

Configuration Manual

MSc Research Project

Cyber Security

Kevin Kehoe

Student ID: x20147228

School of Computing

National College of Ireland

Supervisor: Ross Spelman

National College of Ireland

Project Submission Sheet

School of Computing

Student Name: Kevin Kehoe

Student ID: x20147228

Programme: Cyber Security

Year: 2022

Module: MSc Research Project

Supervisor: Ross Spelman

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1956

Page Count: 12

I hereby certify that the information contained in this (my submission) is information pertaining

to research I conducted for this project. All information other than my own contribution will

be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to

use the Referencing Standard specified in the report template. To use other author’s written or

electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Kevin Kehoe

Date: 12th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). ✓□

Attach a Moodle submission receipt of the online project submission, to each project

(including multiple copies).
✓□

You must ensure that you retain a HARD COPY of the project, both for your own

reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

✓□

Assignments that are submitted to the Programme Coordinator office must be placed into the

assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Configuration Manual

Kevin Kehoe

x20147228

1 Introduction

In my paper Secure Cryptography Algorithm using Rubik’s Cube for IOT Devices, I

proposed an encryption algorithm based around a 4x4 Rubik’s cube and the AES

algorithm. This configuration manual will describe the steps that need to be taken to

setup the environment on a Raspberry Pi 4 Model B and allow the tests to be conducted.

Some of the code will be explained in this configuration manual to demonstrate how this

algorithm runs.

2 Environment Setup

The research question is to propose a new cryptography algorithm that can work on IoT devices

without affecting performance. This will be achieved by comparing the results from the

proposed algorithm against a Python lightweight algorithm chosen by the NIST and comparing

Python implementations of more know algorithms such as AES. All these algorithms will be

evaluated on the same environment so that the results of these tests will be accurate.

Section 2 will give detailed instructions for installing each of the following requirements.

 Installing the Raspberry PI OS on the Raspberry Pi Model 4B

 Updating the packages on the Raspberry Pi OS

 Installing and configuring settings inside of VSCode for optimal performance

 Installing Python and other Python Libraries. Scripts will be included to test that the

installations were successful

In addition, particular aspects of the proposed algorithm will be highlighted to indicate its

uniqueness in comparison to current algorithms.

2

2.1 Diagram of Environment Setup

2.2 Installing the Raspberry Pi OS

To install the Raspberry Pi OS onto the Raspberry Pi Model 4B, the Raspberry Pi imager needs

to be downloaded from Raspberry Pi’s official site. In order to use this software, a Micro SDHC

card with the capacity of 32GB’s is required, as well as a Micro SDHC card reader. Click on

the “Download for Windows” option and install the exe file downloaded. With the Micro

SDHC card inserted into the Micro SDHC card reader, plug the reader into the computer and

run the Raspberry Pi Imager. Next is to choose the Operating System that will be installed onto

the Raspberry Pi 4B. There are a few different versions of the OS that can be installed but for

this environment setup, choose the default 32-bit version.

3

Figure 2: Network Lab Diagram

Once the storage device has been selected, click on the write option, and wait for the process

to be completed. When this has been completed, the SDHC card is ready and can be inserted

into the Raspberry Pi.

2.3 Configuring the Raspberry Pi Environment

After going through the initial setup, we need to execute a few commands to update all

dependencies that are on the environment. Open a terminal and type the following command

to update the package list and then update all the dependencies.

sudo apt-get update && sudo apt-get upgrade

With the Raspberry Pi updated, it’s time to install Visual Studio Code as our Integrated Desktop

Environment. Inside the terminal, execute the following command to install Visual Studio

Code. This might take some time depending on your internet speed.

 sudo apt install code

Once Visual Studio Code has been installed, launch it, and use the keyboard shortcut CTRL+P

to open the Quick Open option. If we type in >runtime into this box, we will open the argv.json

file. This file is our Runtime Arguments which can allow us to change one option to use

software rendering instead of hardware accelerated rendering.

Figure 3: Locating Runtime Arguments in VSCode

4

The argv.json file will look like Figure 4 when loading it for the first time.

Figure 4: Argv.json before changes

If we remove the two forward slashes from line eleven, we can allow Visual Studio Code to

use the software rendering method. Figure 5 shows the change that was made. After saving the

change, restart Visual Studio Code.

Figure 5: Argv.json after changes

2.4 Installing Python Libraries

On the Raspberry Pi OS, Python comes preinstalled with version 3.9.5. We can check this by

running the command.

python -V

For the proposed algorithm, the Numpy package will be needed to run the scripts. “NumPy,

which stands for Numerical Python, is a library consisting of multidimensional array objects

and a collection of routines for processing those arrays. Using NumPy, mathematical and

logical operations on arrays can be performed” [1]. To install Numpy, it is recommended that

5

PIP3 is installed since Python 3 is installed on the OS. Running the command below will install

PIP3 onto the system.

sudo apt install python3-pip

After installing PIP3, we can install Numpy which can be done with the below command.

pip3 install numpy

To assess whether the package installed successfully, run the test_numpy script in Visual

Studio code. This code should split an array of six values into a 3x3 array.

 Figure 6: test_numpy script

The other requirements needed to be checked on the device when executing the algorithms

scripts are the CPU and RAM usage. To check these usages on the Raspberry Pi, the packet

psutil can be used. “psutil (Python system and process utilities) is a Python package that

retrieves information on ongoing processes and system usage (CPU, memory, storage,

network, and sensors). It is mostly used for system monitoring, profiling, restricting process

resources, and process management” [4].

To install the psutil package, two commands need to be ran. The first command to run is

sudo apt-get install gcc python3-dev

This command needs to be ran because the package python-dev has some headers files that are

needed for Pythons C API. Psutil requires these headers to function in our algorithm. To install

the psutuil package after installing the Python C Headers, run the following command.

pip install --no-binary :all: psutil

The --no-binary :all: section of the command is to exclude any binary packages when

installing a package from source. To test if psutil has been successful been installed, a test

script called CPU_RAM_Check has been included in the algorithms folder so it can be run

and verify it is working.

6

Figure 7: CPU_RAM_Check – verifying script works with results

3 Proposed Algorithm Configuration

The proposed algorithm has six files in total which are responsible for different purposes. The

main three which are covered in this configuration manual are

 Main

 Functions

 Movements

3.1 Main file

The main file is responsible for running both the encrypt and decrypt methods. For the

encrypt method, the plaintext and key variables must be either 16, 24 or 32 characters long

each. The algorithm will not work if the length of both variables is different.

 Figure 7: main script – correct lengths

 Figure 8: main script – incorrect lengths

The results of both encryption and decryption are stored in the following variables to prove

the algorithm works as designed.

 ciphertext

 rot_cipher_key

 decrypted_plaintext

 decrypted_rot_key

7

A timer has been added to the script to test the execution time of running both the encrypt and

decrypt methods. The start_time method will grab the time at the beginning of the scripts

execution and Figure 7 will remove that time from the current time to get the result.

 Figure 9: main script – execution time

3.2 Functions file

The functions file is responsible for almost all the operations done by the algorithm. The

key_schedule function runs on both the encrypt and decrypt methods. A key schedule takes

the initial key provided and does different operations on it to create many more round keys.

Depending on the size of the plaintext and key variables, a different number of rounds are

performed to make more keys. A different key from this schedule is used for each round of

the process. This function starts on line 10 and ends on line 149.

Since the algorithm is based on a 4x4 Rubik’s cube, a create_cube was designed to make 6

4x4 arrays which would act as our cube of 96 faces. Reshaping the arrays can be achieved

with NumPy which was installed earlier.

Figure 10: functions script – creating the cube

From our key_schedule results, we pass those results and the plaintext into the face_operation

function. The plaintext’s orientation will be altered to look like Figure 11 before performing

any of the operations. After this change, certain operations will be carried out with the plaintext

and a key based on which round is being performed. These operations will be one of the

following depending on the round.

 xor

 sbox

 shift_rows

 mix_columns

“XOR is a bitwise operator, and it stands for "exclusive or." It performs logical operation. If

input bits are the same, then the output will be false(0) else true(1)” [2]. For this operation to

be carried out, both values must be converted to be hexadecimal values.

The sbox function will take our hexadecimal value and check it against a table. The first

character will be checked on the left side and the second value will be checked on the right

side. The sbox used in this algorithm is based on the Rijndael AES S-box. If our hexadecimal

8

value is 28, we use the 2 on the left side and the 8 on the right side. Where these two values

intercepts are the value that we substitute 28 for, which in this case is ee.

Figure 11: AES SBox – How to use

The shift_rows function will shift values in our 4x4 based on the length of the key. Using

NumPys array roll functionality will move the values in the array based on the iteration of the

loop. Each row is moved a different amount which is quite like how the AES algorithm applies

it but shifted by different amounts.

Figure 12: shift_rows – snippet of shifting

The mix_columns function will add our hex values with the predefined matrix by using the

l_lookup provided in the mix_columns_table file and then substitute the final value in the

e_lookup table. These tables are also known as Galois Field tables [3].

9

Figure 13: mix_columns – e_table

With the new ciphertext being created after the face_operation table, the random_orientation

will take the ciphertext and assign values to random faces on the cube. The length of the

ciphertext will always be 96 bytes long. Based on which face a hexadecimal value is stored

to, a mathematical operation is performed to generate that number and store it in the

orientation array. Once all the values are assigned onto the cube, the next function

scramble_rot_key will be executed.

Figure 14: random_orientation

The scramble_rot_key function will execute 96 different cube related movements and store

them in the rotation_key_array. For each movement a random number from the orientation

array will be added to the key. A possible result would be FWA237. The FWA2 is the cubes

movement and the 37 indicates the position where the first value of the ciphertext is placed

on the cube. It’s important to mark this position since it will be needed to place the text in the

same place when decrypting.

Figure 15: scramble_rot_key

10

The final step of the encryption process is the rot_cipher_key function will cipher do an XOR

operation on our original key and our rot_key. The original key is repeated until its length is

the same as the rot_key. The result given from this function is a very long key which lengths

can vary based on the movements chosen by the scramble_rot_key function. Figure 16 is an

example of a rot_cip_key.

Figure 16: A result of the rot_cipher_key function

3.3 Movements file

The Movements file stores all possible movements in separate functions and has an array that

acts as a legend to indicate which movement has been performed. On a 4x4 Rubik’s cube,

there are 72 different movements that can be performed, and these movements are stored in

the movements array with a string representation of the movement as shown in Figure 17.

Figure 17: Movements – Legend storing possible movements.

For the movements to be performed, each function requires that all the cube’s face to be

passed in as parameters. Some of these functions will be performed twice based on how

much movement is required. All functions are programmed to move faces on the cube in a

90-degree angle either clockwise or anticlockwise. For movements requiring 180 degrees of

movement, the same function will be executed twice. Figures 18 and 19 will demonstrate

this.

Figure 18: Movements – F Clockwise Movement (90 Degrees).

11

Figure 19: Movements – F Clockwise Movement performed twice (180 Degrees)

3.4 Conclusion

To conclude that the algorithm runs correctly through VSCode, press the play button in the top

right as shown in Figure 20 on the main.py file.

Figure 20: Executing the algorithms script

The results of the script can vary since the rot_cip_key variable can be created with different

movements between each execution. Figures 22 and 23 shows two different rounds of

encryption and decryption based off the same plaintext and key values which are also shown

in Figure 21.

Figure 21: Plaintext and key values

Figure 22: Round 1 of algorithms result

12

Figure 23: Round 2 of algorithms result

References
[1] https://www.mygreatlearning.com/. 2022. What is Numpy in Python | Python Numpy

Tutorial. [online] Available at: <https://www.mygreatlearning.com/blog/python-numpy-

tutorial/> [Accessed 20 June 2022].

[2] Loginradius.com. 2022. How does bitwise ^ (XOR) work? | LoginRadius Blog. [online]

Available at: <https://www.loginradius.com/blog/engineering/how-does-bitwise-xor-work/>

[Accessed 20 June 2022].

[3] Berent, A., 2022. AES (Advanced Encryption Standard) Simplified. 1st ed. [ebook] ABI

Software Development, pp.7 - 8. Available at:

<https://www.ime.usp.br/~rt/cranalysis/AESSimplified.pdf> [Accessed 21 June 2022].

[4] Educative: Interactive Courses for Software Developers. 2022. What is

psutil.cpu_percent in Python?. [online] Available at:

<https://www.educative.io/answers/what-is-psutilcpupercent-in-python> [Accessed 21

June 2022].

	1 Introduction
	2 Environment Setup
	2.1 Diagram of Environment Setup
	2.2 Installing the Raspberry Pi OS
	2.3 Configuring the Raspberry Pi Environment
	2.4 Installing Python Libraries

	3 Proposed Algorithm Configuration
	3.1 Main file
	3.2 Functions file
	3.3 Movements file
	3.4 Conclusion

	References

