

Using cryptography and image steganography to

securely transfer data. (Configuration Manual)

MSc Research Project

M. Sc. In Cybersecurity

Yash Lathigara

Student ID: 20182384

School of Computing

National College of Ireland

Supervisor: Professor Imran Khan

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Yash Lathigara

Student ID:

20182384

Programme:

M. Sc. In Cybersecurity

Year:

2021 - 2022

Module:

M. Sc. Research Project

Lecturer:

Professor Imran Khan

Submission Due Date: 16th December 2021

Project Title:

Using cryptography and image steganography to securely

transfer data.

Word Count:

2517 Page Count: 13

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Yash Mahesh Lathigara

Date:

15th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Using cryptography and image steganography to

securely transfer data. (Configuration Manual)

Yash Lathigara

Student ID: 20182384

Introduction

This handbook was created to outline the methods for executing the research project and
to provide the setup of the equipment used to produce and run the models. The stages involve
downloading and installing the essential software and packages, as well as the minimal setup
required for the project to work well.

Requirements - Software

• OS: Any of the Windows 7, 8, 10 or Linux or Mac

• Front End : JAVA (jdk1.5 or Above Required)

• Tools : JCreator

 Requirements - Hardware

• Pentium IV processor or Higher

• Ram: Min 256 MB RAM

• Hard Disk: Min 10GB OF HADDISK

Important coding concepts

• Bytes, Bit Operations, Images, ImageIO, Graphics2D, Raster, DataBufferByte etc.

These are the primary concepts that help to comprehend Steganography.

1) Bytes:

Most programs use this as their basic data source whereas many developers will never use
bytes in their source codes. A byte consists of 8 bits either 1s or 0s. those 8 bits (1s and 0s)
have decimal value. To get that we can convert the binary number to decimal number easily.

Positional value: 128, 64, 32, 16, 8, 4, 2, 1.

2

Examples:

00000100 = 4

00000110 = 6

00000101 = 5

00001111 = 15

And so on…

In Java, a byte can be converted from an int with the help of simple concept of casting:

BYTE A = (BYTE) 5;

Most Java classes offer a method for returning an object's byte [], either as a part of the object
or the complete entity.

Example of a String Class:

CODE

String Y = "Will";
Byte [] A = Y.getBytes();
String Y = "Will";
Byte [] A = Y.getBytes();

Where A[0] now has the value for 'W' 87(ascii). It is a byte but seems to be an int if the code
was printed onto a display. This byte stores the value of “Will” in bits value.

2) Bit:

Most users of the system and programmers have heard of or used the following basic
operations:

AND:

The AND operator joins two bytes. The same rules apply to bit operations as they do to true /
false values, where 1 equals true and 0 equals false. If both bytes have a 1 in the same place,
the result for that position is 1, otherwise it is 0.

Example:

01000101 = 69
01000101 = 101
01010111 = 87
Byte A = 101 & 87 (AND)

3

This is gives: 01000101 i.e. 69

OR:

The bit of the OR operator will add 2 bytes. Same as AND, where 1 is true and 0 is false, if
one of the bits within the location is a 1, the outcome is a 1.

Example:
01010111 = 87
01100101 = 101
01110111 = 119

Byte A = 87 | 101 (OR)
This gives : 01110111 (119)

On top of these critical activities, get ready to move bits:

LEFT SHIFT:

This to remember when performing left shift is that is the 1st bit isn’t 1. One left shift will

impact 2 values.

What happens in this situation is that: 0 is added on the right side of the bit sequence, at this

time the farthest left most bit is discarded, resulting in a new set of byte. Furthermore, when

performing shift in Java, several places to shift must be mentioned. If the value is greater than

1, the process is essentially repeated numerous times, beginning with the preceding shift's

result. Any value that is shifted 8 times in this manner will become 0.

Examples:

01010111 (87) when performed Single left shift, we get 10101110 (174)

01010111 (87) when performed Double left shift, we get 01011100 (92)

CODE

BYTE A1 = 87 << 1;

 = 10101110

BYTE A2 = 87 << 2;

= 01011100

RIGHT SHIFT:

This is a right shift which is the exact opposite of left shift technique i.e., we add 0 bit to the
left most bit and the right most bit is eliminated. Resulting in a new set of byte,
\

Examples:

4

01010111 (87) when performed Single right shift, we get 00101011 (43)

01010111 (87) when performed Double right shift, we get 00010101 (21)

CODE

BYTE A1 = 87 >>> 1;

We get 00101011

BYTE A2 = 87 >>> 2;

We get 00010101

bit and byte operators are used to successfully create the proposed system.

3) Buffered Image:

A buffered Image is a class that will be used with images. They introduced the ImageIO
class in Java 1.5.0, along with methods for accessing the picture's raster and buffer, making
image manipulation considerably easier. Buffered image may be used to create new images
as follows:

BufferedImage img = new BufferedImage(int, int, int);
File file = new File (String);
BufferedImage img = ImageIO.read(file);

4) ImageIO:

This class will assist us in doing image input and output operations. This class has many
more functionalities, but for the sake of this application, just the read () and write () methods
will be utilized.

5) Graphics2D:

A long-standing Java class that provides access to some of the more advanced aspects of

graphics/images. Allows you to create customizable sections in a new or existing image. As
well as allowing access to the image's renderable section. This class, like others, allows for an
easy transition from image space to user space, which is essential for editing or reading
individual bytes in a photo.

6) WritableRaster:

We utilize this to generate an image pixel per pixel, which is required when we wish to

access a picture's byte (made of pixels). WritableRaster is a Raster subclass that provides
methods for gaining more direct access to an image's buffer.

7) To add user space

CODE

private BufferedImage user_space(BufferedImage image)

5

{
BufferedImage new_img = new BufferedImage(image.getWidth(),
image.getHeight(), BufferedImage.TYPE_3BYTE_BGR);
Graphics2D graphics = new_img.createGraphics();
graphics.drawRenderedImage (image, null);
graphics.dispose();
return new_img;
}

• To enter user space, a new image of the same dimensions as the source is created,

together with a graphics section.
• The previous image is then rendered/drawn onto the new image.
• As an extra memory advantage, the new image's resources are freed.

The new image is now entirely in user space, which implies that all of the data has been
generated and can thus be modified within Java. There are issues with directly altering a
photograph; changes are not always executed. It is also advised that you generate this user
space as a new clone of the input image, guaranteeing there's no memory sharing between
both the source and user space versions, which might slow it down the storing of any
alterations.

8) Encoding text

CODE
private byte[] encode_text(byte[] image, byte[] addition, int offset)
{
 if(addition.length + offset > image.length)
{
 throw new IllegalArgumentException("File not long enough!");
}
for(int i=0; i<addition.length; ++i)
{
int add = addition[i];
for(int bit=7; bit>=0; --bit, ++offset)
{
 int b = (add >>> bit) & 1;
 image[offset] = (byte)((image[offset] & 0xFE) | b);
}
}
 }

A byte's bits are ranked from most significant to least significant, with the left most bit being
the most significant and the right most bit being the least significant. This gives us the key. if
we need to alter any data in this picture, we want it to be as inconspicuous, if not invisible, as
possible. As a consequence, we want to change the least significant bit of some of the pixels.
We alter each byte in this manner, with a highest value of 1.

This code does this in the following way:

To loops over the addition array's bytes

6

for (int i=0; i<addition.length; ++i);

To assign add to the current byte

 int add = addition[i];

To iterates through the eight bits of the byte held in add

 for (int bit=7; bit>=0; --bit, ++offset);

The value of the byte add shifted right bit positions AND 1 is assigned to b.

 int b = (add >>> bit) & 1;

This may sound complicated, but the end result is a loop in which b is assigned the next

single bit value of the byte add, either 0, or 1.

 This is best demonstrated by the following illustrations:

We will start with int b = (add >>> bit); only, Say:
add = 87 = 01010111
First loop through, bit = 7:
01010111 = 87
>>> 7
00000000 = 0
Next time, bit = 6:
01010111 = 87
>>> 6
00000001 = 1
Next time, bit = 5:
01010111 = 87
>>> 5
00000010 = 2
Next time, bit = 4:
01010111 = 87
>>> 4
00000101 = 5
… and so on.

You can how the right bits match the left bits of add, in a growing number based on how
many positions we shift include.
Now to apply the & 1:
First loop:
00000000 = 0
00000001 = 1
00000000 = 0 = b
Next:

7

00000001 = 1
00000001 = 1
00000001 = 1 = b

Next:
00000010 = 2
00000001 = 1
00000000 = 0 = b

Next:
00000101 = 5
00000001 = 1
00000001 = 1 = b

Depending on the last bit of the shifted add byte, b is assigned a value of 0 or 1. We achieve
the same result as previously by performing AND by one, which helps clear all bits to zero
save the last, which remains untouched. This means that the value of b represents the bit at
location bit in the for loop.

image[offset] = (byte)((image[offset] & 0xFE) | b);

This piece of code works in a similar way. 0xFE is a hex value that correlates to the binary

number 11111110. The first 7 bits will remain untouched, but the least critical bit will be set

to 0. Then, with the last bit 0, we OR it with b, which might be 00000000 or 00000001. The

last bit will be set to the value contained in b as a result of this. Because the OR operation

with 0s does not change any of the first 7 bits, and thus knowing that the last bit may be a 0,

the value in this location of b is sure to be placed here, whether this is or 1.

As the loop runs, the code moves the offset value, distributing the eight bits of a byte of
addition among 8 least significant bits of 8 different and following bytes of the image. It is
also crucial that we encode the length first and in a static way, for example, saving it in 4
bytes or the first 32 least significant bits. As a consequence, we know how many least
significant bits to read after the length in order to obtain the complete message.

9) DecodeText:

CODE

private byte[] decode_text(byte[] image)

{

 int length = 0;

int offset = 32;

 for(int i=0; i<32; ++i)

 {

8

 length = (length << 1) | (image[i] & 1);

 }

byte[] result = new byte[length];

for(int b=0; b<result.length; ++b)

{

for(int i=0; i<8; ++i, ++offset)

 {

 result[b] = (byte)((result[b] << 1) | (image[offset] & 1));

 }

 }

return result;

}

The process may look straightforward at first glance, but I'll explain how each step works to
obtain the bits we encoded.

• int offset = 32; – Because the message length is recorded as a 4 byte integer, or 32

bits, the message starts after 32 bytes of image.

• for(int i=0; i32; I - Because the first 32 bytes contain one bit of our length, we must
loop over all 32 bytes to get the length.

• length = (length 1) | (image[i] & 1) - We shift the length bits to the left by one, then
OR the result with the least significant bit of the image byte. (& 1) clears all bits
except the final one, which remains untouched. Bits are moved forward and placed in
the newly vacant least significant length slot as they are added.
For the same reason as the bit conversion array being {0, 0, 0, byte0}, This for loop
 may be written with i=24 and still work. Both of these elements were kept out of the
final code since having the bigger ranges allows for more text to be buried in the
image.

• for(int b=0; bresult.length; ++b) – Now that we have a length and a byte array to
hold the data, we loop over that many picture bytes.

• for(int i=0; i8; I ++offset) – We must loop through the 8 bits of a byte one more time

to gather them.

• result[b] = (byte)((result[b] 1) | (image[offset] & 1) - The resulting byte array is
made up of the least significant bit from each subsequent byte. Now that the loops are
properly constructed, this is acquired in the same way as the length.

That explains the enigma of Steganography. Of course, there are various methods, and
most typically, the text is encrypted before it is buried to reduce the likelihood of it being
noticed and/or cracked. The more random the image, the easier it is to add data to the
image without being detected.

9

Above were the example of importing coding concept used to develop the proposed
system. Below I will share the actually code snippets.

AES Encryption algorithm

10

AES decryption algorithm

1 References

[1] "Jcreator," 1 11 2021. [Online]. Available: http://www.jcreator.org/download.htm.

[2] "java bascis," 1 11 2021. [Online]. Available: https://www.javatpoint.com/java-basics.

[3] "what is AES," 1 11 2021. [Online]. Available: https://www.cloudwards.net/what-is-aes/.

[4] "LSB based image steganography," 1 11 2021. [Online]. Available:

https://www.geeksforgeeks.org/lsb-based-image-steganography-using-matlab/.

11

