~

N\ National
College
Ireland

Increasing service capacity of peer-to-peer file
sharing networks by using a decentralized
reputation system

MSc Research Project
MSc in Cloud Computing

Ibrahim Ayodeji
Student 1D: x20227329

School of Computing
National College of Ireland

Supervisor: Shivani Jaswal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland

Student Name: Ibrahim Ayodeji

Student ID: x20227329

Programme: MSc in Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Shivani Jaswal

Submission Due Date: 15/08/2022

Project Title: Increasing service capacity of peer-to-peer file sharing net-
works by using a decentralized reputation system

Word Count: 5728

Page Count: 7]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Increasing service capacity of peer-to-peer file sharing
networks by using a decentralized reputation system

Ibrahim Ayodeji
x20227329

Abstract

Using peer-to-peer networks has allowed users to share resources amongst them-
selves. But to maintain the required level of quality of service, it is essential
to maximize service capacity. Several Solutions for enhancing service capacity in
peer-to-peer file sharing networks are examined in this research paper. These pa-
pers attempt to deal with issues such as free-riding, which places a heavy burden
on peer-to-peer systems, and their ability to provide services and file availability,
where some files could become inaccessible due to their age or the fact that no
seeds are hosting them. This paper offers a solution based on using decentralized
reputation system to provide a viable trustless solution to solve this. In this paper
a system is developed based on the Ethereum blockchain where votes are cast to by
peers to identify the most credible nodes for downloads. The system is tested using
a simulation engine which imitates the behaviour of real peers against a variety of
parameters in order to prove the effectiveness of the solution.

1 Introduction

Client-server systems, which commonly use the file transfer protocol (FTP) or Hypertext
Transfer Protocol, are the norm for online file sharing techniques. Users must connect
to a server through a client and request a file typically through an HTTP or HTTPS
connection. The volume of requests, the server’s bandwidth, the distance from the user,
and other variables all have a significant impact on transfer speed. The downside of a
centralized system is that if a file is accidentally or purposely deleted from the server, the
network will no longer have access to it. These problems are partially resolved by peer-to-
peer (P2P) file sharing networks. Network members distribute files amongst themselves
via peer-to-peer file sharing systems.

Peer-to-peer networks can be difficult to define, particularly when compared to con-
ventional client-server networks. A peer-to-peer network, according to [1], is a distrib-
uted network where users share their own hardware resources. These resources, which
are needed to provide services and content, may include storage, processing power, and
more. Each node, referred to as a peer, serves as both a client and a server.

A peer that has the entire file and is actively distributing is known as a seed, whereas
a peer that has the complete file and is still downloading is known as a leecher. Due to
its versatility and low bandwidth requirements, this has gained a lot of popularity [2].
Peer to peer networks use up about between 35 and 90 percent of all the online traffic.
Out of all the networks, BitTorrent has been the most prevalent [3]. In these networks
files are always available as long as there is someone sharing.

Peer-to-peer networks that are categorized as structured have fixed connections amongst
peers while maintaining information about the available resources. Structured peer-to-
peer networks have additional restrictions on the types of nodes and where data should
be placed, but they feature efficient queries thanks to Distributed Hash Tables, with each
peer in charge of a portion of the overall key space. Fast insertion and querying are made
possible by DHT, but table maintenance is challenging due to regularly changing peers
[4]. Unstructured peer-to-peer networks, on the other hand, are more adaptable and less
limited than structured networks. Their connections may be hierarchical in centralized
or hybrid networks or flat in decentralized networks. Techniques like flooding, random
walking, and time-to-leave are used to make queries. Centralized networks, like BitTor-
rent, rely on central entities to perform certain network functions that have single points
of failure.

A network’s main objective is to improve service quality for all its peers. The net-
work’s service capacity, the average upload capacity of nodes in the network, can be
used to quantify this. One may calculate service capacity, which is the average download
throughput per peer, by dividing the aggregated upload service capacity by the number
of peers that are downloading [5].

Making sure every node in the network contributes as much as they should is a
significant factor. Free-riders are nodes that fail to add their quota [6]. Free-riders cause
the network’s overall bandwidth to decrease. Reciprocative techniques, including Tit for
Tat, have been used in networks like BitTorrent. Peers in Tit for Tat only exchange blocks
with peers who send to them more frequently [6]. This system can be implemented locally
and does not require a centralized or distributed process. This view is myopic because
it just considers the current upload rates and ignores how past rate history might affect
future upload rates, resulting in subpar network performance. Additionally, it prevents
new peers from accessing files, hence networks frequently utilize an optimistic unchoking
technique to ease network entry. Free-riders take advantage of this to enter the network
without contributing any resources. Peers’ contributions to the network and other long-
term data about them must be considered. A distributed reputation system, or the ability
for any peer to view and update this information, is also required.

Examining several papers in the files, a wide array of solutions have been proposed.
While some authors have developed solutions based on novel seeding mechanisms [7, [§]
others proposed the use of unique unchoking mechanisms [2, [7, [§, [0, 10, 11, 12, 13].
Systems based on incentive mechanisms were also created by a number of other writers
[2]. The majority of papers have considered increasing service accessibility from the
standpoint of the seeders, by lowering free riding, or increasing the number of seeders by
employing credit incentives.

However, it doesn’t appear that any study has attempted to use a blockchain-based
decentralized reputation system to improve service availability on peer-to-peer file sharing
networks. Satoshi Nakamoto unveiled the revolutionary blockchain technology in 2008.
The acceptance of cryptocurrency and other decentralized applications is evidence of
their potential. Fully decentralized solutions can be implemented by utilizing blockchain
technology.

The goal of this study is to determine whether a distributed reputation and incentive
payment system can increase the service capacity of peer-to-peer file sharing resources.
Peers would be able to only share with peers with positive ratings while excluding free-
riders from the network if a reputation-based system was used to track peer reliability
scores in a blockchain distributed ledger. Therefore, it appears likely that this approach

will be able to increase service capacity.

1.1 Research Question

Can we increase the service capacity of peer-to-peer file sharing networks by using a
decentralized reputation system?

1.2 Content

The first section of this essay reviews previous research done by other scientists. Discuss
the many approaches that have been employed to enhance scalability in this area. After
that, an approach outlining the algorithms and technologies to be used is suggested.
Finally, ethical issues are discussed and areas for further research are defined in the
concluding remarks.

2 Related Work

This section summarizes research that has been done to reduce free-riding and reward
altruistic behavior in peer-to-peer file sharing networks in an effort to increase service
availability. Using direct retribution methods, typically by creating choking algorithms,
was suggested by certain writers [7, 8, [14], 15] [16, [T7]. These, however, are skewed and
do not take into account the experiences of other peers. Since then, interest in indirect
reputation systems has grown, according to [10} 12} 18] [19].

As a way to encourage better sharing, several writers have also discussed payment-
based techniques [10, 13], and some have used game theoretical approaches to simulate
these systems [2, [0 20], 21]. We will discuss these strategies in the following section.

The difficulties impacting service capacity that this paper seeks to address are dis-
cussed in this section. Following an overview of the mechanisms used in the solutions,
it delves into the many approaches researchers have taken to address these problems.
Finally, broad judgments about the review are derived.

2.1 Free-Riders

Free-riders are peers who try to consume shared resources in peer-to-peer networks
without giving anything in return by exploiting weaknesses in the protocols. As was
previously mentioned, optimistic unchoking allows free riders to take advantage of the
BitTorrent network. By examining the incentives in the BitTorrent choke mechanism, [22]
demonstrated that freeriding is possible in BitTorrent since it is ineffective in adequately
rewarding and punishing free-riders. According to [23], a free rider can get one-fifth the
download rate of normal peers by optimistically unchoking. [24] draws the conclusion
that methods that penalize free-riders offer a significant boost in service capabilities in
contexts with poor generosity. Therefore, a crucial strategy for achieving the objective
of this research is to discover a practical way to prevent or limit free-riding. A reward
system can promote more suitable seeding behavior in participant nodes, which would
otherwise behave selfishly.

A reward mechanism can promote more suitable seeding behavior in addition to pen-
alizing free-riders by incentivizing participant nodes who might otherwise act selfishly.

There are two sorts of incentive systems. These are known as payment-based mechanisms
and retribution mechanisms.

2.2 Retaliation Mechanisms

The resources that peers can get from the network in retribution mechanisms are de-
termined by their prior behavior. It is possible for this process to be direct or indirect.
Direct interaction between peers determines what one peer may obtain from another
peer. Which peers are allowed to download from another are chosen using unchoking
techniques. A popular direct unchoking strategy is called ”tit for tat,” where peers up-
load to peers from whom they have downloaded more [25]. Indirect methods provide a
peer access to resources by relying on their global reputation.

2.2.1 Direct Retaliation

Several authors have tried to devise more optimistic unchoking algorithms [7, [, 14}
15, [I7). By using the unchoke histories of its neighbors, [14] proposed an algorithm to
reduce free-riding. In order to let a peer choose the most appropriate peer to unchoke,
it calculates a gain factor that takes into account how much download bandwidth it is
likely to gain by doing so. Freeriders are less likely to be unchoked because their gain
factor would be minimal.

[7] discovered that free-riders frequently consume necessary network bandwidth by
directly accessing seeds as well as by utilizing optimistic leecher unchoking. To counteract
this, they created a modified uploading algorithm that took into account the progress
of the leecher’s downloads. Leechers who are either just starting their downloads or
nearing the end are given priority during this seeding. Free-riders rely more on seeds than
leechers do, so cutting off their access to seeds for the majority of the downloading process
significantly lowers their efficiency and frees up more bandwidth for reliable seeders.
Additionally, this has the effect of reducing the ramp-up time for real leechers.

Multiple seeding strategies have also been implemented to complement the unchoking
strategies. [17] proposed a team mechanism that sets a limit on the optimistic unchokes
as the level of collaboration with peers who upload data at a similar rate rises. In groups
of peers, this protocol dynamically groups peers with comparable upload bandwidth.
Members of the team primarily fulfill their data download needs within their own group,
and they only engage in optimistic unchokes when absolutely necessary. This team-
based approach consequently improves peer performance through explicit cooperation.
Since only current upload rates are taken into account when choosing which peers to
unchoke, direct retribution techniques are myopic and have been demonstrated to be less
effective [10]. Additionally, because performance histories are not shared between pairs
of users who contribute, users who switch peers won’t immediately face consequences.
This reduces the potential of the system to increase service capacity. As a result, several
writers have thought about reputation systems that use historical utilities to provide
actionable foresights.

2.2.2 Indirect Retaliation

Indirect reputation mechanisms have emerged as a result of the flaws in direct retaliation.
In indirect reputation systems, local score gathering and global score distribution are two
main roles.

e Local Score Aggregation: Peers gather data on service quality from other peers
during the local aggregation stage and convert it to scores.

e Global Score Dissemination: These outcomes are then kept in a global storage
system that any peer may simply access throughout the stage of global score dis-
tribution.

To accomplish this, other writers have developed systems that follow multiple meth-
ods. PowerTrust is a reputation system that [12] created for peer-to-peer networks. By
gathering input from peers’ interactions with one another and utilizing the power-law
distribution of peer feedbacks, the system creates a global reputation score for each peer.
On top of the peers, a virtual network called the Trust Overlay Network is constructed
to enable feedback exchange. The PowerTrust system then uses this data to generate
aggregate scores.

[19] created two centralized systems for connecting a user to a reputation score that
is dynamically updated based on the network resources they contribute. To quickly
retrieve reputation, the system employed local storage. The first method, referred to
as debit-credit reputation computation (DCRC), awards peers with credits for content
contribution and debits for content download. The second method, known as credit-only
reputation computation (CORC), does not provide any debits for supplying content but
instead credits peer reputation ratings.

These systems have a lot of potential, but they lack the immutability and decentral-
ization that blockchains may offer when it comes to reputation storage.

2.2.3 Blockchain Reputation Systems

The total decentralization of reputation systems in peer-to-peer networks is made possible
by the use of blockchain technology. Several applications have already used blockchain-
based reputation systems [13], 20, 27].

The trust mechanisms for Fog devices have also been addressed using blockchain
reputation systems. A blockchain-based decentralized reputation system for Fog-IOT ar-
chitectures was created by [I3]. A call to a voting function on the management ethereum
smart contract is made each time an IOT device interacts with a Fog node. To maintain
the system’s integrity, the trustworthiness of the rater is also monitored. A blockchain
auction and reputation system-based energy trading plan for electric vehicles was pro-
posed by [26]. For electric cars, it employs a reverse bidding system to select a supplier
based on price and reputation data kept on the blockchain.

[10] designed a method to restrict the system’s sharing of illegal files. A node requests
a file from peers, receives their replies after a verification process, and then uses the
findings to create a reputation index for those peers. By employing this method, the
network’s unsuccessful transaction rate was cut by a factor of 20. Having a longer-term
distributed reputation approach was a significant problem that was not resolved, and this
research intends to establish one.

Large amounts of data may now be stored in a decentralized, trustless environment
thanks to the development of distributed ledger systems based on blockchain technology.

2.3 Game Theory Modelling

The issue of resource sharing has been examined in a number of studies using a game
theoretic perspective. [2, [0, 20, 21]. Mathematical models are used in game theory as

bt

H Papers Type Limitations H

[7, 8, 14, Direct Retaliation Myopic such that only current upload rates
15 [17] are considered

[10, 12, Reputation Based Does not offer the decentralization of repu-
18, 19 tation storage and immutability that block-

chains provide
[10, 01, Blockchain Reputation
13, 26l Based
27]
[2, 9L 20, Payment Based
71]

Table 1: Summary of Literature Review and Research Niche

a theoretical framework to depict the interaction of rational actors. In a conventional
centralized system, it is thought that system users collaborate to accomplish a shared
objective. On the other hand, in peer-to-peer networks, peers compete for the same
resources. This strategic behavior may be represented as a non-cooperative game in
which participants compete to make the most money possible. These tactics for peer-to-
peer networks involve choosing which peers to unblock, where to download from, what
files to seed and for how long. Numerous writers [20), 21] have utilized Nash equilibrium
to illustrate this non-coorporative game.

With the use of game theory models, we can deal with rational agents looking to
maximize their profit from the system and demonstrate the effectiveness of our suggested
solution. In accordance with the pricing strategies employed, there ought to be a link
between service capacity and the average profit realized.

2.4 Payment-Based Mechanisms

In payment based incentive mechanisms, peers get paid to upload content while other
peers pay to download content. A virtual currency is used to facilitate these transactions.
Several authors have developed different strategies.

In peer-to-peer networks, payment incentives have been employed for a variety of
purposes. Payment incentives were employed by [28] to increase the availability of peers
in the network. They noticed that because peers are anonymous, utilizing incentive
systems based on reputation was insufficient. According to this theory, the message’s
originator must pay each peer along the path it travels. To make a payment, the initiator
buys a certificate that the system bank blindly verifies. This ensures that the certificate
cannot be traced to the initiator; instead, only the terms are known, and the money may
be utilized if they are available.

An incentive system based on tokens was presented by [21] for peer-to-peer apps
that transmit video. They employed layered video coding, where an upgraded layer was
only made available upon request and a base layer was made available to all peers. Peers
receive token payments for accepting requests for streams of greater quality. By employing
various techniques, these writers have demonstrated the effectiveness of payment-based
methods.

Papers Method Type Game
theory
modelling

[Peers at the beginning and end of Direct Retaliation No

downloads get priority

18] Time based seeding strategy Direct Retaliation No

[12] Power law distribution of peer feed- Reputation Based No

backs

[13] Voting Function on Smart contract Blockchain Based Reputa- No

tion

[29] Request-adaptive incentive Payment Based Yes

[21] Layered file encoding system for dif- Payment Based Yes

ferent request tiers

Proposed decentralized blockchain based Hybrid Reputation and Yes

Solu- reputation system with reverse Payment Based

tion auction payment mechanism

Table 2: Summary of Important Papers

2.5 Research Niche

There have been several articles investigating various options for increasing service capa-
city. A synopsis of these works is shown in Figures 1 and 2. Table on displays the articles
that were examined and the suggested method of implementation. The essential articles
utilized to determine the effectiveness of the suggested approach are shown in Figure 2.

The majority of papers adopted one of three strategies: direct reputation systems that
store user information globally, indirect retaliation mechanisms that only take into ac-
count local interactions with specific peers when determining who to unchoke, or payment-
based systems that use tokens to reward seeders. As a result, we may take the finest
qualities from existing systems and create our own innovative system. The approach
that is being suggested makes use of the direct reputation system, which is set up on the
blockchain using smart contracts.

3 Methodology

3.1 Blockchain Technology

The strategy will monitor peer reputations via a blockchain network. A blockchain is
a distributed ledger system that was first created by Satoshi Nakamoto. [30]. Tt is
composed of a number of blocks that are chronologically related to one another. A
cryptographic chain is created because each block consists of a set of transactions, some
block-specific information, and the hash of the preceding block. Only specialized nodes
known as miners may add new blocks since it is often a computationally expensive and
probabilistic operation that demands a lot of investment. Because altering the contents in
any block invalidates all earlier blocks, this chain structure is what enables a blockchain
resistant to alteration. If a block is public, any agent may query the ledger, making it
possible for any peer to verify it. The method was developed initially for the bitcoin

cryptocurrency but has subsequently been used in a broad range of solutions.

On the blockchain, smart contracts are applications that run automatically when
specific criteria are satisfied. They enable trustless agreements, ensuring that the result
is known to all parties [31].

3.2 Reputation System
3.2.1 Proposed Solution

The primary goal of the research is to create a framework for monitoring peer reputa-
tion on a network, which will reduce free-riding and increase network capacity with no
additional expense. A ”transaction” is started in the proposed system whenever a peer
requests a piece of data from another peer. It’s possible for this transaction to suc-
ceed or fail. If the result is positive, a normalized completion time to file size ratio is
used to determine the service’s quality score. A negative score is assigned if the request
does not obtain the proper response. In order to update the seeder’s reputation points,
the peer then makes a call to the smart reputation management smart contract. The
local reputation databases of all peers that subscribe to the reputation update event are
updated.

3.2.2 Architecture

The proposed reputation system consists of two main modules:

e (Client Module: This runs on the client-side to facilitate connection to the network.
The duties of this module are:

— Collection and Analysis: When a peer requests a chunk from another peer
and the request is fulfilled, the peer not only records the size of the chunk
but also the latency of the request. Requests that go unmet are also tracked.
The proportion of a chunk’s size to its latency is normalized. The score is
0 if the request is not handled. A number of chunks are downloaded and an
average score is produced before being delivered in order to reduce the amount
of requests to the blockchain.

— Submission: Calls to the reputation system smart contract are made using the
score produced by the analysis and the peer identity that handled the request.

— Reputation Queries: The reputation of a user’s neighbors is collected from the
reputation system smart contract and used to help it select who to unchoke
or download from in order to make the best option possible.

e Smart Contract: The smart contract system deployed on the blockchain has two
functions:

— Storage: If the servicing peer ID has already been stored, the storage function
verifies its save peer identifications mapping when it is invoked. In the event
that it is not, it is added with a value that is an array of reputation scores.
Voting is restricted to peers with good reputation ratings.

— Dissemination: The contract can be used to query the reputation score of a
user by using their ID.

The main algorithm for this module is presented in Algorithm [I] & Algorithm [2]
In algorithm 1, the user collects a score from a voter and adds it to the seeders score.

Algorithm 1 Client Collection and Submission Algorithm
1: procedure COLLECT AND SUBMIT SCORE(servicerld,chunkId) > The module
takes the selected peer and requests for the required chunk using the chunkId
2 startTime < getTime()
3 chunk < request ForChunk(servicerId, chunkld)
4: latency < getTime() — startTime
5: if lchunk then
6
7
8

return Negative score depending on the size of the chunk
else
return normalize(getchunksize(chunk)/latency)

In algorithm 2, the smart contract adds the score submitted from the client using
algorithm 1 to the seederld collected and adds it to the peers mapping.

Algorithm 2 Reputation Smart Contract
1: procedure UPDATE REPUTATION(voterld, servicerld, score)

2 voter Reputation <— peersMapping|voterld)

3 if lvoter Reputation or avg(voter Reputation) < threshold then
4 return failed

5: else
6

7

8

9

if peersMapping[servicerld] then
peersMapping|servicerld] < [rating]
else

push(peersMapping[servicerld], rating)

3.3 Technologies Used
3.3.1 Ganache

To provide results without the unpredictability of using a live blockchain, the suggested
implementation would be built and executed on a local environment. Consequently, it
has been decided to employ Ganache. Users may build private blockchains in their local
environments using Ganache. It allows users to develop and test their apps in a secure
and controlled environment without having to interface with the real Ethereum network.
Both a client Ul and a CLI may be used with it.

3.3.2 Solidity

A high level object-oriented programming language called Solidity is used to create smart
contracts for the Ethereum network. Its syntax is comparable to those of languages that
also use curly braces, such as Java and JavaScript. It is statically typed and supports
both user-defined and primitive types.

3.3.3 Solc

By converting Solidity code into bytecode that can be installed on an Ethereum Vir-
tual Machine, Solc is a compiler. Python and JavaScript are only two examples of the
languages in which it may be utilized.

4 Implementation

The implementation is written in three main applications. The architecture would consist
of three parts. The frontend application, the signalling-backend service and the block-
chain module.

4.1 Peer-to-peer Network

The architecture consists of nodes that communicate with each other directly. Each node
represents an individual connection to the network. The connections with other nodes
is facilitated using the web Real Time Communication technology that allows real time
voice, text and video data transfer directly, without the need of an intermediate server,
between nodes without having to worry about compatability. WebRTC consists of several
interrelated APIs and protocols which work together to achieve this. In order to create
a connection between two nodes, one of the connecting nodes creates an ”offer”. This
text document contains information that could be used to facilitate connections. The
document can be transmitted by any means but in our application transfer is facilitated
through a signalling server. Nodes are connected to the signalling server through web-
sockets, a communication protocol that enables full-duplex connection over a single TCP
connection. When the other nodes receive the offer, it uses this offer to generate an an-
swer in a similar format to the offer and transmits this back to the original node through
the signalling server. With each node possesing each others information, a connection
can then be established between them. Files can then be sent between nodes as data
streams.

In order to facilitate transfer of metadata with every chunk transfer through binary
buffer a protocol was developed to attach metadata to the head of every binary message
passed between nodes and an algorithm to effectively extract the metadata.

4.2 Client application

The front end application is a web application developed with the React framework, an
open-source front-end JavaScript library for building user interfaces based on UI compon-
ents. When the application is loaded, it uses the browsers implementation of webRTC and
websockets. When the website is launched, an account and a private key is generated for
that user by the blockchain module. A websocket connection is then established between
the user and the signalling server. Whenever a user hosts a new file, the files metadata
is transmitted to the signalling server. The signalling server then passes this metadata
to the remaining nodes. When a file is selected to be downloaded, the client application
makes a call to the blockchain module with the list of users currently hosting that file to
acquire their current reputation scores. A webRTC connection is then established with
the hosting peer via the signalling server. All further interactions between these nodes

10

are carried out using this same connection. The file request is then sent to the hosting
peer using this channel and the file is exchanged.

The file is broken down into 16 Kilobyte chunks and transmitted by the hosting chan-
nel. For each successful chunk transmitted a success and failure vote is cast respectively
for each successful or failed chunk transfer.

4.3 Signalling-Backend server

The signalling server is developed using the NodeJS. NodelJS is a cross-platform backend
JavaScript runtime environment running on googles V8 engine. It is used for non-
blocking, event-driven servers with real-time pushed based architecture in mind. It uses
nodeJS implementation of web sockets to enable connection with the peers. When a new
peer is connected to the network it is added to the registry and transmitted to other
nodes. The same is done when a new file is hosted by a node. When a user request to
make a connection to a node, it sends a peer connection offer to the signalling server as
well as a peer ID. The server then uses this ID to route the offer then does the save when
it receives the answer.

4.4 Blockchain Server

The backend server is also developed using NodeJS. When launched, its spins up a
Ganache blockchain instance with the appropriate configuration. The smart contract
is deployed on this local blockchain. This server controls all communication with the
blockchain. It registers users on the blockchain by giving them the right to vote and
registers these votes.

The smart contract consists of Two functions:

e GiveRightToVote: This function takes a userID and adds it to a map of registered
users while initializing that users reputation score to 4.

e Vote: This takes in a score and seeder address to add the appropriate score to
seeders reputation. The current score of each user can be generated by calling the
peers property of the smart contract with the approriate ID.

11

Client Nodes Signalling Server
a—WebRTC—p (——P @E :
webRTC webRTC - Initiating WebRTC connection
W Blockchain Server
Voting and Registration . d c
J S
A
\ Initiating WebRTC connection
—_—
Client Bots Ganache Web3 Provider
nede nede
S webRTC.
-
Wotker Process Worker Process.
Voting and Registration v
n ‘—J
vy
webRTC @ webRTC
Main Process
I"l c contralled through IPC channe\n c
JL
S S ———webrTC
Worker Process Worker Process
—

Figure 1: Reputation System Architecture.

4.5 Configuration

In order to fully evaluate the system proposed, results must be gathered from a simulation
with flexible perimeters. Therefore, a simulation engine has been developed. This engine
has been written in NodeJS and is meant to simulate the activities of active nodes from
hosting files, downloading and voting. Its uses a cluster architecture to spin up a set
of child processes from the master process and return its results back to the user. The
simulations run in cycles with each cycle node in the cycle running with the same account
but hosting and downloading different files. The parameters are discussed below:

12

4.6 Number of Nodes and Failure Rate

Each node is worker process that takes a number of files to download and host. In the
initialization phase, each node is registered on the network. An account is generated for
the user and the smart contract registers it through the registration function call. Only
registered users are allowed to vote and be voted for. During each cycle it downloads the
required files and votes based on the success or failure of chunk downloads. Each node
also takes in a failure rate to determine how likely it is to fail to send a chunk successfully.

Table 3: Test for effects of Failure Rate

No of Nodes No of Cycles No of Files per Node Size of files Reputation Score Range Failure Rate Range Uses Reputation

10.00
10.00
10.00
10.00
10.00
10.00

5.00 20.00 medium 8.00 0.20
5.00 20.00 medium 8.00 0.20
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.60
5.00 20.00 medium 8.00 0.60

true
false
true
false
true
false

4.6.1 Number of Cycles

In each cycle a random selection of downloadable files are selected then for each node a
new worker process is created. Each cycle consists of 3 stages.

e Initialization: In this stage, several child processes, depending on the number of
nodes specified, are generated using nodeJS clusters. The nodes receive the ID’s
they shall be identified by in that cycle. The files each node shall host are also
registered in this stage.

e Connection: In the stage, the nodes read the files they are required to download
and generate a list of nodes they shall have to connect to in that cycle. They then
initialize a webRTC connection with each of those peers.

e Start: In this stage the actual transfer of files is initiated and metrics collection
begins. As each node finishes download of all the required files, it send a IPC signal
to the parent process. When all nodes have sent this signal the cycle ends and all
child processes are destroyed.

Table 4: Test for effects of Number of Cycles

No of Nodes No of Cycles No of Files per Node Size of files Reputation Score Range Failure Rate Range Uses Reputation

10.00
10.00
10.00
10.00
10.00
10.00
10.00
10.00

1.00 20.00 medium 8.00 0.40
1.00 20.00 medium 8.00 0.40
3.00 20.00 medium 8.00 0.40
3.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
10.00 20.00 medium 8.00 0.40
10.00 20.00 medium 8.00 0.40

true
false
true
false
true
false
true
false

4.6.2 Number of Files per Node and File Sizes

The workload of files for each node to send and receive consists of text files of variable
sizes. These files are generated using recipes that express what the file should contain.
The simulation runs on three file types:

13

e Small: These are 10Kb files.
e Medium: These are 524Kb files.

e Large: These are 1024Kb files.

Table 5: Test for effects of Number of files

No of Nodes No of Cycles No of Files per Node Size of files Reputation Score Range Failure Rate Range Uses Reputation

10.00
10.00
10.00
10.00
10.00
10.00

5.00 10.00 medium 8.00 0.40
5.00 10.00 medium 8.00 0.40
5.00 14.00 medium 8.00 0.40
5.00 14.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40

true
false
true
false
true
false

Table 6: Test for effects of Size of files

No of Nodes No of Cycles No of Files per Node Size of files Reputation Score Range Failure Rate Range Uses Reputation

10.00
10.00
10.00
10.00
10.00
10.00

5.00 20.00 small 8.00 0.40
5.00 20.00 small 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 large 8.00 0.40
5.00 20.00 large 8.00 0.40

true
false
true
false
true
false

4.7 Voting Scores

With each successful or failed transfer, votes are cast to affect the reputation of the
seeder. The difference in the negative or positive votes can be varied to evaluate its effect
on the system as nodes with lower reputation are less likely to be selected as seeds.

Table 7: Test for effects of Voting Scores Range

No of Nodes No of Cycles No of Files per Node Size of files Reputation Score Range Failure Rate Range Uses Reputation

10.00
10.00
10.00
10.00
10.00
10.00

5.00 20.00 medium 4.00 0.40
5.00 20.00 medium 4.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 8.00 0.40
5.00 20.00 medium 12.00 0.40
5.00 20.00 medium 12.00 0.40

true
false
true
false
true
false

5 Evaluation

In this study, in order to determine the failure rate and average bandwidth per node,
several experiments were carried out using the simulation engine with a variety of para-
meters. The tables below shows the configuration of the experiments carried out.

5.1 Results

The objective of this paper is to determine whether using a reputation would improve
service capacity. To determine this, certain results have to be gathered from the simula-
tion experiments. The most crucial is the average bandwidth of the nodes over the course
of the experiment. The next is the failure rate. These are the rates at which the chunk
requests fail in a cycle.

14

5.1.1 Number of Files

As the number of files being transfered changes, it is observed that the effectiveness of
the system increases. Even at the lower end of the number of files, it is still observed
that the performance in both bandwidth and lower failure rate is significant.

Table 8: Results of No of Files per Node

Uses Reputation No of Files per Node Failure Rate Bandwidth

true 10.00 0.46 245,269.46
false 10.00 0.55 204,090.47
true 14.00 0.40 350,730.97
false 14.00 0.55 232,058.04
true 20.00 0.37 414,178.61
false 20.00 0.55 289,206.50

5.1.2 Number of Cycles

The number of cycles has been fluctuated through the experiment. As expected there is
a steady increase in performance as time passes by either in the form of more cycles or
more files to be sent as the systems learns which peers are more viable. As the number of
cycle increases the upgrade in performance dimishes as the network settles to its optimal
performance.

Table 9: Results of No of Cycles

Uses Reputation No of Cycles Failure Rate Bandwidth

true 1.00 0.48 373,318.14
false 1.00 0.57 292,898.89
true 3.00 0.41 387,457.41
false 3.00 0.55 296,678.41
true 5.00 0.37 414,178.61
false 5.00 0.55 289,206.50
true 10.00 0.37 421,789.09
false 10.00 0.54 292,456.10

5.1.3 Failure Rate Range

The higher the difference in the availability of the different shows increasing gain per-
formance in the use of the reputation system compared to without. In real world systems
with wide variability in availability this proves the efficacy of the reputation system.

Table 10: Results of Failure Rate Range

Uses Reputation Failure Rate Range Failure Rate Bandwidth

true 0.20 0.37 412,034.32
false 0.20 0.42 384,347.19
true 0.40 0.37 414,178.61
false 0.40 0.55 289,206.50
true 0.60 0.35 2,508,375.00
false 0.60 0.61 26,987.67

5.1.4 Size of file

With smaller file sizes there is the overhead of having to make collections and voting which
is obvious in the bandwidth. But with larger files the effect of this overhead diminishes.

15

Table 11: Results of Size of file

Uses Reputation Size of files Failure Rate Bandwidth
true 10.00 0.49 9,547.34
false 10.00 0.54 9,231.15
true 524.00 0.37 414,178.61
false 524.00 0.55 289,206.50
true 1,024.00 0.37 404,565.67
false 1,024.00 0.55 278,789.09

5.1.5 Voting Score Range

The difference in voting ranges also shows significant changes. As this has no effect on the

no reputation system its performance remains the same. But with the reputation system,
there is a clear increase in performance between a range of 4 and 8. The difference in
failure rate and bandwidth does not change by much between 8 and 12 thus showing the

optimal voting range lies between those points.

0.7
0.6
o 05
2
< 0.4
503
& o2
0.1

Table 12: Results of Voting Score Range

Effect of File Size

Uses Reputation Voting Score Range Failure Rate Bandwidth
true 4.00 0.41 354,077.27
false 4.00 0.55 298,442.01
true 8.00 0.37 414,178.61
false 8.00 0.55 289,206.50
true 12.00 0.37 418,052.58
false 12.00 0.55 291,305.21
Effect of File Size
500000
< 400000
——— 3
_E 300000
@ 200000
¥
< 100000

10
Fil

524
e Sizes

1024

e \\/ith Reputation e \Without Reputation

Effect of Failure Range

-

20

Failure Ranges

40

60

= \Vith Reputation = ====Without Reputation

0

e \\/ith Reputation

524
File Sizes

e \N/ithout Reputation

Effect of Failure Range

3000000

2500000

Avg. Bandwidth

2000000
1500000
1000000

500000

0

== \\/ith Reputation

Figure 2: Effects of Node Failure Range and File Size.

16

40
Failure Ranges

=== \Nithout Reputation

1024

Effect of Reputation Score Range Effect of Reputation Score Range

06 450000
400000 /——
05 S 350000
204 2 300000
° S 250000
£o3 S 200000
T 02 o 150000
- Z 100000
01 50000
0 0
4 8 12 4 8 12
Reputation Score Range Reputation Score Range
= With Reputation === Without Reputation e \\/ith Reputation === Without Reputation
Effect of Number of Cycles Effect of Number of Cycles
06 500000
0.5
2 £ 400000 /
204 s
o= 2
© 03 3 300000
S ©
T 0.2 @ 200000
- g
0.1 < 100000
0 0
1 3 5 10 1 3 5 10
Number Of Cycles Number Of Cycles
—With Reputation ———Without Reputation e \Vith Reputation =====Without Reputation

Figure 3: Effects of Reputation Votes Range And Number of Cycles.

Effect of Number of Files Sent

Effect of Number of Files Sent
0.6

450000
0.5

400000

oo \ 5 350000

] S 300000
© 03 % 250000 /

E 2

T 02 S 200000

@ 150000

0.1 < 100000

o 50000

10 14 20 0

10 14
Number of Files Sent

Number of Files Sent

e \\/ith Reputation === Without Reputation
=With Reputation ====Without Reputation

Figure 4: Effects of Number of Files Sent Per Node.

5.2 Summary

From the results there is a clear difference in the performance between using the reputa-
tion system and without. In the simulation system the table shows that there is a steady
decrease depending on the size of the range failure rates applied to nodes. With a smaller
range, there the difference in the average bandwidth between nodes is less pronounce.
But with an increase in the range, this difference is far more drastic. A higher difference
in the failure rate means the difference in reputation has a higher effect as more requests
are directed toward nodes with a higher success rate requiring fewer transactions. Over-
all in all cases there is increased bandwidth when compared to not using the reputation

17

20

system. But this effect requires some time either in number of cycles or number of files
transferred to show its full potential.

6 Conclusion and future work

This study investigates potential methods to increase the service capacity in peer-to-peer
file sharing networks. By using blockchain technology, it is possible to make the data
genuinely decentralized, trustworthy, and unchangeable. The results of the studies used
to support this solution’s feasibility indicate that it consistently outperforms a system
that ignores user reputation.

Further research should be carried out on also integrating a payment incentive in order
to improve file availabilty. When there is the possibility of monitoring compensation,
seeders are more likely to optimize their systems to reduce failure as much as is possible.

Managing peer reputation update fraud is a growing problem. Having peers who have
attained a specific level of reputation only be permitted to vote is one potential approach.
One more is to restrict votes to those that are comparable to the most recent votes of the
seeds. Utilizing an identifying token provided by peers and seeders, maybe in the manner
suggested by [32], is a third option.

The amount of transactions that can be completed per unit of time owing to the
nature of the proof of work concept is a significant limitation, even if the majority of
decentralized blockchain applications are deployed on the Ethereum blockchain. The
average transaction rate on the Ethereum network is 15 per second. To overcome this
restriction, other potential blockchains like as Solana might be investigated.

Link to project presentation: https://youtu.be/ssqsy9yau8l Link to demo video: ht-
tps:/ /youtu.be/O9lwe5Xw6GA

References

[1] R. Schollmeier, “A definition of peer-to-peer networking for the classification of peer-
to-peer architectures and applications,” in Proceedings First International Confer-
ence on Peer-to-Peer Computing, pp. 101-102, 2001. CORE2018 Rank: C.

[2] X. Kang and Y. Wu, “Incentive mechanism design for heterogeneous peer-to-peer
networks: A stackelberg game approach,” IEEE Transactions on Mobile Computing,
vol. 14, no. 5, pp. 1018-1030, 2015. JCR Impact Factor 2021: 5.577.

[3] C. Aperjis, M. J. Freedman, and R. Johari, “Peer-assisted content distribution with
prices,” in Proceedings of the 2008 ACM CoNEXT Conference, CONEXT '08, (New
York, NY, USA), Association for Computing Machinery, 2008. CORE2021 Rank:
A.

[4] M. Yang and Y. Yang, “An efficient hybrid peer-to-peer system for distributed data
sharing,” IFEFE Transactions on Computers, vol. 59, no. 9, pp. 1158-1171, 2010.
JCR Impact Factor 2021: 2.663.

[5] X. Yang and G. de Veciana, “Performance of peer-to-peer networks: Service capacity
and role of resource sharing policies,” Perform. Fval., vol. 63, p. 175-194, mar 2006.
JCR Impact Factor 2020: 1.987.

18

[6]

[10]

[12]

[13]

[14]

[15]

[16]

[17]

X. Chen and S. A. Jarvis, “Analyzing bittorrent’s seeding strategies,” in 2009 Inter-
national Conference on Computational Science and Engineering, vol. 2, pp. 140-149,
2009. CORE2021 Rank:: A.

A. Chow, L. Golubchik, and V. Mishra, “Improving bittorrent: A simple approach,”
Proceedings of the 7th International Conference on Peer-to-peer Systems, IPTPS’08,
pp. 8-8, 02 2008. CORE2018 Rank: C.

A. Legout, N. Liogkas, E. Kohler, and L. Zhang, “Clustering and sharing incentives
in bittorrent systems,” SIGMETRICS Perform. Eval. Rev., vol. 35, p. 301-312, jun
2007. JCR Impact Factor 2021: Unavailable.

M. Feldman, K. Lai, I. Stoica, and J. Chuang, “Robust incentive techniques for
peer-to-peer networks,” in Proceedings of the 5th ACM Conference on FElectronic
Commerce, EC '04, (New York, NY, USA), p. 102-111, Association for Computing
Machinery, 2004. CORE2021 Rank: A*.

S. Marti and H. Garcia-Molina, “Limited reputation sharing in p2p systems,” in
Proceedings of the 5th ACM Conference on Electronic Commerce, EC 04, (New
York, NY, USA), p. 91-101, Association for Computing Machinery, 2004. CORE2021
Rank: A*.

R. Dennis and G. Owen, “Rep on the block: A next generation reputation sys-
tem based on the blockchain,” in 2015 10th International Conference for Internet
Technology and Secured Transactions (ICITST), pp. 131-138, 2015.

R. Zhou and K. Hwang, “Powertrust: A robust and scalable reputation system for
trusted peer-to-peer computing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 18, no. 4, pp. 460-473, 2007. JCR Impact Factor 2021: 2.687.

M. Debe, K. Salah, M. H. Rehman, and D. Svetinovic, “Towards a blockchain-
based decentralized reputation system for public fog nodes,” in 2019 IEEE/ACS

16th International Conference on Computer Systems and Applications (AICCSA),
pp. 1-6, 2019. CORE2021 Rank: C.

7. Ma and D. Qiu, “A novel optimistic unchoking algorithm for bittorrent,” in 2009
6th IEEE Consumer Communications and Networking Conference, pp. 1-4, 2009.
CORE20201 Rank: B.

V. Atlidakis, M. Roussopoulos, and A. Delis, “Enhancedbit: Unleashing the po-
tential of the unchoking policy in the bittorrent protocol,” Journal of Parallel and
Distributed Computing, vol. 74, no. 1, pp. 1959-1970, 2014. JCR Impact Factor
2021: 3.734.

T. Locher, S. Schmid, and R. Wattenhofer, “Rescuing tit-for-tat with source coding,”
in Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007),
pp. 3-10, 2007. CORE2018 Rank: C.

R. Izhak-Ratzin, N. Liogkas, and R. Majumdar, “Team incentives in bittorrent sys-
tems,” in 2009 Proceedings of 18th International Conference on Computer Commu-
nications and Networks, pp. 1-8, 2009. CORE2021 Rank: B.

19

[18]

[19]

[23]

[24]

[25]

[26]

[27]

28]

[29]

R. Zhou, K. Hwang, and M. Cai, “Gossiptrust for fast reputation aggregation in
peer-to-peer networks,” IEEE Transactions on Knowledge and Data Engineering,
vol. 20, no. 9, pp. 1282-1295, 2008. JCR Impact Factor 2021: 6.977.

M. Gupta, P. Judge, and M. Ammar, “A reputation system for peer-to-peer net-
works,” in Proceedings of the 13th International Workshop on Network and Operat-
ing Systems Support for Digital Audio and Video, NOSSDAV 03, (New York, NY,
USA), p. 144-152, Association for Computing Machinery, 2003. CORE2021 Rank:
Unranked.

A. Goswami, R. Gupta, and G. S. Parashari, “Reputation-based resource alloca-
tion in p2p systems: A game theoretic perspective,” IEEE Communications Letters,
vol. 21, no. 6, pp. 1273-1276, 2017. JCR Impact Factor 2020: 3.436.

Z. ImaniMehr and M. DehghanTakhtFooladi, “Token-based incentive mechanism for
peer-to-peer video streaming networks,” J. Supercomput., vol. 75, p. 6612-6631, oct
2019. JCR Impact Factor 2020: 2.474.

S. Jun and M. Ahamad, “Incentives in bittorrent induce free riding,” in Proceedings
of the 2005 ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems,
P2PECON 05, (New York, NY, USA), p. 116-121, Association for Computing Ma-
chinery, 2005. CORE2018 Rank: C.

D. Qiu and R. Srikant, “Modeling and performance analysis of bittorrent-like peer-
to-peer networks,” SIGCOMM Comput. Commun. Rev., vol. 34, p. 367-378, aug
2004. JCR Impact Factor 2021: 2.712.

M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica, “Free-riding and white-
washing in peer-to-peer systems,” in Proceedings of the ACM SIGCOMM Workshop
on Practice and Theory of Incentives in Networked Systems, PINS '04, (New York,
NY, USA), p. 228-236, Association for Computing Machinery, 2004.

A. L. Jia, L. D’Acunto, M. Meulpolder, and J. A. Pouwelse, “Modeling and analysis
of sharing ratio enforcement in private bittorrent communities,” in 2011 IEEE In-
ternational Conference on Communications (ICC), pp. 1-5, 2011. CORE2018 Rank:
B.

M. Debe, H. R. Hasan, K. Salah, I. Yaqoob, and R. Jayaraman, “Blockchain-based
energy trading in electric vehicles using an auctioning and reputation scheme,” IEEE
Access, vol. 9, pp. 165542-165556, 2021. JCR Impact Factor 2020: 3.367.

Z. Geng, Y. He, C. Wang, G. Xu, K. Xiao, and S. Yu, “A blockchain based privacy-
preserving reputation scheme for cloud service,” in ICC 2021 - IEEFE International
Conference on Communications, pp. 1-6, 2021. CORE2018 Rank: B.

D. Figueiredo, J. Shapiro, and D. Towsley, “Incentives to promote availability in
peer-to-peer anonymity systems,” in 13TH IEEE International Conference on Net-
work Protocols (ICNP’05), pp. 12 pp.—121, 2005. CORE2021 Rank: A.

H. Jiang, S. Guo, D. Zeng, and H. Jin, “Improving content availability by request-
adaptive incentive in private peer-to-peer communities,” in 2012 IEEE Global Com-
munications Conference (GLOBECOM), pp. 2708-2713, 2012. CORE2021 Rank:
B.

20

[30] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Busi-
ness Review, p. 21260, 2008.

[31] V. Buterin, “A next generation smart contract & decentralized application platform
(2013) whitepaper,” Ethereum Foundation, 2013.

[32] N. Fotiou, I. Pittaras, V. A. Siris, S. Voulgaris, and G. C. Polyzos, “Oauth 2.0
authorization using blockchain-based tokens,” 2020.

21

	Introduction
	Research Question
	Content

	Related Work
	Free-Riders
	Retaliation Mechanisms
	Direct Retaliation
	Indirect Retaliation
	Blockchain Reputation Systems

	Game Theory Modelling
	Payment-Based Mechanisms
	Research Niche

	Methodology
	Blockchain Technology
	Reputation System
	Proposed Solution
	Architecture

	Technologies Used
	Ganache
	Solidity
	Solc

	Implementation
	Peer-to-peer Network
	Client application
	Signalling-Backend server
	Blockchain Server
	Configuration
	Number of Nodes and Failure Rate
	Number of Cycles
	Number of Files per Node and File Sizes

	Voting Scores

	Evaluation
	Results
	Number of Files
	Number of Cycles
	Failure Rate Range
	Size of file
	Voting Score Range

	Summary

	Conclusion and future work

