

Controlling vulnerabilities in open-source libraries through

different tools and techniques

MSc Internship

Cybersecurity

Huma Sulthana

Student ID: X20190247

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

HUMA SULTHANA

………

Student ID:

X20190247

………..……

Programme:

……M.Sc Cybersecurity………………………

Year:

2021-22

Module:

M.Sc Internship…………………………………………………………………………….………

Supervisor:

………Vikas Sahni………………………………………………….………

Submission

Due Date:

7th January,2022 ………………………………………………………………………….………

Project Title:

Controlling vulnerabilities in open-source libraries through different

tools and techniques

…….………

Word Count:

4907

……………………………………… Page Count………………………18…………….……..

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Huma Sulthana

……

Date:

07th January, 2022

……

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Controlling vulnerabilities in open-source libraries

through different tools and techniques

Huma Sulthana

X20190247

Abstract

This paper attempts to find the security vulnerabilities that occurs in an open-source libraries.

These vulnerabilities are the weak points of open-source libraries which are used by attackers

to reduce or/and breach the information security of the system. Hence, this is crucial to

identify such vulnerable or weak points in the open-source libraries that harm a system for

which this research is conducted. The main motivation behind this research is to identify and

prevent security issues and provide a secure environment to students, researchers, and other

people or institutes that used open-source libraries. The related work has been done on some

of the tools such as Lodash, HTML unit, and handlebars are few of the popular open-source

libraries. Among these tools to detect and prevent security issues, the Security Onion

application is selected as it is free, open-source, and cloud-based. From the examinations, it is

found that the application can detect issues, source and destination of it, set alerts, and check

the health of the system. Though, it will be better if it blocked the IP addresses that most

occurred as threats else the researcher could use paid tools for this. Though, it will increase

the cost of this research.

1. Introduction

Open source libraires are huge source of free code which help researchers as well as

academics. Some of the open-source tools such as Lodash and Vulas are full of security

issues and attackers target these sites due to huge traffic. Hence, it is very necessary to detect

and prevent searching and using these open-source libraries which are attractive to attackers.

Aim and Objectives

The aim of this research is to use a specific tool to detect and prevent security vulnerabilities

from open source of information. Hence, the objectives are:

• To understand the concept of security vulnerabilities in open-source library

• To illustrate open-source vulnerabilities at present time

• To evaluate the contribution of open-source library

• To discussed on different vulnerability scanners for open-source library

• To identify an appropriate tool and use it for recognizing security vulnerabilities in

open-source library

2

Research Questions

The questions to be answered as per the aims and objectives of this research are:

1. How different types of security issues are affecting in open-source libraries?

2. What are the current security issues existing in open-source libraries?

3. Which is the most appropriate tool to recognize vulnerability issues in open-source

libraries and how it is used to examine and analysis the issues?

2. Related Work

In essence, this chapter of the report deals with the Literature Review where the researcher

synthesized, evaluated, and recognized the relevant literature regarding the specific research

topic. The researcher has evaluated the need of of open-source library and the contemporary

state of thinking about the topic. Additionally, the researcher also recognized the research

gap, specifically the unexplored way regarding this topic. Furthermore, articulation is also

had been addressed the gap.

2.1 Concept of security vulnerabilities in Open-source Library

As commented by Decan et al. (2018), cybercriminals are simultaneously seeking to take

benefits of an individual computer security vulnerabilities. Now, putting it into more generic

terms, security vulnerabilities in open-source libraries are significant risks which the

developers had to face the challenges by looking into the third-party and open-source code

within their applications. According to Pashchenko et al. (2018), the open-source code often

possesses with the vulnerabilities which can significantly impact on the organization’s data

and platform. Now, this security risks are often known as open-source vulnerabilities, the

code can expose this open-source library software to the malicious cyber-attacks. As per

Russell et al. (2018), increasing number of the software vulnerabilities are being discovered

in each year whether they are being reported publicly or discovered internally in the

proprietary code. Hidden flaws within the software can result in securities vulnerabilities and

potentially allowing the attackers in compromising applications and systems. Thousands of

those vulnerabilities are being reported publicly towards the common vulnerabilities and

exposures to the database.

2.2 Open-Source Vulnerabilities in the Contemporary Time

According to Ponta et al. (2018), the open-source software has been increasing in rapid

number, hence, the vulnerabilities on these open-source libraries are also being disclosed and

discovered publicly. The vulnerabilities number are being disclosed for the OSS libraries

have been steadily enhancing since the year 2009. However, the vulnerabilities of the OSS

have been hitting up the headlines in the mainstream media several times since the past few

years.

3

As per the report of White Source1,they have able to find out the most up to date security

vulnerabilities in the open-source library database2. This White Source has simultaneously

collected data and information from the various sources like; NVD, open-source project

trackers issue and security advisories. Following are the tools for identifying security

vulnerabilities:

✓ Lodash: As per the report3, prototype pollution security challenge has been found in

the vulnerable Lodash version, while using up the ZipObjectDeep. This attack will

further result in the disclosing of sensitive information, modification or addition of

data as well as Denial of Services.

Figure 1: Function of Lodash

✓ Html Unit: As per the report, issues regarding the code execution got discovered

within the vulnerable version of HtmlUnit4. When the HtmlUnit gets initializing up

the engine of Rhino in distorted way, malicious javaScript code can get executed

arbitrary application of JavaCode.

✓ Handlebars: As per the report of NPM Security Advisory, the issue regarding

arbitrary code execution got found within the vulnerable version of this Handlebars5.

This vulnerability leads in running of arbitrary code within the service processing of

victim’s browser and templates of Handlebars.

✓ 7 XStream: In this open source, the issue regarding the remote code execution has

been discovered within the vulnerable versions of the Xstream6. The attacker can

further manipulate up the processed input stream as well as replacing or injecting up

the objects which can arbitrary shell commands.

✓ Vulas: The demand for the Vulas started to increase in rapid number. According to

Ponta et al. (2018), this tool underwent the major reimplementation process in order

1 https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

2 https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

3 https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

4 https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

5 www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

6 https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020

https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-vulnerabilities-2020/

4

to make for scalable and flexible to avoid further security breaching vulnerabilities in

the open-source library.

As per Harer et al. (2018), thousand numbers of the security vulnerabilities are being

discovered during the production of software every year. This occurs either getting reported

publicly towards common vulnerabilities and exposure database or being discovered in the

proprietary code of open-source library. According to as per Harer et al. (2018), these

vulnerabilities are often occurring due to the errors being made through programmers and

propagate in quick way for the relevance of open-source code and software re-use. As per

Plate et al. (2015), software applications eventually integrate more open-source library source

in order to get advantages from the code reuse. Now, the fostering of the open-source library

within the software industry continued to thrive over the past few years and contemporary

commercial goods being shipped to OSS libraries.

2.3 Contribution of Open-Source Library

As commented by Chen et al. (2020), open-source libraries are considered to be very critical

towards the modern information infrastructure which eventually depends on software being

written using up the decencies of open source. As stated by Maruping et al. (2019), in the

world of computer science, the library eventually refers to the collection of reusable and

precompiled files, scripts, functions and routines and other resources which can get

referenced through the computer programmers. According to Anzt, et al. (2021), open-source

library is any kind of library having open-source license which denotes up the software which

is free for the modification, reuse and publish without the permission. These libraries are very

useful for the programmers as they can get access to the pre-written, reusable, frequently used

codes and dramatically reduces up the workload. Following are the contributions being made

by open-source libraries:

✓ Community: It is to be noted that open source solutions are being driven through

diverse, large and talented community with the generic goal for working together in

getting quick improvements and issues regarding troubleshooting (Sittel et al. 2018).

✓ Cost: Open-source solutions and libraries are involved in decreasing up the overall

cost in deploying up the solutions through the elimination of any licensing fees.

✓ Reliability: With the large and diverse group of humans, they review up the open-

source libraries as well as software (Sittel et al. 2018). Open-source Output has been

thoroughly get tested and tends to get high reliability and robustness.

✓ Security: Having diverse participants gets involved within the development of open-

source solutions, this increases up the chances of resolving and discovering security

vulnerabilities (Anzt, et al. 2021).

✓ Transparency: Full visibility within the code base renders up the transparency

allowing users in developing an expectation as to what they will get to work.

According to Fakhlina and Saputra (2019), open-source libraries as the information services

of management cannot get turn away from advancement of communication technology and

information. Various softwares are being rendered in supporting need for the libraries in

5

running organization and rendering services to the users. According to Fakhlina and Saputra

(2019), open-source software has been widely used by the libraries. This mainly occurs

because the libraries are the non-profit organization, often have very low budget operation.

The example can be provided regarding the usage of open-source library. According to

Rücker et al. (2017), the modern application of geophysics is being often desired for

maximizing up the information on subsurface through the combination of various methods.

According to Adams (2018), the intended eventually involved in studying up the contribution

open-source libraries and this is also involved in creating up the social capital.

Dataset Security Vulnerabilities in the Open-Source Library System:

As per Gkortzis et al. (2018), the investigation of the various software features in relation

towards the security vulnerabilities have been the constant topic of interest within the

research community. In this paper, the researchers had able to create up the dataset which

correlates with diverse software metrics being derived thousands of elements of open source

along with their security bugs. According to Piantadosi et al. (2019), securities vulnerabilities

are mainly the bugs which are involved to make errors in source code in the open-source

libraries. Following can be exploited further.

• Taking control of the system

• Acquiring up the private data (mainly focusing on confidentiality)

• Taking the system down (availability)

As per Piantadosi et al. (2019), during the maintenance of open-source library software,

vulnerabilities shall need to get address along with high priority as this can harm users in very

severe ways as compared to the normal bugs. As per Pashchenko et al. (2018), vulnerable

dependencies are known to be another problem in the open-source library software because

these libraries are being developed and interconnected which not always get update within

their dependencies.

Understanding Vulnerability Scanners for Open-Source Library Software

According to Sagar et al. (2018), the software application is considered as the program which

is being used for running applications over the internet for performing certain tasks.

Following are the top 5 threats that can occurs in the open-source library:

✓ Injection: In this attack, the securities are being compromised through placing up the

commands of SQL or strings up within the code. According to Sagar et al. (2018), it

is considered as one of the most generic tools in which SQL commands get

manipulated within the input fields of web application.

✓ Session Management and Broken Authentication: According to Sagar et al. (2018),

security gets compromised through the exploitation of leaks within the process system

of authentication or any kind of flaws within the session management.

✓ Scripting on the cross site: The flaw of XSS can occur when the application

eventually includes up the untrusted data within the new web page without having

6

proper escaping and validation or updating an existing web page with users being

supplied data.

✓ Broken Access: Attack which can occurs when restrictions based on the user’s

activity has not been properly enforced which gives up the attacker an opportunity for

exploiting these flaws and accomplishing up the access.

✓ Misconfiguration: Attacks which can occur in seeing up the flaws within the

configuration of security application. The small misconfiguration can lead in putting

the data of people.

Tools for Recognizing Security Vulnerabilities in the Open-Source Library

According to Jimenez et al. (2019), vulnerability prediction tools implement both the

developer metrics and software metrics which have also been used for detecting the

prediction. For supporting up the secure products of the software and vulnerability fixing,

vulnerabilities are usually reported within the publicly available databases. As stated by Geek

Flare (2021), application security is considered as the utmost significant thing in each

organization today. Many of these applications in the contemporary time run inside the

container as they are; cost-effective, very easy for scalability, take less storage capacity,

faster deployable and user’s resources. Following are the different tools used for scanning up

the security vulnerabilities within the open-source library:

✓ Docker Bench Security Scanner: This is eventually a script having various

automated tests in checking for best practices for deploying up the containers for

production7. Now, for running this Docker security, an individual need to have

Docker 1.13.0 or upgraded version.

✓ JFrog Xray: This is considered as the continuous open-source security as well as

global artifact of analyzing tool8. This software involves in scanning up the

dependencies and artifacts for the security vulnerabilities as well as license

compliance challenges.

✓ Docker Scan: Still in the context of Beta, this Docker Scan involved in leveraging up

the Synk Engine and capable of scanning up the local Dockerfile and images as well

as its dependencies for finding known vulnerabilities9.

✓ Dagda: This is considered as the open-source tool for doing up the static analysis of

the known vulnerabilities like; malware, Trojans and other type of viruses. This

involved in using up the antivirus name; ClamAV for detecting up such

vulnerabilities.

According to Song et al. (2019), the biggest difference between the two kinds of tool

eventually lies within the kind of security policies when they are in enforcement. Exploit

migrations are being deployed the policy which aimed at preventing or detecting attacks.

However, the sanitizers eventually aim in pinpointing up the precise locations regarding

7 https://geekflare.com/container-security-scanners

8 https://geekflare.com/container-security-scanners

9 https://geekflare.com/container-security-scanners

7

buggy statements of programs. According to Carlson et al. (2019), the implementation of the

libraries of third party for managing up the software community possess chance in exposing

up the projects towards the vulnerabilities.

2.4 Gap in Literature

After evaluating up all the identified sources on research topic, still the gaps existing

regarding the vulnerability issues, specifically in open-source libraries. Different studies had

provided the vulnerabilities in the open-source software which the libraries mainly use for

further working progression. Hence, there is big gap in identifying the most appropriate tools

for controlling the vulnerabilities related to open-source libraries. Furthermore, still there are

no proper research regarding the tools to eradicate all these security vulnerabilities.

3. Research Methodology

3.1. Research process

There are different types of vulnerabilities present in an open-source library and it might

depend on the type of attacks as discussed in the previous chapter. For example, it can be

caused by SQL injection, flaws in the session management, a leak in authentication, broken

access, and misconfiguration. Similarly, there are multiple tools like docker bench, docker

scan, dagada, and JFrog Xray which can help identify and deal against such issues. The

researcher used these tools to identify and reduce security vulnerabilities in multiple open-

source applications such as Lodash, 7 XStream, Vulas, Html unit, and Handlebars. After this,

the research process includes analysis and comments on the most effective tools according to

particular open-source libraries. However, the research will not be limited only to these

certain tools and techniques. For example, JFrog Xray is a part of JFrog Artifactory which

can connect with universal respiratory, but it is a static analysis tool. Though, it is a good

example of containerized application (Hegedűs et al., 2021). Thus, the researcher is

responsible to explore more and use the best tools and techniques to overcome the limitation

mentioned in the previous section of this study. For example, tools like SmartCheck, Mythril,

and Oyente can analyze open-source applications based on their source codes (Parizi et al.,

2018).

3.2. Used Equipment

There are some fundamental tools as well as advanced tools that helps to complete the

research. For example, MS Word is a basic tool that is used to write down the findings and

entire research as well. The advanced equipment mainly includes software applications that

are used to identify and reduce security vulnerabilities in the selected open-source libraries.

For simplicity, and cost-saving the researcher used only free/open-source or trial versions of

the detection tools. For example, Security Onion, VaraCrypt, Nmap, OSSEC, R-Statistics,

PomWalker, JGit are some essential tools (Kula et al., 2018). Squert and Sguil are two

software options which required to be installed by the researcher. This can help in detecting

attacks in real-time. This has a pf_ring that allowed it to handle a large amount of traffic. On

8

the other hand, Nmap scan will help to identify the open ports (especially HTTP port 80)

vulnerable to attack (Kula et al., 2018).

3.3. Techniques used on data collection and analysis

The source code from the open-source libraries is lexed as per token sequence and then

filtered using a convolution neural network. The code is classified into vulnerable and non-

vulnerable codes. A random forest classifier is used to improve the performance of the

system as shown below.

Figure 2: Illustration of source-code classification

(Source: Russell et al., 2018)

Thus, machine learning is used to identify software vulnerabilities and the source code with

vulnerabilities is mined from open repositories like GitHub.

3.4. Applications

The experimental setup and application of Security Onion are provided below.

Figure 3: Setup and experimental application

(Source: Kula et al., 2018)

The virtual switch is attached to the victim's machine, and it is also attached with security

onion in the VM. When the attacker attacked the machine then the security onion starts its

work.

3.5. Case studies/scenarios

There are multiple cases of using neural networks and free open-source tools for vulnerability

identification and reduction. Kula et al., (2018) used security onion in its case and Russell et

9

al., (2018) also used neural networks on source code. In this scenario, the researcher will do

the same.

4. Design Specification

Here, the techniques to implement security onion software are followed as it is used for

installing, configuration and test of IDS (Intrusion detection system). The design is consisting

of three stacks known as ELK stack which are Logstash, Elasticsearch, and Kibana Search.

At first, Logstash is responsible for collecting the logs which are then indexed by

Elasticsearch so those can be searched easily. At last, the safety of security of the operation

center or SOC is ensured by Kibana. Kibana is responsible for diving deep into suspected

security issues by visualizing and analyzing the logs (Mikail and Pranggono, 2019). The

fundamental framework of the software includes workstations, servers, and a firewall. Now,

security onion can be used to monitor the traffic or data exfiltration as in this case. The traffic

can be monitored from north/south or/and east/west to detect any lateral movements. Security

onion does not collect logs from the personal workstations (like the personal computer) but it

also gets logs from the server so it can hunt host logs, and network at the same time (Bourks,

2020). This fundamental framework is given below.

Figure 4: Security Onion Framework

(Source: Bourks, 2020)

The CPU architecture must be x86-64 else security onion will not be supported. This can be

achieved through an AMD 64-bit processor or standard intel processor. The minimum

specifications are 200 GB of storage, 4GB of RAM, and two different CPU cores. Though,

12GB RAM and 4 CPU cores might require with same storage specification to run the

security onion other than so-import-pcap to import pcap. No new algorithm is required to be

followed other than the standard algorithm to design Security Onion for this research. Hence,

there is no need to discuss the functionality of the model. Standard NIDS and HIDS methods

are followed with standard tools like Sguil, Squert, Kibana, and Capme (Gallagher et al.,

2018). However, there are certain limitations of the software and this framework, and it is

very common. To become successful, it requires some commitments from the users. There

10

are many malicious activities which do not appear at the beginning. Hence, the research is

required to monitor the alerts given in the console of Security Onion. On the other hand,

monitoring the network activities together with corresponding system health and passion to

learn are also necessary. However, the researcher was performing this task on manager so

sudo service docker stop is done after the reboot as shown below.

At last, the method is completed using the restart services with the help of the code given

here:

5. Implementation

There are several outputs for several events that occurred in the workstations and logs of the

entire framework. Moreover, it also depends on plugins for example, during tcp output plugin

the host/port must not be down else it will cause blocking in the logstash pipeline. In that

case, the researcher used a different logstash pipeline. The code which is used to change the

configuration file for a different pipeline is given below.

Previous code: /opt/so/saltstack/default/pillar/logstash/manager.sls

New code: /opt/so/saltstack/ local/pillar/logstash/manager.sls

On the other hand, codes are written to transport a forward even to an external destination

that has minimum modifications. One of the examples of this is given below which is used to

configure when Zeek events are forwarded from dns dataset.

Figure 5: Forwarding Zeek events

(Source: Bourks, 2020)

11

In this research, the latest version (beta) of Security Onion for which, the researcher can use

the tools which help to build a machine learning model that detects anomalies in the logs

formed by the components of security onion. However, logscan is the only machine learning

model available at present and the following code is written to use this model (Argyropoulos,

2017).

The models used in logscan are:

• K5: Login failures are searched with a high ratio from a single machine (one IP) in

five minutes

• K1: Number of logins attempts from one IP address in a window of 1-minute

• K60: Abnormal patterns are searched in the logins from different IP addresses with a

window of one hour.

Analysis tools like Sguil, Squert, Kibana, and Capme are used in this project.

Besides this machine learning method, there are different methods to adding new disks and it

is done in this research when the researcher has required extra space. There are three such

methods to adding new disk or expanding the required based. However, the first method

which is Logical Volume Management is required to install LVM at the time of installation

of Security Onion in the beginning which is not done by the researcher. That is why; the

researcher has used the second method which mounting to add extra space. Though, it is a

hectic task still it helps to mount a drive directly to the nsm. At first, the researcher requires

to stop all of the services as shown below.

Stop and reboot helps to prevent all of the services to start from the beginning which

eventually saves time.

An alternative method of the second one is also present which is little easy and time saving as

it links nsm with new logging location. Though, for this, the researcher requires certain

services such as AppArmor which was not there. Hence, method 2 is followed without any

modifications.

6. Evaluation

Security onion is itself helpful in analyzing the result and this is done using different case

studies which include a graph, plots to provide better visualization and understanding of the

results and main findings. The list of cases is shown in the outputs as presented below.

12

Figure 6: List of Cases

(Source: Bourks, 2020)

The cases are created using The Hive while working on the alerts, Kibana, or Hunt. This

makes the analysis easy especially when interesting and suspicious events are sent to The

Hive.

6.1 Experiment/Case Study 1 - Pivot analysis using Elastic in Kibana

Pivot analysis is used by the Elastic tool in Kibana to analyze types of different data. Both

HIDS/NIDS and Zeek logs. The output is given below which showed that there are over 98

thousand logs analyzed by the Security Onion Console among which most of the logs are

network logs and minimum level of host logs as well. Over 85 thousand Zeek logs are also

identified.

Figure 7: Identified logs

To decode the artefacts in Kibana and even in Alerts, and Hunt, the researcher used

CyberChef. This tool also helped to analyze the data quickly. These tools make the security

onion able for endpoint and network detection which was an impossible and complex task

once.

6.2 Experiment/Case Study 2- Analyse Alerts using Security Onion Console or SOC

After logging into the security onion, SOC is the first thing to see which presents the list of

alerts with count, rule.name, event module, and level of severity. For example, alert numbers

4 to 8, 10, and 11 to 13 in the list below have high severity.

13

Figure 8: Alerts and severity

6.3 Experiment/Hunt Analysis

Hunt analysis helps to analyze the occurrence of NIDS/HIDS and even Zeek alerts. This

provides all of the necessary details for example IP addresses of source and destination

together with the ports. The bar graph showed IP address 10.42.42.253 has the highest

occurrence between 2nd July and 6th July as given in the timeline while the researcher selected

four days.

Figure 9: Result of hunting query

6.4 Experiment/Grafana Dashboard to analyse system health

There is a Grafana link in the SOC which is used to see system health. That means, it checked

if any unauthenticated and unwanted files, viruses or malicious software, application, or any

other such thing enter into the system from the open-source library or other sources.

Figure 10: Grafana Dashboard

This showed that the researcher checks the health of the system from the data of the last

fifteen minutes.

6.5 Discussion

From the overall analysis, it is ensured that the Security Onion can be used for identifying

alerts, then detect if the attack has occurred or not and at last it is also used to check the

14

health of the system. For example, different logs are identified in the first experiment, and

alerts given by the SOC are analysed in the second experiment. The third experiment

identifies the most occurred IP addresses. The researcher can block these addresses to prevent

security vulnerabilities. However, the filter could be used to modify the outcomes with only

open-source vulnerabilities. Moreover, there are different tricks that could enhance the data

analysis in this research. One of the tricks that is used by the researcher is adding Jupyter

notebook from https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html

This is instantly included in the Elasticsearch which provides a network-based access to the

Security Onion Firewall. Though, the researcher has ensured that the Jupyter has installed at

least three python libraries which are pandas, elasticsearch and elasticsearch_dsl. For this the

following commands are needed to be given in Jupyter docker container or Jupyter Host.

This can be done after installing python prerequisites which is followed by executing the

above commands. Though, the researcher was required to import the necessary libraries at

first before using the above command. The commands to import necessary python libraries

are:

Installing Jupyter note provides the next level of hunting where the researcher can use

different machine learning algorithm to hunt data. For example, results from SOC can be

taken and converted into python dict. For example, the converted data provided below in the

tabular format showed the process, timestamp, event, and even target file with version.

https://jupyter-docker-stacks.readthedocs.io/en/latest/index.html

15

7. Conclusion and Future Work

The main research question considered successful detection and prevention of security

vulnerabilities from open-source libraries. To answer this question successfully the researcher

first conducts a literature review where information on different open-source libraries and

tools to detect and prevent security issues there. The researcher has found that Security Onion

is one of the most effective tools for this research. One of the main benefits of this is that it is

open-source and cloud based. The result also showed that SOC helps to visualize the threats

in alerts by showing their severity even in graphs. Though, such tools focus on detecting the

threats rather than preventing them. The researcher can show how to fix the issues for

example, by blocking the IP addresses which occurred most of the time in Hunt analysis.

From the above discussion it is also concluded that adding tricks can improve the data

analysis in Security Onion. For example, the researcher has included Jupyter Notebook which

enable to analyze the data with the help of python dict. Moreover, implementing machine

learning algorithm also become easy with installing jupyter notebook. However, the

researcher could save time if it installs some features at the first as he needs to install those

latter which consume time. As an example, LVM was missing so expanding the space for the

requirement of this research become little tricky so far. This could be better. Moreover, paid

software will be a good idea to use for better results and automatic prevention. Though, the

limited monetary resource of this research has limited it to use any paid software.

16

References

1. Anzt, H., Kuehn, E. and Flegar, G., 2021. Crediting pull requests to open source

research software as an academic contribution. Journal of Computational Science, 49,

p.101278.

2. Maruping, L.M., Daniel, S.L. and Cataldo, M., 2019. Developer centrality and the

impact of value congruence and incongruence on commitment and code contribution

activity in open source software communities. MIS Quarterly, 43(3), pp.951-976.

3. Pashchenko, I., Plate, H., Ponta, S.E., Sabetta, A. and Massacci, F., 2018, October.

Vulnerable open source dependencies: Counting those that matter. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (pp. 1-10).

4. Sittel, P., Oppermann, J., Kumm, M., Koch, A. and Zipf, P., 2018, August. HatScheT:

A Contribution to Agile HLS. In FSP Workshop 2018; Fifth International Workshop

on FPGAs for Software Programmers (pp. 1-8). VDE.

5. Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood,

P. and McConley, M., 2018, December. Automated vulnerability detection in source

code using deep representation learning. In 2018 17th IEEE international conference

on machine learning and applications (ICMLA) (pp. 757-762). IEEE.

6. Harer, J.A., Kim, L.Y., Russell, R.L., Ozdemir, O., Kosta, L.R., Rangamani, A.,

Hamilton, L.H., Centeno, G.I., Key, J.R., Ellingwood, P.M. and Antelman, E., 2018.

Automated software vulnerability detection with machine learning. arXiv preprint

arXiv:1803.04497.

7. Sagar, D., Kukreja, S., Brahma, J., Tyagi, S. and Jain, P., 2018. Studying open source

vulnerability scanners for vulnerabilities in web applications. IIOAB JOURNAL, 9(2),

pp.43-49.

8. Jimenez, M., Rwemalika, R., Papadakis, M., Sarro, F., Le Traon, Y. and Harman, M.,

2019, August. The importance of accounting for real-world labelling when predicting

software vulnerabilities. In Proceedings of the 2019 27th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering (pp. 695-705).

9. Fakhlina, R.J. and Saputra, D.F., 2019. Development and Contribution of Open-

Source Software Communities for the Library Progress in Indonesia. Record and

Library Journal, 5(2), pp.150-159.

17

10. Rücker, C., Günther, T. and Wagner, F.M., 2017. pyGIMLi: An open-source library

for modelling and inversion in geophysics. Computers & Geosciences, 109, pp.106-

123.

11. Adams, L.E., 2018. The contribution of library programmes at the Emfuleni Library

and Information Services in creating social capital to reduce poverty. Unpublished

master’s dissertation, University of South Africa, Pretoria.

12. Song, D., Lettner, J., Rajasekaran, P., Na, Y., Volckaert, S., Larsen, P. and Franz, M.,

2019, May. SoK: sanitizing for security. In 2019 IEEE Symposium on Security and

Privacy (SP) (pp. 1275-1295). IEEE.

13. Pashchenko, I., Plate, H., Ponta, S.E., Sabetta, A. and Massacci, F., 2018, October.

Vulnerable open source dependencies: Counting those that matter. In Proceedings of

the 12th ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement (pp. 1-10).

14. Carlson, B., Leach, K., Marinov, D., Nagappan, M. and Prakash, A., 2019, May.

Open source vulnerability notification. In IFIP International Conference on Open

Source Systems (pp. 12-23). Springer, Cham.

15. Plate, H., Ponta, S.E. and Sabetta, A., 2015, September. Impact assessment for

vulnerabilities in open-source software libraries. In 2015 IEEE International

Conference on Software Maintenance and Evolution (ICSME) (pp. 411-420). IEEE.

16. Decan, A., Mens, T. and Constantinou, E., 2018, May. On the impact of security

vulnerabilities in the npm package dependency network. In Proceedings of the 15th

International Conference on Mining Software Repositories (pp. 181-191).

17. Gkortzis, A., Mitropoulos, D. and Spinellis, D., 2018, May. VulinOSS: a dataset of

security vulnerabilities in open-source systems. In Proceedings of the 15th

International Conference on Mining Software Repositories (pp. 18-21).

18. Ponta, S.E., Plate, H. and Sabetta, A., 2018, September. Beyond metadata: Code-

centric and usage-based analysis of known vulnerabilities in open-source software.

In 2018 IEEE International Conference on Software Maintenance and Evolution

(ICSME) (pp. 449-460). IEEE.

19. Piantadosi, V., Scalabrino, S. and Oliveto, R., 2019, April. Fixing of security

vulnerabilities in open source projects: A case study of apache http server and apache

tomcat. In 2019 12th IEEE Conference on software testing, validation and

verification (ICST) (pp. 68-78). IEEE.

18

20. Chen, Y., Santosa, A.E., Sharma, A. and Lo, D., 2020, June. Automated identification

of libraries from vulnerability data. In Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering: Software Engineering in

Practice (pp. 90-99).

21. Parizi, R.M., Dehghantanha, A., Choo, K.K.R. and Singh, A., 2018. Empirical

vulnerability analysis of automated smart contracts security testing on

blockchains. arXiv preprint arXiv:1809.02702.

22. Hegedűs, C., Varga, P. and Frankó, A., 2021, May. A DevOps Approach for Cyber-

Physical System-of-Systems Engineering through Arrowhead. In 2021 IFIP/IEEE

International Symposium on Integrated Network Management (IM) (pp. 902-907).

IEEE.

23. Kula, R.G., German, D.M., Ouni, A., Ishio, T. and Inoue, K., 2018. Do developers

update their library dependencies?. Empirical Software Engineering, 23(1), pp.384-

417.

24. Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O., Ellingwood,

P. and McConley, M., 2018, December. Automated vulnerability detection in source

code using deep representation learning. In 2018 17th IEEE international conference

on machine learning and applications (ICMLA) (pp. 757-762). IEEE.

25. Mikail, A. and Pranggono, B., 2019. Securing Infrastructure-as-a-Service Public

Clouds Using Security Onion. Applied System Innovation, 2(1), p.6.

26. Bourks, D., 2020. Security onion documentation. Copyright© Security Onion

Solutions, LLC.

27. Gallagher, K., Patil, S., Dolan-Gavitt, B., McCoy, D. and Memon, N., 2018, October.

Peeling the Onion's User Experience Layer: Examining Naturalistic Use of the Tor

Browser. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and

Communications Security (pp. 1290-1305).

28. Argyropoulos, A., 2017. Intrusion Detection for the IaaS Cloud Model.

Websites

1. Geek Flare (2021) 10 Container Security Scanners to find Vulnerabilities Available

at: https://geekflare.com/container-security-scanners/ [accessed on 26th October 2021]

2. White Source (2021) Top 10 Open Source Vulnerabilities In 2020 Available at:

https://www.whitesourcesoftware.com/resources/blog/top-security-open-source-

vulnerabilities-2020/ [accessed on 26th October 2021]

