty_space_directory’,
'gty_space_file',
‘gty_tilde_file',
'gty_tilde_params'}

Fig 7: 21 features are extracted from the dataset

Step 5: New dataset with 21 features and 88647 observations is created from the main dataset
i.e., dataset_full.csv

In [68]: data = pd.read_csv('21Features_B8BkValues_Dataset.csv')

data.head()
Out[6a]:
gty_exclamation_directory qty_space_directory qty_comma_directory gty_hashtag_directory qty_slash_file qty_guestionmark_file qty_equal_file gty_at_file
0] o o 1] o o 1]]
1 v o o 1] o o 1] o
2 o o o (1] o o (1] o
3 o o o o 0 0 o]
4 -1 1 1 -1 -1 -1 -1 -1
5rows x 22 columns

»

In [3]: data.shape

Out[3]: (88647, 22)

In [4]: assert isinstance(data, pd.DataFrame)
data.dropna(inplace=True)

#indices_to keep = ~dota.isin{[np.nan, np.inf, -np.inf]).any(1)
#print(data)
data.shape

Out[4]: (88647, 22)

Fig 8: New dataset with 21 features

Step 6: After data preprocessing and feature selection, data is split into a training set and testing
set. X is defined as an independent variable and Y as a target variable.

In [61]: x = data.drop('phishing’,axis=1).values
data['phishing'].values

W

In [62]: from sklearn.model_selection dmport train_test split
¥_train,x_test,y_train,y_test=train_test_split{x,y,test_size=08.38,random_state=15)

Fig 9: Splitting data into 70:30 Ratio for training and Testing the model.
5

Step 7: Analysis of three supervised machine learning models and evaluation on performance
measures.

In [64]: from sklearn import tree
model_tree = tree.DecisionTreeClassifier()
start=time.time()
model = model_tree.fit(x_train, y_train)
elapsed_time=(time.time()-start)
str{elapsed_time)

Out[84]: "8.861273813247680664 "

In [65]: from sklearn.metrics import matthews_corrcoef
from sklearn.metrics import accuracy score
from sklearn.metrics import f1_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
#Test the model using testing data
predictions = model.predict(x test)
from sklearn.metrics import confusion_matrix
confusion_matrix(y test,predictions)
#print(classification_report(y test,predictions))

Out[65]: array([[13933, 3328],
[242, 9694]], dtype=int64)

In [66]: print("fl score of the Decision tree model is: ",188.8 *f1_score(y_test,predictions,average='weighted"))
print("Accuracy score of the Decision tree model is: ",18@.8 *accuracy_score{y_test,predictions))
print("Precizion score of the Decision tree model is: ",188.8 *precision_score(y_test,predictions))
print("Recall score of the Decision tree model is: ",18@.8 *recall_score(y_test,predictions))

fl score of the Decision tree model is: 86.87678731993857
Accuracy score of the Decision tree model is: 86.58394435044181
Precision score of the Decision tree model is: 73.22061191626409
Recell score of the Decision tree model is: 97.4@735346156804

Fig 10 : Decision tree model

In [26]: from sklearn.linear_model import LogisticRegression

#cregte Logistic regression object
Classifier=LogisticRegression{random_state= @, multi_class="multinomiazl' , solver='newton-cg')

start=time.time()

#Train the model using training dota
Classifier.fit(x train,y_train}
elapsed_time=(time.time()-start)
stri{elapsed_tims)

Out[26]: '"1.8445639612292527'

In [27]: predictions = Classifier.predict{x_test)
predictions
from sklearn.metrics import confusion_matrix
confusion matrix(y_test,predictions)

Out[27]: array([[18762, 44457,
[386, 11946]], dtype=int6d)

In [28]: |print(" fl1 score of Logistic Regression model:",188.8 *f1_score(y_test,predictions,average="weighted'))
print{"Accuracy score of Logistic Regression model: ",188.8 *accuracy score(y_test,predictions))
print{"Precision score of the Logistic Regression model is: ",18@.8 *precision_score(y_test,predictions))
print{"Recall score of the Logistic Regression is: ",109.@ *recall_score(y_test,predictions))

1 score of Logistic Regression model: 9.85913599087293

Accuracy score of Logistic Regression model: 86.6814278081974
Precizion score of the Logistic Regression model is: 72.88145933744129
Recall score of the Logistic Regression is: 97.58244857982369

Figll: Logistic Regression model

In [29]: from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
xScaler = scaler.fit_transform{x)}

In [38]: x_train, x_test, y_train, y_test = train_test_split{xScaler,y, test_size = 8.4)

In [31]: from sklearn.neighbors import KNeighborsClassifier
from sklearn import metrics

In [32]: k =5
knn = KNeighborsClassifier(n_neighbors=k}
start=time.time()
knn.fit(x_train, y_train)
y_pred = knn.predict{x_test)
print{metrics.accuracy_score(y_test, y_pred))} #accuracy score on the train data
elapsed time=(time.time()-start)
str{elapsed_time)

©.86485965622267971

Out[32]: '37.66582785682678"

In [33]: from sklearn.model_selection import cross_wval predict, cross_val score
score = cross_val_score(knn, xScaler, y, cv = 8)
print(score)

[0.86210631 ©.86255753 @.86427218 ©.727280593 0.86734049 0.56508438
B.87293566 ©.36444843]

In [34]: y_pred = cross_val_predict(knn, xScaler, y, cv = 18)
conf_mat = metrics.confusion_matrix(y , y_pred)
print{conf_mat)

[[46774 11226]
[747 2990871]
In [48]: f1 = 188.8 *metrics.fl_score(y,y_pred,average="weighted"}

print("fl score of KMN model is:",f1)

acc = 188.8 *metrics.accuracy_score(y, y_pred)
print{"Accuracy score of KNN model is:",acc)

precision = 18@.8 *metrics.precision_score(y,y_pred)
print({"Precision score of KN model is:",precision)

recall = 188.8 *metrics.recall_score(y,y_pred)
print(“recall score of KNM model is:",recall)

f1 score of KNN model is: 86.88895914186695
Accuracy score of KNM model is: B86.49362876558814
Precision score of KMN model is: 72.7@339938943929
recall score of KHN model is: 97.56256729859366

Fig 12: K- Nearest Neighbors (K-NN model)

The results of all the models are recorded after they have been successfully executed. When
compared to the other two models, the Logistic Regression model has higher accuracy and the
decision tree takes less time to train the model, so it is faster.

References

Vrbanci¢, G., 2020. Phishing Websites Dataset 1. https://doi.org/10.17632/72ptz43s9v.1

