
Automated Dockerization of Web
Applications Developed in Various

Languages

MSc Research Project

Cloud Computing

Shubham Sanjay Tendulkar
Student ID: x20224753

School of Computing

National College of Ireland

Supervisor: Vikas Sahni

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Shubham Sanjay Tendulkar

Student ID: x20224753

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Vikas Sahni

Submission Due Date: 15/08/2022

Project Title: Automated Dockerization of Web Applications Developed in
Various Languages

Word Count: 5100

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Automated Dockerization of Web Applications
Developed in Various Languages

Shubham Sanjay Tendulkar
x20224753

Abstract

The competition for computing is at an all-time high as the demand for comput-
ing power is increasing, and cloud computing is a great solution. For a long time,
one of the main issues while developing has been that the developers develop the
application in one place and then deploy the application in another. Then this be-
comes an issue for DevOps.One of the best strategies is to use Docker to resolve the
application’s deployment, but dockerizing an appliction is still a difficult process.
Therefore even though Docker is useful, it is not widely used. The purpose of this
research is to reduce its complexity. Therefore, this research, proposes a solution to
reduce the complexity of dockerization. The automated dockerization application
simplifies the process of Dockerization and hides the complexity of dockerizing a
web application. The following research discusses virtualization, containerization,
and dockerization. This research also discusses the benefits of dockerization. The
automated dockerization can dockerize web applications written in ReactJS and
ExpressJS it can also create WordPress instance on docker. The Dockerized applic-
ation can be readily uploaded to any environment that supports Docker, notably
cloud-based environments like Amazon AWS EC2. The application for automated
dockerization appeals to a bigger audience because it supports popular languages
like ReactJS(Frontend) and ExpressJS(Backend), this will encourage developers to
utilize Dockers more.

1 Introduction

Recently, there has been much technological development in serverless computing, IoT,
etc., which has created a great scope for the cloud Buyya (2010). In this context, the
most popular techniques utilized in today’s world are containers and virtual machines
to improve the scalability and portability of any web application as well as to facilitate
cross-platform use. While each has its own benefits, it is sometimes crucial to pick
the best strategy for the circumstances. Optimizing server capacity is the basic goal of
virtualization. However, given the operating system’s existence and the requirement for
a hypervisor to enable virtualization, this cannot be referred to as lightweight.

1.1 Docker

According to the accepted definition, Docker is ”an open-source project Bernstein (2014)
that automates OS-level virtualization on Linux and adds an additional layer of abstrac-
tion Teigland and Mauelshagen (2001) to the deployment of software applications inside

1

containers.” Because of its open-source platform, Docker is more preferred over virtu-
alization as technology advances. Docker enables both development and deployment
processes. Docker’s ability to separate the infrastructure from the application is one of
its most appealing features Merkel et al. (2014). Docker’s increased use has made it sim-
pler to concentrate on developing applications rather than worrying about how they will
be deployed Naik (2016). The management of infrastructure is, therefore, more enticing
than ever. The ability to create Docker images and deploy them reduces the amount of
time that passes between the development of new code and its deployment, preventing
developers from getting sidetracked by other tedious chores. The main advantage here
is the use of containers, which in this scenario is compared to virtualization. Containers
have attracted many developers due to their lightweight and lack of an operating system,
as opposed to virtual machines.

1.2 ReactJS

In its most basic form, React is a web framework that was developed with the primary
intention of resolving performance concerns that were present in web applications Javeed
(2019). Within the Model-View-Controller architectural pattern, React is referred to
as the View (V) (MVC). As a result of its abstraction of the Document Object Model
(DOM), React provides an approach to application development that is straightforward,
performant, and reliable. The majority of the rendering for React is done on the server
side with NodeJS, while support for native mobile app development is provided via React
Native. As a result of implementing unidirectional data flow, which reduces the amount
of boilerplate code required, React is far simpler to use than traditional data binding
Aggarwal (2018). Facebook’s internal development team came up with the UI library
known as React in order to make it easier to create interactive, stateful, and reusable UI
components. It is put to use in the production process at Facebook. Rendering soph-
isticated user interfaces while maintaining a high level of efficiency is best accomplished
with ReactJS Kumar and Singh (2016). With a utilization rate of 35.9% and over 7.4
million live websites currently using the library in 2022, reactJS was the second most
utilized web development framework worldwide in 2021 Tushev (2022). Therefore the
automated docerization application from this research supports dockerization of ReactJS
application.

1.3 WordPress

Support for creating WordPress instance in a docker is provided in the automated docer-
ization application. The reason why this application suports this functionality is because
the most widely used content management system (CMS) in today is WordPress, which
is used to power over 29 percent of all websites Cabot (2018). WordPress is used to power
approximately 56 percent of all websites that are driven by content management systems
(CMSs), which is a significant percentage. This is an astounding figure that speaks not
only to the growing rate of adoption of WordPress by users but also to its long-term
viability as a content management system Jones and Alida-Farrington (2011). The PHP
programming language and either MySQL or the MariaDB Relational Database Man-
agement System are the foundations upon which the WordPress web application is built
(RDBMS). As of right now, it is the open-source website Content Management System
(CMS) that is utilized by the most websites Tomǐsa et al. (2019). Mostly even people with

2

less technical skills develop and create WordPress websites, therefore for these users the
automated docerization application hides the complexity of creating WordPress instance
on docker.

1.4 ExpressJS

ExpressJS is a framework that is developed on the Node platform. It does this by offer-
ing a more user-friendly application programming interface (API) for several of Node’s
key features. It is possible to think of it as an abstraction layer that sits on top of the
HTTP module that is part of Node’s core API. ExpressJS offers a significant amount
of additional functionality in comparison to the HTTP module. This functionality elim-
inates the necessity to rewrite typical tasks, such as handling requests, setting routes,
or rendering static assets, from start Peters (2017). Overall ExpressJS is a good frame-
work for developing backend. Therefor the automated docerization application supports
dockerzing applications written in EpressJS.

1.5 Research Question

Will using an intuitive user interface and masking the complexities of dockerizing ReactJS,
WordPress, and ExpressJS web applications enhance the adoption rates and the number
of dockerized applications?

The remainder of the study is dedicated to a discussion of the research that are
associated with Docker, during which the pros of utilizing Docker are subjected to an
in-depth evaluation. After that, the author of the paper explains how the process of
dockerization should be simplified in order to boost the application of docker. In addition
to this, the study delves into the technique that may be utilized to make the dockerization
process more manageable.

2 Related Work

The core of this research is to promote the use of docker. Therefore this research focuses
on work done on docker. Docker was initially released in 2013 Combe et al. (2016).
After releasing in 2013 a lot of research has been done on docker Rad et al. (2017). This
research extends the work done on docker and tries to promote the use of docker.

2.1 Dockerizing or Containerizing an application

External dependencies, such as frameworks, modules, libraries, and so on, are common
in web applications. There may be instances of multiple applications that are built on
the same framework but run on different versions that are either compatible or incom-
patible with one another Ijtihadie et al. (2017). Nowadays, everyone strives to reduce
deployment time and to perform multiple deployments in very less time. Therefore De-
vOps gains a lot of popularity at the same time containers pack dependencies into docker
file. Docker files are secure and isolated, allowing cross-platform and version issues to
be resolved. Similar deployment steps can be followed in the development, staging, and
deployment processes Bin et al. (2019). There are so many middleware methods to dock-
erizing applications for cloud deployment. The ontology approach does not allow for

3

the creation of ontologies and their implementation Pahl and Carle (2013). The gap
between the developer community and cloud infrastructure community has been bridged
by Paas. However, being able to design an application regardless of the target plat-
form gives every developer an edge in terms of increasing development productivity. This
is made feasible by a devops ecosystem that includes Google App Engine, Docker, and
Kubernetes, among other things.

2.2 Microservices

Many businesses have evolved into Microservices architecture as technology and DevOps
have advanced. Specifically, e-commerce systems make it easier to control and reduce
overall application downtime. This change has been supported by DevOps Ci/CD using
RunDeck, Docker, and Kubernetes. The Docker images were submitted to Docker Hub.
These images can be pulled from Docker Hub, but the essential goal is to keep the flow
between the microservices intact. A single yml file was introduced that runs alongside
the docker-compose, keeping the containers connected. The emphasis remained on the
development of the yml file. Manual configuration is not required in the production
environment of Docker-compose Rajavaram et al. (2019). Kubernetes supports calling
multiple pods, but our approach sets up the portability in very less time. Automation
and virtualization have also been applied in situations like as connecting mobile terminals
with cloud services, which is then referred to as Testing as a Service (TaaS) Tao et al.
(2015). The apps can also be tested for vulnerability here. This makes it easier to create
flexible testing environments for various scenarios. This strategy can be used with our
suggestion to increase adaptability even further, resulting in speedier containerization
and, over time, safe environments on the hosted cloud for the applications.

2.3 Dockeriztion of pyhton web apps

Kedambadi Shreekar (2020) has previously worked on automated dockerization of Python-
based web apps, and this research extends the work on that. This research proposes to
automate the dockerization of web applications in ReactJS, WordPress, and ExpressJS,
which will simplify the process of dockerization.

In conclusion, while prior methods have addressed concerns about the security of
cloud-hosted apps and created FlowVisors, the majority don’t handle the complexity
of this move, and the method that does address the complexity doesn’t support many
languages. For web programs that need to be transferred and to reduce the overhead
of configuration setup, containerization is the most suitable method when compared to
virtual machines. This research wants to make the process simpler by automating web
app dockerization to encourage adoption. How to make Docker adoption simpler and
easier? What can be done, specifically in the phases from no container to container
engine stage, to enable teams who are hesitant to begin using Docker to recognize the
benefits and simplicity of doing so? This is what the research paper are aiming towards.

3 Methodology

The main logic is developed such that it may be readily extended to handle non-web
applications and different types of programming languages in the future. Eventually,
a comprehensive web application that can carry out these activities instantly will be

4

created, keeping the essential logic the same. For the proposal’s effective implementation,
our method of implementation incorporates a variety of concepts and frameworks, as
shown below.

• The capability of utilizing the command line interface or shell to run Docker as a
client.

• The capability of downloading all the required dependencies which are used by
ReactJS, ExpressJS and Wordpress. The ability to run commands for command
line to reduce the complexity. A simple to understand user interface to take inputs
from user and perform its task.

This method calls shell commands and the relevant stacks surrounding it in order to
take advantage of Python’s programming strengths. The methodology utilized was agile
in that features were introduced as they were discovered and new features were used as
needed. This was mostly caused by the project’s research-based approach, which resulted
in agile mode. It was possible to install and manage packages created in Python using
the pip package management system. Despite the fact that Python offers a number of
graphical user interface frameworks, Tkinter framework a built-in framewoed was more
suitable for the automated docerization application. One very significant factor is that
this research proposal was strongly supported by the cross-platform nature of Tkinter,
which functions equally well with any Operating System. Light weighted in nature, it
was more persuasive for the cause.

Additional module In different operating systems, OS module in python provides func-
tions for interacting with the operating system. The application’s foundational module
is this one. Using this module makes it feasible to execute different docker-related com-
mands and procedures to produce docker artifacts. Another great feature is its ability to
run in the background.

By selecting ReactJS and ExpressJS based web applications and Wordpress from open
source code repositories like GitHub, compiling them using our setup to produce a Docker
file, and then being able to execute the image on our target platform, the experiments
were conducted and tested.

• Write the ReactJS(Frontend)/ ExpressJS(Backend) application code. Or input
wordpress details to deploy wordpress on docker.

• Create a Docker file using containers.

• Deploy to the chosen target (local system or cloud).

The Environment requirements are as stated below: For setting up our implementation
we had the following setup done:

• Installed Python 3.x. The most recent version of Python 3.x should always be used.

• Tkinter and numpy libraries must be installed.

• Docker Desktop has been set up. To execute commands using Docker, this is
necessary. The issue with the aforementioned is that it only works with Windows
Professional and later and cannot be utilized with Windows Home.

• If installing Docker Desktop is not possible, we can use Docker clients for older
operating systems.

5

Figure 1: Flow of automated application .

4 Design Specification

The purpose of this research was to create an application that simplifies the process of
dockerizing any web application written in popular languages like:

• ReactJS

• ExpressJS

This application can also dockerize and deploy Wordpress. With the help of this
application, developers can easily develop an application then containerize/build docker
file and then they can deploy to target of their choice like local system or cloud. Also
with the help of this application users can also Dockerize and deploy wordpress with ease.

4.1 Input Specification:

The input specification is divided into three sections. In the first section, information
regarding ReactJS input is provided, the second section provides information regarding
WordPress inputs, and in the last, third section, information regarding ExpressJS is
provided.

4.1.1 ReactJS Input Specifications

The first section of the input specification is about ReactJS Dockerization.

• Project directory :- In order to Dockerize a ReactJS application, users must first
specify the directory in which the application resides. This can be done by clicking
browse button in the application.

• Project name :- The second step is to input the project name for ReactJS applica-
tion.

6

Figure 2: UI / Input Tab of the applicaiton .

• Port Number :- The last thing to do is to enter the port number which needs to be
exposed by the application from docker.

4.1.2 WordPress Input Specification

This section describes the WordPress Input Specification, which assists users with dock-
erizing and deploying WordPress. There are two methods by which users can dockerize
WordPress either automatically or manually. In the manual method, every detail needs
to be provided by the user and configure the WordPress manually, whereas in the auto-
matic method, the user can dockerize WordPress automatically with the click of just one
button.

• Volume name for WordPress:- The user identifies the WordPress volume by giving
its name in this field.

• Volume name for MYSQL:- The user is responsible for providing the volume name
for MYSQL in this field.

• Database Container Name:- The user is responsible for providing the container
name for Database in this field. This name will also serve as the host name.

• MYSQL root password :- This is the field in which the user enters the root password
for MYSQL.

• MYSQL username :- This is the field in which the user supplies their username for
usage with MYSQL.

7

• MYSQL password :- The user’s password for accessing the MYSQL database is
entered into this field.

• MYSQL database name :- In this area, the user enters the name of the database
that will be used by MYSQL.

• WordPress container name :- The user is providing a name for the WordPress
container in this area.

• Port number :- The port number for both the host and the container should be
entered into this field by the user.

4.1.3 ExpressJS Input Specification

This section discusses about the ExpressJS Input Specification.

• Project directory :- In order to Dockerize a ExpressJS application, users must first
specify the directory in which the application resides. This can be done by clicking
browse button in the application.

• Project name :- The second step is to input the project name for ExpressJS applic-
ation.

• Port Number :- The final step is to specify the port number that must be exposed
by the docker application.

4.2 Output Specification

This application has the capability of producing a very wide variety of different kinds
of output at any given time. The build artifacts that are produced by the docker build
command are the ones that are encountered most frequently. This represents the ap-
plication’s output at a lower level than the previous one. The ability to run the Docker
application and the capability to access it using web browsers constitutes the second level.
Additionally, the capability to execute WordPress in a dockerized environment has been
implemented. Even if it is not currently possible, it will eventually have the capacity to
push the docker artifacts to the central repository. The objects that are uploaded in this
manner are able to be uploaded without much difficulty on any public cloud network or
Kubernetes platform.

5 Implementation

Python was the programming language that was decided to utilize for the purpose of im-
plementation. This allowed us to construct user interfaces and logic processing. Tkinter,
which is the graphical user interface component of Python, and OS module, which deals
with launching processes in multiple operating systems from within Python, are the two
key modules that made up the application. Tkinter was utilised because it is compatible
with a variety of operating systems, including Windows, Linux, and macOS, which is the
primary benefit of using this tool. Tkinter contains a broad variety of widgets from which
to choose. However, for the purpose of this project, the input box was used, which is also
referred to as the entry box, the file dialog box, and the button. In addition, there were

8

two distinct forms of the file dialog that were utilized. The first is the conventional file
dialog, which enables file selection. The second is the directory file dialog, which enabled
directory selection. This is necessary due to the fact that the input specification indic-
ates that both files and directories were required. The event action pattern was achieved
through the use of callbacks. That made it possible to regulate certain behaviors that
are essential for either capturing the names of files or directories or dealing with the
validation of input parameters that are supplied by the user.

• Dockerizing ReactJS Application
If the user has already developed an application with ReactJS, then the GUI should
be used to go to the directory of ReactJS project. After the directory has been se-
lected, the user is required to specify a name for the ReactJS application. Following
that, the user will be required to provide the port number that should be exposed for
the ReactJS application.
In the backend the Tkinter application will store the directory path provided by
the user through GUI. This is performed by the function filedialog.askdirectory().
The application then fetches images from Docker, and if the image already exists,
it replaces the existing or duplicate image with the latest image. The application
then examines whether the specified directory path is legitimate, and if the dir-
ectory already exists, it deletes and recreates it. The directory’s contents are then
cloned into the react-app directory. The application will then move its directory
to the react-app directory. The program then generates a docker file for the react
application. This is followed by the execution of the docker build command in the
background, which builds the docker image. And finally, the application executes
the container and exposes the port number supplied by the user.

• Code for Dockerizing ReactJS Application

def createReactDockerFile(appName, portNo, dir):

print (dir)

app_folder = ’react-app’

images = ’docker images | grep {}:latest’.format(appName)

rm_image = ’docker rmi {}:latest’.format(appName)

if os.system(images):

os.system(rm_image)

dirpath = Path(os.getcwd()) / app_folder

if dirpath.exists() and dirpath.is_dir():

shutil.rmtree(app_folder)

os.mkdir(app_folder)

copy_tree(dir, app_folder)

os.chdir(app_folder)

with open("Dockerfile",’w’,encoding = ’utf-8’) as f:

f.write(’FROM node:18-alpine3.15\n’)

f.write(’WORKDIR /app\n’)

f.write(’ENV PATH /app/node_modules/.bin:$PATH\n’)

f.write(’COPY . .\n’)

f.write(’RUN npm install\n’)

f.write(’RUN npm install react-scripts@5.0.1 -g\n’)

9

f.write(’CMD ["npm", "start"]’)

os.system(’docker build -t {}:latest .’.format(appName))

os.system(’docker run -d -p {}:3000 {}:latest’.format(portNo, appName))

• Dockerizing WordPress
There are two ways for users to dockerize and run a WordPress instance through the
application. The application offers two options for dockerizing WordPress. The first
type is automatically dockerizing WordPress. With this method, the user doesn’t
need to enter any information. They can simply click a button to dockerize and
run WordPress. The application’s backend runs the docker-compose.yml file when
the user clicks the ”Auto Start Wordpress” button. In this file default values has
been set which will instantiate WordPress 6.0.1 and MYSQL version 8.0.3 on the
docker. The user will see a browser open after clicking the button, with WordPress
installed and running locally on port 8080:80. The user can then setup WordPress
and begin creating websites.
In the second way, the user must specify the WordPress volume name. The user is
then needed to specify the volume name for MYSQL. The user must next specify
the Database container name. This will also be the host’s name. The user is
then requested to input the MYSQL root password. The user must next provide a
username for MYSQL. Then, the user must set a password for MYSQL database
access. The user must next provide the database name that will be utilized by
MYSQL. The user must then specify a container name for WordPress. The user
must then specify the port number for both the host and the container. After
the user gives all required details, a docker compose file containing those details is
generated. The application’s backend then executes the docker-compose file when
the ”Manual Start Wordpress” button is clicked. This file will instantiate WordPress
6.0.1 and MYSQL 8.0.3 on a Docker container. After pressing the button, a browser
will appear with WordPress installed and running locally on the user-specified port.
The user can then configure WordPress and initiate website creation.

• Dockerizing ExpressJS Application
The GUI should be used to access the expressJS project directory if the user has
already created an application with expressJS. The user must next enter a name
for the ReactJS application after choosing a directory. The user will next need to
enter the port number that should be exposed for the expressJS application.
The Tkinter program will save the directory path provided by the user via the
GUI in the backend. This is performed by the function filedialog.askdirectory().
The application then retrieves images from Docker, and if the image already ex-
ists, it replaces the existing or duplicate image with the most recent image. The
application then examines whether the specified directory path is legitimate, and
if the directory already exists, it deletes and recreates it. The directory’s contents
are then copied into the expressJS-app directory. The program will then move its
directory to the expressJS-app directory. The application then generates a docker
file for the expressJS application. This is followed by the execution of the docker
build command in the background, which builds the docker image. And finally, the

10

application executes the container and exposes the port number supplied by the
user.

• Code for Dockerizing ExpressJS Application

def createExpressDockerFile(appName, portNo, dir):

app_folder = ’express-app’

images = ’docker images | grep {}:latest’.format(appName)

rm_image = ’docker rmi {}:latest’.format(appName)

if os.system(images):

os.system(rm_image)

dirpath = Path(os.getcwd()) / app_folder

if dirpath.exists() and dirpath.is_dir():

shutil.rmtree(app_folder)

os.mkdir(app_folder)

copy_tree(dir, app_folder)

os.chdir(app_folder)

with open("Dockerfile",’w’,encoding = ’utf-8’) as f:

f.write(’FROM node:18-alpine3.15\n’)

f.write(’WORKDIR /app\n’)

f.write(’ENV PATH /app/node_modules/.bin:$PATH\n’)

f.write(’COPY . .\n’)

f.write(’RUN npm install\n’)

f.write(’RUN npm install react-scripts@5.0.1 -g\n’)

f.write(’CMD ["npm", "start"]’)

os.system(’docker build -t {}:latest .’.format(appName))

os.system(’docker run -d -p {}:3000 {}:latest’.format(portNo, appName))

6 Evaluation

The application’s execution resulted in three distinct results. In the first output, the
program dockerized a user-provided ReactJS application. This application was running
on the user provided port number. In the second output, a WordPress instance was
launched on the user’s docker and was running on the port number specified by the
user, in other output, WordPress was running on the default port number of 8080:80.
In the third output, the program containerized an existing ExpressJS project that the
user provided. The ExpressJS application was executed on the user-specified port. When
users submitted valid inputs, the application functioned effectively. // Following were
the few errors that occurred when testing the application.

• Error during connect :- This error occurred when the user attempted to start a
dockerizing a project without first starting Docker desktop. This issue could be
resolved by installing and launching docker desktop on the user’s machine.

11

• Directory attribute error :- This issue occurred when the user attempted to start
dockerizing program without selecting the directory where the project is located.
This results in an empty directory variable. This error can be resolved by selecting
the directory in which the project is saved using the ”browse” button on the GUI
and then clicking the ”start” button.

• Tkinter/numpy error :- This issue occurs while running the command python/python3
main.py to launch the application. If Tkinter or numpy packages are not installed,
this error occurs. To address this issue, the user must correctly install the Tkinter
and numpy packages on their system.

• Empty fields error :- This error happens when the user attempts to begin the dock-
erization process without providing the necessary details for the project, or when
the user provides inaccurate information. The solution to this problem is to deliver
accurate information without error.

If the application is executed properly, then it functions properly and delivers the
desired results. Therefore, by using this application, the complexity of dockerizing web
apps and WordPress is hidden. The following experiments showcase the output as well
as the different functionalities of the application.

6.1 Experiment 1

In the first experiment, the ReactJS application was containerized. It was decided to
containerize the react-boilerplate application for this experiment. In order to execute
this test, we initially prepared the system’s environment. This was accomplished by
installing docker desktop and the Tkinter and numpy package libraries. Then, to obtain
the react-boilerplate application following command is executed.

npx create-react-app new-app

Executing this command creates a react-boilerplate application in new-app directory. The
Automated Docker application is then launched by executing python main.py. Next, in
the graphical user interface, we picked the location where the react-boilerplate application
is saved, gave the project a name, and entered port 6060. After entering our information,
we pressed the ”Start React app” button. After hitting the button, the react-boilerplate
application was dockerized, and the react application could be viewed in a web browser
at ”http://localhost//6060”, as shown in the figure3.

12

Figure 3: ReactJS app running on port 6060

6.2 Experiment 2

In the second experiment, a WordPress instance was manually configured on the system’s
docker. Since we had already prepared the system environment for the initial experiment,
additional preparation was not necessary. Therefore, we executed the application by dir-
ectly invoking the python main.py command. This initiated the GUI of the application.
In this GUI, we entered the information shown in figure4.

Figure 4: Manual Wordpress dockerization inputs

Then we clicked the ”Manual Start WordPress” button. After hitting this button,
the intended results were obtained. Wordpress 6.0.1 was installed and operating on the
specified port, as shown in the figure5.

13

Figure 5: Wordpress instance running on manually configured port :8081

6.3 Experiment 3

In the third experiment, the system’s docker was automatically configured with a Word-
Press instance. Since we had already set the system environment for the first and second
experiments, no further preparation was required. Therefore, the application was ex-
ecuted by immediately executing the python main.py command. This launched the ap-
plication’s GUI. In this GUI, it was unnecessary to enter any information because default
settings were utilised. We then clicked the ”Automatically Start WordPress” button.
After clicking this button, the desired outcome was accomplished. As indicated in the
illustration, Wordpress 6.0.1 was installed and running and could be viewed in a web
browser at ”http://localhost//8080”, as depicted in the figure6.

14

Figure 6: Wordpress instance running on manually configured port :8080

6.4 Experiment 4

The fourth experiment included containerizing the ExpressJS application. Due to the
fact that we had already established the system environment for the first and second
experiment, additional preparation was unnecessary. We cloned a basic ExpressJS ap-
plication from GitHub in order to test it. The Automated Docker application is then
launched by executing python main.py. Next, in the graphical user interface, we picked
the directory where the ExpressJS application is placed, named the project, and entered
port 5050. After entering our information, we hit ”Start Express app.” After hitting the
button, the ExpressJS application was dockerized and could be viewed in a web browser
at ”http://localhost//5050”, as depicted in the figure7.

Figure 7: ExpressJS app running on port 5050

6.5 Discussion

The preceding experiments indicate that the automated dockerization application facil-
itates the dockerization of ReactJS and ExpressJS applications. It also demonstrates

15

that a user with no prior understanding of dockerization may construct a WordPress
instance on their docker using the application’s graphical user interface. This will assist
the user in developing and testing their WordPress site locally on their docker. All of
the aforementioned studies lead us to the conclusion that the automated dockerization
application performs well and it can been seen in figure8 that containers were created as
per the experiments.It also states that with the help of the Tkinter GUI, complexity of
the dockerization process is hided away.

Figure 8: Docker desktop app showcasing the created containers

7 Conclusion and Future Work

The research question that this research paper proposed was ”Will using an intuitive
user interface and masking the complexities of dockerizing ReactJS, WordPress, and
ExpresSJS web applications enhance the adoption rates and the number of dockerized
applications?” This research has successfully showed how a simple Python application
can be used to put a wrapper around a sophisticated dockerization process in order to
generate cloud-deployable artifacts. The automated docerization application is geared
mostly toward novice users and developers who are interested in utilizing Docker but
have limited knowledge of the topic and are under time pressure to get started as soon as
possible. The usage of the approach described above not only enhances usability, but it
also boosts the productivity of end developers and users by simplifying deployment using
Docker. What this research presented was a little drop in the bucket. This project’s ulti-
mate objective is to develop a standard user interface that allows users to deploy any type
of application written in any programming language, with the option to switch versions as
needed, and with deployment completed in minutes. The following aspects of future work
can be highlighted: Possibility to dockerize non-web apps written in other languages, po-
tential to extend the number of supported programming languages, capability to evaluate

16

Docker, deploy to the container registry, convert the standalone automation application
to a web application. The implementation can be enhanced to handle more programming
languages and databases. Based on our research, we can conclude that containers have
an advantage due to their superior performance and quicker start-up and deployment
times. While there are numerous and diverse implementations of containers, each has
its own pros and downsides. With Docker, we can also add layers to Linux Containers,
which makes them ideally suited for Cloud PaaS services. We envision a bright future
for containers in PaaS if abstraction is improved further.

References

Aggarwal, S. (2018). Modern web-development using reactjs, International Journal of
Recent Research Aspects 5(1): 133–137.

Bernstein, D. (2014). Containers and cloud: From lxc to docker to kubernetes, IEEE
cloud computing 1(3): 81–84.

Bin, N., Zhihua, B., Dejian, L., Sheng, L. and LiXin, Y. (2019). Containerization of
intelligent terminal application in ubiquitous power internet of things, 2019 3rd Inter-
national Conference on Electronic Information Technology and Computer Engineering
(EITCE), IEEE, pp. 1821–1826.

Buyya, R. (2010). Cloud computing: The next revolution in information technology, 2010
First International Conference On Parallel, Distributed and Grid Computing (PDGC
2010), IEEE, pp. 2–3.

Cabot, J. (2018). Wordpress: A content management system to democratize publishing,
IEEE Software 35(3): 89–92.

Combe, T., Martin, A. and Di Pietro, R. (2016). To docker or not to docker: A security
perspective, IEEE Cloud Computing 3(5): 54–62.

Ijtihadie, R. M., Santoso, B. J., Fablius, D. and Nusawan, I. D. P. A. (2017). Multi
criteria decision system for distribution provisioning and resource optimization using
analytical hierarchy process, 2017 11th International Conference on Information &
Communication Technology and System (ICTS), IEEE, pp. 197–202.

Javeed, A. (2019). Performance optimization techniques for reactjs, 2019 IEEE In-
ternational Conference on Electrical, Computer and Communication Technologies
(ICECCT), IEEE, pp. 1–5.

Jones, K. M. and Alida-Farrington, P. (2011). Getting started with wordpress, Library
Technology Reports 47(3): 8–15.

Kedambadi Shreekar, S. (2020). Automated Dockerization of Python based Web Apps,
PhD thesis, Dublin, National College of Ireland.

Kumar, A. and Singh, R. K. (2016). Comparative analysis of angularjs and reactjs,
International Journal of Latest Trends in Engineering and Technology 7(4): 225–227.

Merkel, D. et al. (2014). Docker: lightweight linux containers for consistent development
and deployment, Linux j 239(2): 2.

17

Naik, N. (2016). Building a virtual system of systems using docker swarm in multiple
clouds, 2016 IEEE International Symposium on Systems Engineering (ISSE), IEEE,
pp. 1–3.

Pahl, M.-O. and Carle, G. (2013). The missing layer—virtualizing smart spaces, 2013
IEEE International Conference on Pervasive Computing and Communications Work-
shops (PERCOM Workshops), IEEE, pp. 139–144.

Peters, C. (2017). Building rich internet applications with node. js and express. js, Rich
Internet Applications w/HTML and Javascript p. 15.

Rad, B. B., Bhatti, H. J. and Ahmadi, M. (2017). An introduction to docker and analysis
of its performance, International Journal of Computer Science and Network Security
(IJCSNS) 17(3): 228. JCR Impact Factor 2017: 1.5 Impact Factor.

Rajavaram, H., Rajula, V. and Thangaraju, B. (2019). Automation of microservices
application deployment made easy by rundeck and kubernetes, 2019 IEEE Interna-
tional Conference on Electronics, Computing and Communication Technologies (CON-
ECCT), IEEE, pp. 1–3.

Tao, D., Lin, Z. and Lu, C. (2015). Cloud platform based automated security testing
system for mobile internet, Tsinghua Science and Technology 20(6): 537–544.

Teigland, D. and Mauelshagen, H. (2001). Volume managers in linux., USENIX Annual
Technical Conference, FREENIX Track, pp. 185–197.

Tomǐsa, M., Milković, M. and Čačić, M. (2019). Performance evaluation of dynamic
and static wordpress-based websites, 2019 23rd International Computer Science and
Engineering Conference (ICSEC), pp. 321–324.

Tushev, V. (2022). The Best React Websites Examples That Ever Built [2022] | Pro-
Coders. [Online; accessed 2022-08-15].

18

	Introduction
	Docker
	ReactJS
	WordPress
	ExpressJS
	Research Question

	Related Work
	Dockerizing or Containerizing an application
	Microservices
	Dockeriztion of pyhton web apps

	Methodology
	Design Specification
	Input Specification:
	ReactJS Input Specifications
	WordPress Input Specification
	ExpressJS Input Specification

	Output Specification

	Implementation
	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Discussion

	Conclusion and Future Work

