ﬁ

\‘
National
Collegeof

Ireland

Configuration Manual

MSc Research Project
M.Sc., in Cyber Security

Rithin krishna Dilipkumar
Student ID: 20199830

School of Computing
National College of Ireland

Supervisor: Mr. Imran Khan

‘—-
\ National

National College of Ireland

Collegeof
MSc Project Submission Sheet Ireland
School of Computing
Student ... Rithin krishna Dilipkumar........ccccovveiiiiiiiiieeecee e
Name:
Student ID: ..., 20199830
Programme: ... M.Sc., Cyber Security.... Year: Sept 2021-Sept
2022

Module: ... MSc Research Project.............ccccccoveeeiieciciincinennn,
SUpervisor: ... Mr. Imran Khan........cccooiiiei e
Submission
Due Date: ..o 51 AUGQUSE 2022
Project Title: ... Medical Image Forgery Detection...........cccceevuveenn.
Word Count: 748 Page Count..................... 10uiiiiies

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: = Rithin krishna Dilipkumar..........cccoccoiiiniiiiinne
Date: 15% August 2022....cccviieieeeieeeeeeens

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple [o
copies)
Attach a Moodle submission receipt of the online project i
submission, to each project (including multiple copies).
'You must ensure that you retain a HARD COPY of the project, both o
for your own reference and in case a project is lost or mislaid. It is not
sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Rithin krishna Dilipkumar
Student 1D: 20199830

1 Introduction

The Configuration Manual offers particular information about the hardware, software, and
tool requirements for implementing and carrying out the Research Project. It also outlines the
step-by-step process for running the code to observe how it is implemented and what
outcomes are produced.

2 Environmental Setup

The following hardware and software specifications and configurations are used to
accomplish the suggested solution:

Operations System: Windows 10

Operating System Type: 64-bit operating system, x64-based processor.
Processor: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
Memory: 16.0 GB

Program Language: Python 3.7

Environment: Jupyter Notebook 6.4.12

IDE: PyCharm 2022.2

3 Installation of Tools

PyCharm 2022.2 suitable environment for effective Python, web, and data science
development, PyCharm is a specialized Python Integrated Development Environment (IDE)
that offers a wide range of crucial tools for Python developers and helps to successfully
launch the required application and tools.

3.2 Jupyter Notebook 6.4.12

After installing PyCharm, we can use the terminal to start Jupyter Notebook and then
navigate to the folder containing the code we wish to run.

Z Jupyter qut | Logou
Files Running Clusters

Select items to perform actions on them. Upload Neww Z
o ~ =i Name ¥ | Last Modified File size
O [modifi RF 24 days ago
O & randomforest-watershed.ipynb 9 days ago 370 kB
0 & resnet-model ipynb 3 days ago 664 kB

Then, click the program's execution button. It will be added to Jupyter Notebook, as seen in
the accompanying picture. Click "Run" to run the code and view the results after that.

Open Timetables
: Jupyter resnet-model Last Checkpoint Last Thursday at 11:14 AM (autosaved) o Logout
File Edit View Inset Cel Kemel Widgets Help | Python 3 (ipykernel) ©

B+ = @ B 4+ ¥ PR B C W Code v | =

In [1): import pandas as pd
import numpy as np
import 05
import cv2
import pydicom
import scipy.ndimage
from scipy.spatial.distance import pdist
from matplotlib import pyplot as plt

import shutil

from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras import backend as Kk

import tensorflow as tf

from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.optimizers import SGD

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.layers import *

from tensorflow. keras.preprocessing import image

from tensorflow.keras.initializers import glorot_uniform

from sklearn.model selection import train_test split

from sklearn.preprecessing import LabelEncoder

from sklearn.metrics import classification_report, confusion matrix, accuracy_score
import seaborn as sns

4 Execution of Code for ResNet50 Model

» The other libraries (pandas, numpy, and cv2) necessary for putting the code into
practice were installed.

In [1]: import pandas as pd
import numpy as np
import os
import cv2
import pydicom
import scipy.ndimage
from scipy.spatial.distance import pdist
from matplotlib import pyplot as plt

import shutil

from tensorflow.keras.preprocessing.image import ImageDatacenerator
from tensorflow.keras import backend as k

import tensorflow as tf

from tensorflow. keras.models import Sequential, Model, load medel
from tensorflow.keras.optimizers import SGD

from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
from tensorflow.keras.layers import *

from tensorflow.keras.preprocessing import image

from tensorflow.keras.initializers import glorot_uniform

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import classification report, confusion matrix, accuracy score
import seaborn as sns

» The dataset uses the DICOM format to save CT scans, which were then transformed
into regular images by obtaining the necessary libraries.

In [2]:

def load_dicom(path2scan_dir):

dicom folder = path2scan_dir

dems = os.listdir(dicom folder)

first_slice data = pydicom.read_file(os.path.join(path2scan_dir,dcms[0]))
first_slice = first_slice_data.pixel_array

orientation = np.transpose(first_slice data.ImageOrientationPatient) #zyx format
spacing_xy = np.array(first_slice_data.Pixelspacing, dtype=float)

spacing z = np.float(first_slice data.SliceThickness)

spacing = np.array([spacing_z, spacing xy[1], spacing_xy[@]]) #zyx format

scan = np.zeros((len(dcms),first_slice.shape[0],first_slice.shape[1]))
raw_slices=[]
indexes = []
for dcm in dems:
slice data = pydicom.read file(os.path.join(dicom_folder,dcm))
slice data.filename = dcm
raw_slices.append(slice_data)
indexes.append(float(slice_data.ImagePositionpPatient[2]))
indexes = np.array(indexes,dtype=float)

raw_slices = [x for _, x in sorted(zip(indexes, raw_slices))]
origin = np.array(raw_slices[@][exee200032].value) #origin is assumed to be the image location of the first slice
if origin is None:
origin = np.zeros(3)
else:
origin = np.array([origin[2],origin[1],origin[@]]) #change from x,y,z to z,y,x

for i, slice in enumerate(raw_slices):
scan[i, :, :] = slice.pixel array
return scan, spacing, orientation, origin, raw_slices

» The necessary libraries were imported, and a dataset of human lungs-related medical
images was loaded into the model.

In [3]:

loading a image from blind category
scan_uuid = 8038
scan, spacing, orientation, origin, raw_slices = load _dicom('../Dataset/CT_Scans/EXP1_blind/'+str(scan_uuid))

print('The CT scan has the dimensions of',scan.shape,’ (z,y,x)")

» Displaying the sample images which are loaded

In [4]:

displaying the images

for slice indx in range(5@,55,1):

plt.imshow(scan[slice indx,:,:],cmap="bone’,vmin=-1000,vmax=2000)
plt.show()

» Loading the label files (TM and FM) and then loadings images according to the labels
and displaying on how many images haven been loaded. Then then the images are
merged and the output is displayed.

In [6]: # few images from TM and FM
scan_uuids = [4142, 2838, 2320, 5614]
finalImagesFM = None
for scan_uuid in scan_uuids:
FM_scan, spacing, orientation, origin, raw_slices = load_dicom('../Dataset/CT_Scans/EXP1_blind/'+str(scan_uuid))
if finalImagesFM is not None:
finalImagesFM = np.concatenate((finalImagesFM, FM_scan))
else:
finalImagesFM = FM_scan

c:\users\rithin\desktop\nci study\pythonprojecti\lib\site-packages\ipykernel launcher.py:8: DeprecationWarning: "np.float™ is a
deprecated alias for the builtin “float™. To silence this warning, use ~float™ by itself. Doing this will not modify any behavi
or and is safe. If you specifically wanted the numpy scalar type, use “np.float64™ here.

Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

In [7]: finalImagesFM.shape

out[7]: (1823, 512, 512)

In [8]: scan_uuids = [219@, 7587, 3825, 3899]
finalImagesTM = None
for scan_uuid in scan_uuids:
TM_scan, spacing, orientation, origin, raw_slices = load dicom('../Dataset/CT_Scans/EXP1_blind/'+str(scan_uuid))
if finalImagesTM is not None:
finalImagesTM = np.concatenate((finalImagesTM, TM_scan))
else:
finalImagesTM = TM_scan

In [9]: finalImagesTM.shape

out[2]: (1e46, 512, 512)

In [1@]: finalImages
finallLabels

np.concatenate((finalImagesFM, finalImagesTM))
['fake'] * finalImagesFM.shape[@] + ['real’'] * finalImagesTM.shape[®@]

In [11]: finalImages.shape, len(finallabels)

out[11]: ((2079, 512, 512), 2079)

» Splitting the data in two portions, for training and testing respectively.

In [15]: X_train, X test, y_train, y test = train_test_split(
resized_masks,
finallabels,
test _size=@.2,
random_state=42,

)

X_train = np.array(X_train)

y_train = np.array(y_train)
X_test = np.array(X_test)

y_test = np.array(y_test)
print(('X_train:’, X_train.shape))

((
print(('y_train:', y train.shape))
print(('X_test:', X test.shape))
print(('y_test:', y test.shape))

('X_train:', (1663, 256, 256))
('y_train:', (1663,))

("X test:', (416, 256, 256))
('y_test:', (416,))

» Sample of training images is getting displayed.

In [16]: # displaying training images

k=0

fig, ax = plt.subplots(1, 4, figsize=(20, 20))

fig.text(s="'Sample Image From Each Label’,
size=18,
fontweight="bold",
fontname="monospace’,
y=0.62,
x=0.4,
alpha=0.8)

for j in [0,1,409,385]:

while True:

ax[k].imshow(X_train[j])
ax[k].set_title(y_train[j])
ax[k].axis('off")
k += 1

break

Sample Image From Each Label

real real

» Defining the ResNet50 model

In [17]: def residual_block(X start, filters, name, reduce=False, res_conv2d=False):
nb_filters_1, nb_filters_2, nb_filters_3 = filters
strides_1 = [2, 2] if reduce else [1, 1]

X = conv2D(filters=nb_filters_1,
kernel_size=[1, 1],
strides=strides 1,
padding="same”,
name=name) (X_start)

X = Batchnormalization()(X) # default axis-1 is ok
X = Activation('relu’)(X)
X = conv2D(filters=nb_filters_2,
kernel_size=[3, 3],
strides=[1, 1],
padding="same")(x)
X = BatchNormalization()(X)
X = Activation('relu')(x)
X = Conv2D(filters=nb_filters_3,

kernel_size=[1, 1],

strides=[1, 1],

padding="same")(X)
X = Batchnormalization()(X)

if res_convad:

X_res = conv2D(filters=nb_filters_3,
kernel_size=[1, 1],
strides=strides_1,
padding="same")(X_start)

X_res = BatchNormalization()(X_res)

else:

X res = X_start

Y = add/N/TYy ¥ raclh

» Summary of the defined model is displayed regarding the number of layers present in
it and the data was encoded into numbers because neural network does not process
strings. Due to these reasons the labels were encoded to numbers.

In [20]: model.summary()

Model: "model™

Layer (type) output Shape Param # Connected to
input_1 (InputLayer) [(None, 256, 256, 1 © [
)]
convl (Conv2D) (None, 128, 128, 64 3200 ["input_1[e][e]']
)
bn_convl (Batchnormalization) (Mone, 128, 128, 64 256 ['convi[e][e]"]
activation (Activation) (Mone, 128, 128, 64 @ ['bn_convi[e][e]"]
)
max_pooling2d (MaxPooling2D) (MNone, 63, 63, 64) @ ["activation[e][e]"]
conv2_a (ConvaD) (Mone, 63, 63, 64) 4160 ['max_pooling2d[@][e]"

In [21]: le = LabelEncoder()
y_train = le.fit_transform(y_train)
y_test = le.transform(y_test)

» The model is being trained with successful running 100 epoch.

In [22]: hist = model.fit(x=x_train,
y=y_train,
batch_size=128,
epochs=100,
validation_data=(X_test, y_test),

verbose=2)

13/13 - 499s - loss: 5.6027e-07 - accuracy: 1.8080 - val_loss: 1.9056e-87 - val_accuracy: 1.0000 - 499s/epoch - 38s/step "
Epoch 92/100

13/13 - 583s - loss: 7.5783e-87 - accuracy: 1.000@ - val loss: 1.8598e-07 - val_accuracy: 1.0000 - 503s/epoch - 39s/step
Epoch 93/160

13/13 - 5@@s - loss: 4.6465e-07 - accuracy: 1.000@ - val_loss: 1.8340e-07 - val_accuracy: 1.0000 - 500s/epoch - 38s/step
Epoch 94/100

13/13 - 497s - loss: 2.5885e-07 - accuracy: 1.0000 - val loss: 1.8168e-07 - val_accuracy: 1.0000 - 497s/epoch - 38s/step
Epoch 95/100

13/13 - 496s - loss: 5.3969e-07 - accuracy: 1.e00@ - val loss: 1.7738e-07 - val accuracy: 1.0000 - 496s/epoch - 38s/step
Epoch 96/100

13/13 - 499s - loss: 6.7474e-07 - accuracy: 1.0000 - val loss: 1.7165e-07 - val_accuracy: 1.0000 - 499s/epoch - 38s/step
Epoch 97/100

13/13 - 502s - loss: 4.1691e-07 - accuracy: 1.e00@ - val loss: 1.7079e-07 - val accuracy: 1.0000 - 502s/epoch - 39s/step
Epoch 98/100

13/13 - 581s - loss: 5.8715e-07 - accuracy: 1.0000 - val loss: 1.6850e-07 - val_accuracy: 1.0000 - 501s/epoch - 39s/step
Epoch 99/10@

13/13 - 503s - loss: 1.8336e-06 - accuracy: 1.0000 - val loss: 1.6620e-07 - val_accuracy: 1.0000 - 503s/epoch - 39s/step
Epoch 100/100@

13/13 - 509s - loss: 4.8049e-07 - accuracy: 1.000@ - val loss: 1.6076e-07 - val_accuracy: 1.0000 - 589s/epoch - 39s/step

» The performance outcome of the training is plotted and it is displayed as graph.

In [23]: fig, (axl1, ax2) = plt.subplots(nrows=1, ncols=2, figsize=[16, 6])
axl.plot(hist.history["loss'], label='train_loss"')
ax1.plot(hist.history['val_loss'], label='valid loss')
ax1.legend()
ax2.plot(hist.history["accuracy'], label="train_acc")
ax2.plot(hist.history['val_accuracy'], label='valid_acc')
ax2.legend()

out[23]: <matplotlib.legend.Legend at ©x2a49dd4dbss>

8
— train_loss 0] ——————
valid_loss
7 X
6 09
5
08
4
5 07
2
06
1
— train_acc
0{ Y¥—mm— 05 valid_acc
0 20 40 &0 80 100 0 20 40 60 80 100

» The prediction and the classification report of the model is displayed.

In [24]: y_pred = model.predict(X_test)

print(('Prediction shape:', y_pred.shape))
print(('Accuracy:', accuracy score(y_test, np.argmax(y_pred, axis=1))))

13/13 [1 - 29s 2s/step
('Prediction shape:', (416, 2))
('Accuracy:', 1.0)

In [25]: print(classification_report(y_test, np.argmax(y_pred, axis=1)))

precision recall fil-score support

2] 1.00 1.00 1.608 206

1 1.00 1.00 1.0@ 210

accuracy 1.00 416
macro avg 1.0 1.00 1.00 416
weighted avg 1.00 1.00 1.00 416

» Toward the end as the final outcome the confusion matrix have been displayed.

In [26]: cm = confusion matrix(y test, np.argmax(y_pred, axis=1))

In [27]: sns.heatmap(cm, annot=True)
plt.show()

21e+02

21e+02

References

[1] Jupyter Home. “Jupyter Nootebook”. [online]. Awvailable at: https://jupyter.org.
[Accessed on: 19th July 2022]

[2] Jet Brains. "PyCharm". [online]. Available at: https://www.jetbrains.com/pycharm/.
[Accessed on: 19th July 2022]

https://jupyter.org/
https://www.jetbrains.com/pycharm/

