
1

COMPUTATION OF NUMBERS USING

HOMOMORPHIC ENCRYPTION

MSc Research Project

MSc in Cyber Security

Sunil Gangula

X20189800

School of Computing

National College of Ireland

Supervisor: MICHAEL PRIOR

2

National College of Ireland

Project Submission Sheet – 2021/2022

Student Name:

………………………………SUNIL GANGULA...…………………………………………………

Student ID:

……………………………………X20189800………………………………………………………

Programme:

…………MSC IN CYBERSECURITY…………

Year:

……2022…………

Module:

…………………MSC RESEARCH PROJECT….………………………………………………

Lecturer:

………………………MICHAEL PRIOR……………………………………………………………
Submission Due
Date:

……………………………19-09-2022………………………………………………………………

Project Title:

COMPUTATION OF NUMBERS USING HOMOMORPHIC ENCRYPTION

Word Count:

7480

I hereby certify that the information contained in this (my submission) is information pertaining
to research I conducted for this project. All information other than my own contribution will be
fully referenced and listed in the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the references section. Students are encouraged to
use the Harvard Referencing Standard supplied by the Library. To use other author's written or

electronic work is illegal (plagiarism) and may result in disciplinary action. Students may be
required to undergo a viva (oral examination) if there is suspicion about the validity of their
submitted work.

Signature:

………………………SUNIL G………………………………………………………

Date:

…………………18-09-2022……………………………………………………………………

PLEASE READ THE FOLLOWING INSTRUCTIONS:

1. Please attach a completed copy of this sheet to each project (including multiple copies).
2. Projects should be submitted to your Programme Coordinator.
3. You must ensure that you retain a HARD COPY of ALL projects, both for your own reference

and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer. Please do
not bind projects or place in covers unless specifically requested.

4. You must ensure that all projects are submitted to your Programme Coordinator on or before the
required submission date. Late submissions will incur penalties.

5. All projects must be submitted and passed in order to successfully complete the year. Any
project/assignment not submitted will be marked as a fail.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

3

COMPUTATION OF NUMBERS USING

HOMOMORPHIC ENCRYPTION

SUNIL GANGULA

X20189800

Abstract

The fundamentals of homomorphic encryption has recently received wide acceptance in the domain of encryption.

The idea of being able to perform various mathematical operations on arithmetic data and later encrypting it with

generated keys in such a manner that only a legit user can access to the encrypted data has been fascinating to the

research scholars. Therefore, the presented thesis utilizes the homomorphic scheme and proposes a method to

perform mathematical operations such as addition and multiplication on numbers being provided by the user. The

process includes obtaining a plain text from the user and converting it into a cipher text that can be decrypted on

the user end. The primary focus is to eliminate the noise that comes along with the input and attach it with a secret

key so that the plain text is converted into a cipher text. On the other hand, the cipher text can be decrypted back to

plain text by using the public key to get the approximated value on determination of addition and multiplication.

The thesis also includes techniques of learning with error and ring learning with error. The final evaluation of the

thesis is done on the basis of output so generated by the model.

Keywords: Cryptography, Homomorphic encryption, Cloud security, Partial Homomorphic Encryption

Contents

1. Introduction .. 4

1.1 Background ... 5

1.2 Research Questions .. 8

2. Literature Survey .. 8

2.1 Securing Data using LWE and RLWE based Encryption ... 8

2.2 Securing Data using Secret Key and Public Key based Encryption ... 9

2.3 Securing Data using Homomorphic Encryption .. 11

3. Research Methodologies ... 12

3.1 Types of Homomorphic Encryption ... 12

3.2 Proposed Methodology ... 14

4. System Design .. 18

5. Data Implementation ... 18

6. Results and Evaluation ... 20

7. Conclusion and Discussions ... 22

7.1 Conclusions ... 22

7.2 Challenges and Limitations .. 23

4

7.3 Future Challenges ... 23

References .. 24

1. Introduction
 In the advent of technical aspects, the usage of computer aided automation has had an immense

effect in data protection and data storage. This process of protection and storage needs to be efficient

in nature so that the data can be accessed by only legit users. Giving this access to legit users refers to

providing a controlled access of data to the user in a secured manner using the process of

authentication. However, there are three major aspects of securing information:

• Authenticating the process to legit user

• Giving him access and control of the data

• Encrypting the entire process of data transfer

 Apart from this, the creation and generation of large amounts of data not only makes this data less

secure, but also makes it exposed to third party attacks. Such attacks raise security concerns to end

users and put them in a vulnerable situation by making it difficult for them to trust organizations that

tend to secure data for them. In addition to this, the end users can’t afford the cost of securing their

data using private organizations or local trusted companies. This leaves them with no choice, but to

gather and collect their data and use cloud computing services. It has been lately observed 80 percent

of company employees tend to make use of cloud sources to store and secure their data [1]. This

percentage is most likely to increase in the years coming ahead. Such a high acceptance ratio of cloud

usage has been witnessed due to the benefits its offers. Some of its advantages include:

• Providing a flexible environment to store data

• Enhancing and working towards improving disaster recovery in times of single point of

failure

• Accessing increased amounts of collaboration to utilize maximum resources

 Such benefits and advantages being provided by cloud services make people attract to utilize their

resources. However, it is worthy to note here that, providing confidentiality in a cloud environment is

something which is not guaranteed by the developers. This makes it less adaptable to store large

amounts of data with full security. In addition to this, cloud services also undergoes an issue

encrypting and decrypting data before an application needs to be downloaded on a system server. For

this process, a user would need to encrypt, decrypt, upload and re-upload data, every time he would

use cloud facilities. This makes the entire process of securing data a tedious and time consuming job.

In addition to these limitations, all the computations being performed on the cloud are outsourced to

another public cloud; thereby leading to a raising concern of data privacy amongst individuals. This

impact the trust factors of the end user in utilizing the services provided by a cloud and also make

their data vulnerable to intruder interventions like hacking and breaching of a server system.

 Therefore in such a scenario, wherein a user is restricted to store and secure data on cloud, the

concepts of encryption and cryptography comes in to picture and serves as a driving motivation to the

authors to contribute their work in this domain.

5

 A fundamental aspect which adheres to issues mentioned above are further resolved using

cryptography. Cryptography is often called as an art of concealing and hiding information so that it

can be accessed only by a specific user. This hiding of information prevents an intruder from

attacking the system and decrypting the shared information. For this purpose, secret codes are used to

convert texts into cipher texts. In earlier times, the process of cryptography was mainly used to send

messages confidentially to protect their privacy, unlike now that includes a specific process of

encryption using a computational process. This computational process majorly includes arithmetic

and logical operations to be performed on numbers and data. However, the visual representation of

this data is done through gates and circuits. Homomorphic encryption is one such type of encryption

that uses a plain text and converts it into a cipher text using secret and public keys on both the ends of

data transfer.

 The origin of the word “Homomorphism” is from ancient Greek culture which translates to “same-

shape” [2]. The usage of this word was first observed in algebra; wherein certain transformations

were done on algebraic sets so that they looked similar in structure. This transformation however

involved preserving all the existing relations between the arithmetic operators and operands. In the

field of cryptography, the concept of homomorphism is used along with encryption. Therefore, a

homomorphic encryption can be used to conduct mathematical operations by encrypting the input

and decrypting the result using specific keys. This concept is however considered to be as the new

realm in the field of cryptography that gives the data an ability to securely store its data and perform

mathematical computation without the necessary to decrypt it in the initial phase. The technique is

followed by providing a computational operation to be performed on the data while the data remains

encrypted. Hence, this enables the usage of high computational power without the need to sacrifice

on user privacy issues.

 Thus, by implementing this concept, computations can be carried out to maintain the privacy on

both the ends of data communication. Next, depending on the number of arithmetic operations being

performed on the data a homomorphic encryption can be categorised as:

• Fully Homomorphic (FE)

• Some-what Homomorphic (SHE)

• Partial Homomorphic (PHE)

 On the other hand, it can be observed that a major chunk of homomorphic encryptions are based

on lattice cryptography which involves the concepts of Learning with Errors (LWE) and Ring

Learning with Errors (RLWE). With all the advantages being provided by HE, the cipher texts

involved in the process of encryption also includes a variant of noise in it. Due to this noise and

errors such as LWE and RLWE are introduced.

1.1 Background

 The idea of cryptography has been understood as a secretive writing technique since the

beginning of time. Experts believed that the early documents were all written using cryptic

techniques and were considered as a way of sending and transferring data without the involvement

of any other person. In order to transmit secret information between two people, cryptography was

thought to have been developed. The concept was primarily used in applications ranging from

battles to covert business transactions [3]. As a result, this format was also widely used in

6

computer applications whenever information had to be transmitted over an unreliable medium or

even the internet. The fundamental operations of cryptography are as follows:

• Confidentiality: Using this method, it is assumed that only the intended recipient can read

the message

• Authentication: This technique considers validating the identity of a real person

• Integrity: This method is in charge of ensuring that the message sent to the user has not

been altered in any way

• Non-repudiation: This mechanism has been proven to make sure that the information has

only been transferred legitimately by the sender

• Through the process of encryption and decryption, the key exchange mechanism makes

sure that the derived key is only decided to be shared only between the server and the

client

 The plaintext, or unencrypted data, is typically used as the starting point for the cryptographic

process. This plaintext is used to encrypt the data into cipher text, which is then further decrypted

to restore the original plaintext [4]. The preferred techniques that are

appropriate for the model's requirements are used to carry out the encryption and

decryption process. Through the creation of a secret key, the encryption and decryption process is

also communicated between the client and the user. Additionally, an algorithm is used to generate

the secret key. The following is a common formula to create these keys:

Where;

• P = Plaintext

• C = Cipher text

• E = Encryption Method

• D = Decryption Method

• K = Generated Key

 However, the technical analysts have organised the cryptographic algorithms in a variety of

ways. The cryptographic algorithms are grouped in this thesis according to the keys that are

produced.

(A) Private / Secret Key

 A private key involves the generation of a single key both the ends of encryption and

decryption. The sender and receiver of the encrypted sensitive data share this key. Due to the fact

that both parties share it, the private key is also referred to as "symmetric". The creation of keys,

which are then used to encrypt the plaintext and send it to the recipient as a cipher text, is shown

in Figure 1.1 (a). The recipient then uses the same key to decrypt the message and restore the

message's original plaintext. The process of secret key cryptography is known as symmetric

encryption because it takes place when there is only one key present. On the other hand, a public

key cryptography is comparably slower than private key cryptography. A private key is typically a

long, impossible-to-guess string of bits generated in a random manner.

7

Figure 1.1 (a): Secret Key Cryptography [6]

(B) Public Key

 Public key cryptography is used in a manner that differs noticeably from how symmetric

cryptography operates. Symmetric cryptography is typically used on a much larger scale by

financial corporations and government organisations. In terms of key management, numerous

problems with the deployment of symmetric keys were found. As a result, public key

cryptography was created [5]. It is necessary to convert the plaintext of a message sent between

two parties—known as an interaction—into cipher text. The encryption phase generally refers to

this process of conversion. This encryption process is carried out two keys so that only the parties

involved in the communication are aware of the generated key.

Figure 1.1 (b): Public Key Cryptography [7]

8

1.2 Research Questions

 The primary aim of the thesis is to conduct the executional process of Homomorphic

Encryption by performing mathematical operations such as addition and multiplication. The

executional process is proposed to be carried out using private and public keys on the ends of the

sender and the receiver. To complete a secure information transfer process, the generated keys are

then passed to the appropriate client and receiver ends where they are further encrypted and

decrypted. Before the model is put into use, though, there are some research questions that need to

be resolved. The following are the narrated research questions of the thesis:

• Will the proposed model generate desired and optimized results?

• Will the implementation of secret keys result into less time consumption of resources?

• What are the existing works in the same domain?

• Will the encryption occur after the input is provided by the user?

• Will the execution of homomorphic encryption work on integers?

• What mathematical operations are to be performed on the keys so generated?

• How will the model be evaluated?

• How will the conversion of plain text to cipher text occur?

• What are the functionalities of the polynomials in the thesis?

• How will the keys be generated?

• What is the process of encryption and decryption?

2. Literature Survey
 This section of the thesis highlights on the research work being done by other scholars in the

same domain.

2.1 Securing Data using LWE and RLWE based Encryption

 In a research paper by authors in [8], they proposed a method to detect the cipher texts using HE.

In this process the cipher texts were taken as inputs and were further reduced to its dimensional size

with respect to the base rings. The dimensional reduction was done using a trace function and a

mathematical computation was calculated to improve the efficiency of the overall system. In this

system, the trace function was later used to evaluate the plain texts homomorphically and the RLWE

was used to generate Rq from Zq factors. The method proved to immensely enhance the overall

functioning of the model helped to generate optimized results. The mathematical computations

performed by the author were followed by addition and multiplication using RLWE based

homomorphic encryption.

 In another study by authors [9], they converted LWE plain texts to a single row of RLWE

randomly generated numbers of cipher texts. The LWE plain text was given as {(bj , aj)}j∈[n] and a

cipher text was to be generated using a polynomial b = P j∈[n] bj ·Xj and ai = P j∈[n] aj [i]·Xj for i ∈

[N]. Homomorphic Encryption was further performed on the polynomial and an RLWE scheme was

developed. However, the implementation of this method was combined with the concepts of LWE

and RLWE which took input as plain texts and generated polynomial based outputs in the form of

9

cipher texts. In a similar study by Boura et.al in [10], the author worked on the concepts of

homomorphic encryption and presented a detailed summary on various types of the same. He also

mentioned how the encryption could be performed on both the ends of the communicating channel.

However, the primary aim of the author was to convert plain texts into cipher texts using RLWE

based homomorphic encryption. The author also proposed the entire working of secret keys and

public keys and mentioned the effects of each keys on the user end. It was observed that the private

key was however slower in implementation as compared to the working of the public key. In the later

phases the author also mentioned the working algorithm of LWE and RLWE. The research work was

further contributed to highlight the importance of HE in any system and how its execution can

preserve the entire phase of encoding a plain text. In addition to this, his work also included a

detailed explanation on key management system (KMS). The proposed KMS enhanced the overall

working off the model and helped to generate optimized results.

 Cheon and Kim [11] contributed their study in the domain of homomorphic encryption using

ElGamal. This method was observed to work on a similar structure to that of a traditional public

key encryption and further involved the decrypting of information through the secret key of the

recipient. The overall time consumption of the model was comparatively less, but however it took

high computational power to perform small mathematical operations. Therefore the author could

perform only the addition of arithmetic numbers using LWE and RLWE. The method was

however used to highlight the working implementation of errors and noise. This work was further

extended by authors in [12], wherein they proposed a framework that enhanced the overall

functioning of the model. The authors used the concepts of HE to convert plain texts to cipher

texts and further provided an optimal rate of 1 – o. However, the model was built to focus on low

latency communications that enhanced low time consumption with less computational power

involved. The author also extended the same research work to cloud environment wherein the

generated keys could be stored in a secure manner. The overall implementation also included

RLWE and LWE based homomorphic encryption scheme. Using this method, the overhead

communication cost was immensely reduced on the clients end.

2.2 Securing Data using Secret Key and Public Key based Encryption

 As it was mentioned in the sections above, a single key is typically used in the working

implementation of a symmetric encryption algorithm. Therefore data encryption and decryption

are handled by the same key on both the ends. However, there are numerous algorithms, including

DES, AES, and Blowfish, to identify this type of encryption. In such a scenario, each algorithm is

in charge of gathering and storing various kinds of data in accordance with their respective sizes.

Additionally, the size of the key involved is fixed by this block size. Therefore, the output

produced in this manner takes different form of cipher texts. The components of symmetric

cryptography are listed in below:

• Plaintext is regarded as the initial information that the sender wishes to send to the

recipient. In most cases, this plaintext serves as the input for the encryption algorithm

• A set of procedures known as an encryption algorithm are carried out when plaintext is

changed into cipher text

• The plaintext is combined with the secret key to create cipher text, which is the generated

value that is used to do this

10

• Cipher text is used as the encryption algorithm's input and is regarded as the original

plaintext

• Decryption algorithm: this is a set of procedures used to decipher the cipher text while

using the secret key

 To create a single key for data encryption and decryption in symmetric encryption, a well-

known technique for private key encryption is used. Most commonly used algorithms in secret key

are AES and DES algorithms.

 The authors of a study [13] suggested an AES-based method to secure data stored in the cloud.

The main idea behind this method for transferring data from one end to the other was

permutations. The authors used a set of keys, such as AddRoundKey and ShiftRowKey, to finish

the encryption process. On the basis of bit size, these keys were iterated on a regular basis. This bit

size was thought to be sufficient for the receiver to decrypt the cipher text. Although the key

management system only needed a small amount of storage space, the mechanism still managed to

achieve high encryption standards. The process effectively protected the system's overall

confidentiality and integrity while encrypting and decrypting the data. In a different study by [14],

the authors suggested a simple cryptographic method that could get around cloud storage

problems. In later stages, the authors also suggested a hybridised approach that could combine

symmetric and asymmetric techniques and lead to a successful implementation of cloud data

security. AES and RSA were however included with this model. However, the model with RSA

algorithm implementations was successfully implemented in comparison to other existing

techniques like DES and 3DES.

 As mentioned in the previous section of the thesis, two keys are used in the implementation of a

public key and an asymmetric encryption algorithm is used to carry out the execution. While using

this method, two generated keys are used: a public key and a private key. The private key is only

known by the user of the communication channel, while the public key is accessible to everyone.

However, there is a mathematical relationship between the two keys and they are connected to one

another. Calculating private keys from public keys requires a lot of time in later stages. Since it is

impossible, the private key cannot be derived from the public key. However, it has been noted

that the two keys behave differently depending on the application being used. When data is

encrypted, the public key is used to encrypt the data. However, when the message needs to be

decrypted, the use of a private key enters the picture. Private keys can, however, occasionally be

used to generate digital signatures that are then verified with the aid of a public key. The

commonly used algorithms of public key encryption include DSA and RSA algorithms.

 The authors of a study by [15] suggested using an asymmetric key encryption algorithm that

was based on the idea of linear geometry. To enable the information transmission process to take

place covertly over a risky internet platform, both the substitution and transposition techniques

were employed. The idea behind this model was to protect images rather than texts that were sent

over the communication channel. The technique was fully responsible to use random number

generator and further developed a random matrix that could cipher the bytes from secret files. The

asymmetric encryption algorithm, which was based on the ideas of public key cryptography, was

used by the authors in another work by [16]. This system model was responsible to transfer data

over neural networks and later provide an authenticated and secured method to protect the data on

11

an untrusted platform. The model generated a non-linear clustering algorithm and used 32 bit

registers to operate effectively. The method later employed a pseudo-random number generator to

produce a string of random numbers that could be constructed using round keys.

 The diagram below explains the common workflow of a cryptosystem model as observed

through the literature survey so conducted:

Figure 2.2: Common Workflow as observed in the Literature Survey

2.3 Securing Data using Homomorphic Encryption

 According to research by Maya and Hyotaek [17], the authors concentrated on the use of

homomorphic encryption and asserted that it offered better security when tested on arithmetic

numbers. They claim that this algorithm has improved the system's general security and privacy.

In a related piece of work, Jian. et. al. [18] implemented the principles of a fully homomorphic

algorithm and proposed to create an arithmetic algorithm based on modules that could fulfil the

requirement of maintaining privacy in a third-party cloud. The effectiveness and performance

measure of this algorithm were later demonstrated to be superior to that of a similar study

published at Cryptology EUROCRYPT 2010 by Marten van Dijk et al. In [19], Na. et. al.

contributed their research in order to create applications based on homomorphic encryption

(HME). The authors of this paper conducted a review of all the current systems and made

improvements to the model. A thorough explanation of the significance and restrictions of HME

was put forth by Monique et al. in [20]. The author reviewed several research papers and

further summarised them in his work, and came to the conclusion that HME has advantages over

RSA. His work was further developed to study the algorithm and was later assessed for

performance measures. Tebaa et al [21] proposed a method in the same domain and were further

able to increase accuracy by fine-tuning the hyper-parameters of the existing algorithm. However,

the author's objective was to improve the system's overall accuracy.

 Mihai and Cezar specifically highlighted the HME model in their study [22] and attempted to

create applications that could protect all the sensitive data stored in the cloud. In a different paper

by Ciara et al., [23], he presented real-time PHE applications and later suggested that they be

12

implemented on GPUs. In a similar research work by Li et al. in [24], the author suggested a

straightforward method for carrying out Full Homomorphic Encryption (FHE), using matrix

addition and multiplication as the mathematical operation to carry out error-free plaintext

encryption. A secure channel of communication between user parties was thus created using this

technique.

 In a related piece of work, Yannan et al. in [25] concentrated on problems with conventional

cryptography and attempted to encrypt data in the cloud by transferring storage space

incrementally. He suggested a multi-cloud architecture with N data centres that could repeat the

data and divide it appropriately for this purpose. To secure the entrustment of computation to a

third party, the author carried out the experimental studies using homomorphic encryption in

conjunction with public key cryptography. Additionally, he observed conventional cryptographic

techniques like multiplicative and additive homomorphism. In another work by Ahmed et al in

[26] he implemented fully homomorphic encryption (FHE) and offered services for outsourcing

calculations that could encrypt user data from a distance. The user data was majorly stored in data

centers and retrieved on demand. This concept of outsourcing an HME was named as Verifiable

Fully Homomorphic Encryption (VFHE). Many existing schemes have shown that the concept is

feasible, but the performance needs to be dramatically increased in order to make it practical for

real time based uses. One subtle challenge is figuring out how to deal with the noise effectively. In

addition, the cloud's storage capacity and processing time affected the service's ability to be

implemented quickly. His work also provided a well-structured and symmetrically verifiable FHE

based on a noise-free, noise-permanent statistical fundamentals design that is independent of

homomorphic cipher-text evaluation.

3. Research Methodologies
This section of the thesis highlights on the fundamentals of homomorphic encryption and further

mentions the methodology of the proposed system.

3.1 Types of Homomorphic Encryption

 Homomorphic Encryption includes the process of securing data after a set of mathematical

operations are performed on it. Such mathematical operations enable the conversion of cipher text to

plain text without revealing and decrypting the original data. Hence, this encryption scheme is

observed to be a sub category of cryptography that helps to transfer data by hiding information in it.

The concept of HE is briefly explained in [29], wherein the author explains the codes of cryptography

using errors. However, the execution of HE majorly involves conversion of plain texts to cipher texts

by adding a binary operation and further executing them. However, it is important to note here that

on performance of such operations the storage and retrieval of user data is the most crucial part and

hence needs computational analysis to be done on it. In such a scenario, the usage and

implementations of HE based encryption and decryption proves to be fruitful. The process of HE

allows encryption to be done with less amount of time consumption, less computational complexity

involved and more security being provided to the user data. One of the most important characteristic

of an HE is that it allows the execution of mathematical operations to be done on encrypted data

without the need of decrypting it first. This characteristic serves as an added advantage and an

alternative to traditional cryptography. The executional process of an HE is simple in working and

13

consists of only binary operations such as AND and XOR. Hence, the addition and multiplication of

arithmetic numbers can take place as:

AND (b1, b2) = b1 · b2

and XOR can be seen as the addition of two bits modulo 2:

XOR (b1, b2) = (b1 + b2) mod 2

The implementation of a generic HE occurs in four stages as:

• Generation of the key

• Encryption of the input

• Decryption of the output

• Mathematical operations being taken place on the numbers

The figure below explains the involved four steps:

Figure 3.1: Steps of Homomorphic Encryption [28]

Where:

• pk: input taken using the public key

• C: the involved circuit on which operations occur

The working implementation of a traditional HE is determined by the number of operations involved

in the process. Hence, on that basis an HE can be categorised as:

• Fully Homomorphic Encryption (FHE)

An FHE is believed to perform arbitrary functions on the encrypted data that further enables

mathematical computations to be performed on the input. However, it is important to note that

executional working of an FHE follows asymmetric encryption method and performs

14

mathematical operation on the input at the bit level. For a given set of cipher texts (c1,c2…..cn)

and encryption is performed on the messages (m1,m2….mn). In such a scenario, an FHE offers

its functionality as f (m1, m2……mn). This functionality is responsible to securely convert

plain text into cipher texts and finally provides the result by decrypting the given input.

However, throughout the process of encryption, it is necessary that the input components

remain encrypted and can only be decrypted by the private key of the receiver. It is worthy to

note here, that the original HE concept was developed to work on polynomials, but its

implementation raised issues with regards to Ring Learning with Errors (RLWE). Hence, it

was then that the FHE was used on arithmetic numbers.

• Partial Homomorphic Encryption (PHE)

When the implementations of computations were required to be done on large datasets the

PHE scheme of HE was used. Large scaled data that was used in big corporative companies

demanded high level of security. In such a scenario, Partial Homomorphic Encryption was

taken into consideration as a solution to this issue because they enabled arithmetic operations

to be carried out on encrypted data by employing an analysis that can be performed in

parallel. However, the most important feature of an FHE is its infinite chaining of

mathematical functions in the cipher space, which allows for the addition and multiplication

of encrypted operands indefinitely. Since the HE schemes are built on fractionally inaccurate

depiction of plaintext values, PHE is introduced as a mechanism scheme that reduces the

noise of cipher values.

• Somewhat Homomorphic Encryption (SHE)

SHE is considered to be as an extension of a PHE that involves the arbitrary operations to be

performed either on multiplication or addition. This eventually means that an SHE is

restricted to a certain boundary and cannot perform beyond that. It can compute only small

additions and multiplications such as calculation of average numbers and addition of two

numbers. The SHE scheme is further bootstrappable. This characteristic of an SHE allows the

encryption to be evaluated only on its decryption circuit. Hence with this structure, the

encryptions can perform arithmetic operations using specific libraries and carrying out the

process of key generation and decryption.

3.2 Proposed Methodology

The primary aim of the thesis is deploying the working implementation of homomorphic

encryption from scratch. For this purpose, the authors initially went through the research work in

the same domain and surveyed multiple existing techniques that supported HE. It is worthy to note

here that the primary inspiration of the encryption system was derived from the concepts of BGV.

BGV is an encryption scheme that works on matrices and generate vector outputs in the form of

results. Its similar working is implemented in homomorphic encryptions as well. However, for the

implementation of the thesis, the authors have used the concepts of Partial Homomorphic

Encryption (PHE) along with RLWE

15

Figure 3.2: Workflow of the Proposed System [27]

Ring Learning with Error (RLWE) is believed to be a variant of Learning with Errors (LWE). An

LWE is known to work on integers and tends to select specific pairs s from (ai, bi) and further

perform the function of encryption. Here, (ai and bi) are considered to be input integers and s is a

pair selected from the input on which the final operation is to be performed. Since, the presented

thesis aims to implement on polynomials; the authors executed the fundamentals of RLWE.

RLWE works on polynomials and considers the same input of polynomial vectors as (ai, bi).

Further, it selects a pair s and performs encryption using a polynomial modulus. The formula to

calculate the polynomial modulus is given as:

d<n, and xn≡−1 (mod⟨xn+1⟩)

Where;

• d is the degree of polynomial

• n is considered to be a power of two

• x represents a positive polynomial so entered

Using the concepts of PHE based RLWE encryption the authors perform arithmetic operations of

addition and multiplication on the numbers so provided by the user. The presented homomorphic

operations are as follows:

16

• ADD (A, B): A and B are two polynomial inputs given by the user. An encryption of ‘N’ is

performed on each polynomial and the output is generated in the form of A+B. Hence the

formula for performing addition would be:

AN×2 + BN×2

 Here the binary digit 2 represents the degree of polynomial.

• MUL (A, B): A and B are two polynomial inputs given by the user. An encryption of ‘N’

is performed on each polynomial and the output is generated in the form of A x B. Hence

the formula for performing addition would be:

AN×2 + BN×2

 Here the binary digit 2 represents the degree of polynomial.

As per the concepts and methodologies mentioned above, the implementation of PHE can be

broken down into the following steps:

• Key Generation

The process of key generation begins by secretly generating a random key sk and performing

uniform probability distribution on it represented by R2. Since sk is a secretly generated random

key, it is considered to be a polynomial with coefficients of 0 or1. In a similar way, a public key is

also generated for a polynomial input a. This randomly generated public key is represented as Rq.

In the next stage of key generation a tuple is created and employed over Rq. The formula of tuple

creation is given as:

pk=([−(a⋅sk+e)]q,a)

• Encryption

Since the thesis supports encryption of polynomials using RLWE, the formula used for the same

shall be represented as:

Rt=Zt/⟨xn+1⟩

Where:

• t is the plain text modulus

• R is the RLWE factor

• Z is a set of integers

• n is considered to be a power of two

• x represents a positive polynomial so entered

The encryption however includes encoding an integer, converting it into a polynomial and finally

decrypting the same on the receivers end. For this purpose, the encryption algorithm takes the

input as public key pk ∈ Rq×Rq, polynomial as m ∈ Rt and decrypts the output on the receivers end

as ct ∈ Rq×Rq.

17

• Decryption

The process of decryption takes place on the receivers end and involves the same formulas as

mentioned above. However, it is in this process that the generated encryption is decoded using the

public key of the sender and the private key of the receiver.

• Evaluation

The process of evaluation is considered to be as a major part of any system model. Since this

contains the parameters on which the entire implementation would depend on, this stage of

evaluation is very critical. However there are certain factors on which the evaluation of an

encryption depends on. These factors are:

➢ Security: securing a data is the most important factor to be considered while transferring

the information on a public platform such as the Internet. If the users feel their data is safe,

it makes them comfortable and easy to trust the process and the third parties so involved.

➢ Time complexity: when a data is under the process of encryption, the time it requires to

encrypt the data on the senders end and the time it would require to decrypt the data on the

receivers end, sums up to another important factor which decides the overall performance

of the system. In such a scenario, it is also necessary to comprehend the amount of data

that needs to be encrypted. If there is large amount of data involved, the time for

processing the same would eventually increase and vice versa. Hence, for this factor fulfil

successfully it is important to select appropriate encryption schemes as per the requirement

of the model.

➢ Computational complexity: larger the data more is the amount of complexity involved in

the implementation. Hence it is necessary that the built model provides an optimized result

with less computational overhead involved.

18

4. System Design
The entire implementation is proposed to take place on a Python setup. The system design of the

proposed model is depicted in figure below:

 Figure 4: System Design of the model [30]

The system of the proposed model comprises of three modules as observed in the diagram above.

This majorly includes key generation, encryption and decryption. A detailed explanation of each

step is mentioned in the next section.

5. Data Implementation
The entire process of data implementation has been done using the Python language. The system

proposes the working execution of addition and multiplication of two numbers being entered by

the user. The authors have tend to use RLWE based PHE to carry out the same. The diagram

below depicts the implementation of the model on the sender and the receiver side.

19

 Figure 5: Architecture of the Proposed System

The process initially begins by the user entering the first number that is to be operated.

Considering in this case, let the number be 25 as depicted in Snippet 1. The number is taken as

input on the back end by the sender and is further processed to encode the given message. This

message or the input undergoes the process of encryption. At this stage the encryption is

performed using the public key. A public key is used as it is known to both the communicating

parties i.e. the sender and the receiver. Next, arithmetic computations are performed on this

encrypted data and the number 25 is converted into a cipher text of arrays. This array is considered

to be a 16 digit encrypted array.

In the next stage, the user inputs the second number that is to be operated along with the previous

number so entered. In this case, the second number so entered is 47. Due to the advantageous

feature of HE, the encrypted code of 47 is directly added to the already existing encrypted format

of 25. This eliminates the need to make changes in the source and hence operates and encrypts on

the already existing encryption. Therefore, an encrypted format of 47 is added to the encrypted

format of 25 and two-16 digit arrays are formed and simultaneously added on the back end.

Once the computation of addition is performed and completed, the final answer of 25 + 47 is

calculated and still kept in the encrypted format. Further, this needs to be decrypted so that it can

be present in a readable format to the receiver. Hence, the process of decryption involves the usage

of the secret key which is known only to the sender; unlike the public key which was initially

shared between both the parties in stage 1.

Once the secret key of the receiver is used to decrypt the addition of two numbers, the resulting

format is readable to the user and is displayed on the screen as addition of two number to be 72

(25 + 47) as depicted on Snippet 1. However, the same procedure is followed for multiplication of

20

two numbers as well. This multiplication can be further viewed in Snippets 3 and 4 which are

mentioned in the results section.

6. Results and Evaluation
The evaluation of a typical HE based encryption occurs on the basis of performance speed of the

encryption, the security provided by the encryption and the time taken to perform the mathematical

operation. In the proposed thesis, we have implemented Partial Homomorphic Encryption (PHE) on

arithmetic numbers. The mathematical operation being performed on they are addition and

multiplication. However it is worthy to note here that, this process of encryption allows altering the

data on the encrypted format and thereby eliminates the need to continuously update the input data.

The below snippets depict the results so obtained after performing mathematical operations on them.

Snippet 1 and snippet 2 illustrates addition of two numbers using HE; wherein the user enters the first

number. This number is initially encrypted and converted into a 16 digit array. The user then enters

the second number, which is further added to encrypted format of the first number. In the space

provided for the addition row, the mathematical operation of two numbers take place in an encrypted

format. Next, the additions of the two numbers are generated as output in a decrypted format that is

readable to the user. However, the same process is applied to the mathematical operation of

multiplication.

Snippet 1: Addition of two numbers

21

Snippet 2: Addition of two numbers

The above snippet depicts the addition of 12 and 25, in such a way that the user initially enters the

number 12 as the first number, which is then encrypted to a 16 digit array. The user then enters the

second number as 25, the encrypted format of which is added simultaneously to the existing

encrypted format of 12. The addition of encrypted data takes place and the final answer as 37 (12+25)

is displayed in a readable format to the user. However, the same process is applied to the

mathematical operation of multiplication.

22

Snippet 3&4: Multiplication of two numbers

7. Conclusion and Discussions
This section puts an end to the proposed thesis and highlights the involved conclusions followed by

challenges and limitations.

7.1 Conclusions

The confidentiality of information is more important than ever in today's, Internet-driven world. It is

essential to safeguard user profiles and resources from malicious third parties for highly sensitive

systems. However, it is now a common practice to encrypt data and exchange keys with service

providers, cloud operators, etc. This model gives up control over the sensitive data's privacy. The

only people who can access the data are users or service providers. Even after the user has ended

their relationship with the services, unreliable cloud operators may continue to hold onto sensitive

data and the identifying information of users. For this purpose, utilizing homomorphic encryption

(HE) schemes is a promising approach for maintaining the data's privacy. HE is a unique kind of

encryption technique that enables any third party to manipulate the encrypted data without first

decrypting it. As a result, the authors of the thesis examined the HE and FHE schemes in this paper.

In particular, the specifics of the well-known Partially HE (PHE) and Somewhat HE (SWHE), which

are significant pillars of achieving FHE, were presented starting from the fundamentals of HE. The

major FHE schemes were then presented with this classification after we divided the FHE schemes in

the literature into three different categories.

On the other hand, for any encryption based system, it is important to evaluate the process on the

basis of security and speed. For that purpose, the authors of this thesis have conducted Homomorphic

Encryption to perform addition and multiplication of two numbers. The primary aim of the authors

was to focus on advancing key arithmetic operations based on RLWE-HE. The implementation was

23

carried out using Python and arithmetic library. In the library, we provide both a quick parallel

implementation and a hardware cost-effective serial implementation for each of these operations. In

order to show the speedup possible in hardware, we also described a modular and hierarchical

deployment of a software accelerator using the modules of the suggested arithmetic library. The

accelerator and the modules' parameterized design implementation framework by giving the modules

the flexibility to be used in additional schemes. It's critical to comprehend how homomorphic

schemes operate because there has been a significant amount of study conducted in this area. For this

reason, the authors described how to build a fully homomorphic encryption system. The authors

demonstrated a plan for a mathematical operation to be carried out on two numbers. The

homomorphic property and the accuracy of the decryption are both non-trivial even in this

mechanism. To make the most of the plaintext and cipher text, space and variables must be carefully

chosen. However, every modification to the cipher text has the potential to make the mathematical

operations farther away, which will immediately make the decryption process impossible.

7.2 Challenges and Limitations

Making an implementation that is both effective and secure is currently a huge challenge. Large

dimension lattices are required for the confidentiality of the fully homomorphic scheme, which

means there will be more operations. However, there are two sides to this improvement. To fulfil

that purpose we worked on the implementation of partial homomorphic scheme. It is still less

effective though, and the programme could be made more effective. For instance, it would be better if

the key generation process were more random. Considering how many multiplication and

additions the programme performs, some functions could still be made simpler.

Following are the major challenges experienced by a model:

• Need of Mathematical Innovations: By enhancing the mathematical foundations of FHE, a

speedup factor of x1 can be attained

• Need of Software Innovations: By looking into potential parallelization opportunities for FHE

when used on multi-core processor architectures like graphical processing units (GPUs); the

overall process can be enhanced

• Need of Hardware and Architectural Innovations: By using a specially designed high

performance hardware accelerator, the full parallelism of FHE can be obtained

7.3 Future Challenges

Future work should aim to implement and optimise the bootstrapping based arithmetic operations.

One of the crucial processes for achieving fully homomorphic encryption is the bootstrap

operation, but it is still very expensive to carry out. The bootstrap procedure can be improved to

make it more useful. Another future work that involves HE is to take advantage of the inherent

benefits that other RLWE-based homomorphic encryption schemes, like BGV, offer and further

incorporate them in the library.

24

References
[1] Applications of Modern cryptography Technologies, applications and choices.

https://www.surf.nl/binaries/content/assets/surf/en/knowledgebase/

2010/rapport_201009_SNcryptoWEB.pdf Accessed July 13, 2017

[2] Arita, S., Nakasato, S.: Fully homomorphic encryption for point numbers. In: Chen, K.,

Lin, D., Yung, M. (eds.) Inscrypt 2016. LNCS, vol. 10143, pp. 253–270. Springer, Cham

(2017

[3] Data Encryption Standard. http://searchsecurity.techtarget.com/ definition/Data-

Encryption-Standard Accessed May 12, 2017

[4] Python Libraries. https://www.python.org/ Accessed July 16, 2017

[5] Nabihah Ahmad, Rezaul Hasan, and Warsuzarina Mat Jubadi. Design of aes s-box using

combinational logic optimization. In Industrial Electronics & Applications (ISIEA), 2010

IEEE Symposium on, pages 696–699. IEEE, 2010

[6] https://www.researchgate.net/figure/Private-Key-Cryptosystem_fig1_317044668

[7] https://sectigo.com/resource-library/public-key-vs-private-key

[8] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption.

In: Public Key Cryptography–PKC 2012, pp. 1–16. Springer (2012)

[9] Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: Fast fully homomorphic

encryption over the torus. Journal of Cryptology pp. 1–58

[10] Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: Combining ring-

lwebased fully homomorphic encryption schemes. Journal of Mathematical Cryptology

14(1), 316–338 (2020)

[11] Cheon, J.H., Kim, J.: A hybrid scheme of public-key encryption and somewhat

homomorphic encryption. IEEE Transactions on Information Forensics and Security 10(5),

1052–1063 (2015)

[12] Gentry, C., Halevi, S.: Compressible fhe with applications to pir. In: Theory of

Cryptography Conference. pp. 438–464. Springer (2019)

[13] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, 1978

[14] Rainer A Rueppel. Stream ciphers. In Analysis and Design of Stream Ciphers,

pages 5–16. Springer, 1986

[15] Gurpreet Singh. A study of encryption algorithms (rsa, des, 3des and aes) for

information security. International Journal of Computer Applications, 67(19), 2013

[16] Yosef Stein, Haim Primo, and Joshua A Kablotsky. Galois field multiplier system,

July 20 2004. US Patent 6,766,345

[17] M. Louk and Hyotaek Lim, "Homomorphic encryption in mobile multi cloud

computing," Information Networking (ICOIN), pp. pp.493-497, 12-14 , Jan. 2015

[18] Jian Li, Danjie Song, Sicong Chen, and Xiaofeng Lu, "A simple fully

homomorphic encryption scheme available in cloud computing," Jian Li; Danjie Song;

Sicong Chen; Xiaofeng Lu, "A simp Cloud Computing and Intelligent Systems (CCIS),

2012 IEEE 2nd International Conference , vol. 01, pp. 214-217, 2012

https://www.researchgate.net/figure/Private-Key-Cryptosystem_fig1_317044668
https://sectigo.com/resource-library/public-key-vs-private-key

25

[19] Baohua Chen and Na Zhao, "Fully homomorphic encryption application in cloud

computing," Wavelet Active Media Technology and Information Processing

(ICCWAMTIP), 11th International Computer Conference, pp. 471-474, 2014

[20] Claude Turner, Pushkar Dahal Monique Ogburn, "Homomorphic Encryption ,"

Procedia Computer Science , pp. 502-509, 2013

[21] M. Tebaa, S. El Hajji, and A. El Ghazi, "Homomorphic encryption method applied

to Cloud Computing," Network Security and Systems, pp. 86-89, 2012

[22] Mihai Togan and Cezar Plesca, "Comparison-Based Computations Over Fully

Homomorphic Encrypted Data," Communications (COMM), pp. 1-6,29-31, 2014

[23] C. Moore, M. O'Neill, E. O'Sullivan, Y. Doroz, and B. Sunar, "Practical

homomorphic encryption: A survey," Circuits and Systems (ISCAS), pp. 2792-2795, 2014

[24] Xing Li, Jianping Yu, Peng Zhang, and Xiaoqiang Sun, "A (Leveled) fully

homomorphic encryption scheme based on error-free approximate GCD," Electronics

Information and Emergency Communication (ICEIEC), pp. 224-227, 14-16 , 2015

[25] R.Manjua, A.Shajin Nargunam and A. Rajendran,"Multimodal Biometric

Authentication system Based Performance Scrutiny", Medwell Journal 2014

[26] Ahmed El-yahyaoui and Mohamed Dafir Ech-Cherif EL kettani," A Verifiable

Fully Homomorphic Encryption Scheme for Cloud Computing Security", Technologies, 7,

21, 2019

[27] "Build an Homomorphic Encryption Scheme from Scratch with Python",

OpenMined Blog, 2022. [Online]. Available: https://blog.openmined.org/build-an-

homomorphic-encryption-scheme-from-scratch-with-python/. [Accessed: 13- Aug- 2022].

[28] 2022. [Online]. Available: https://www.researchgate.net/figure/Homomorphic-

Encryption-functions_fig1_263022874. [Accessed: 13- Aug- 2022].

[29] [3]Cims.nyu.edu, 2022. [Online]. Available:

https://cims.nyu.edu/~regev/papers/qcrypto.pdf. [Accessed: 13- Aug- 2022].

[30] "CSDL | IEEE Computer Society", Computer.org, 2022. [Online]. Available:

https://www.computer.org/csdl/journal/tc/2018/03/07797469/13rRUxAASSA. [Accessed:

13- Aug- 2022].

