
Reducing instance acquisition lag to improve
scaling out in the kubernetes cluster

MSc Research Project

Cloud Computing

Bharath Raj Kanthimathinathan
Student ID: 20225024

School of Computing

National College of Ireland

Supervisor: Shivani Jaswal

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Bharath Raj Kanthimathinathan

Student ID: 20225024

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Shivani Jaswal

Submission Due Date: 15/08/2022

Project Title: Reducing instance acquisition lag to improve scaling out in the
kubernetes cluster

Word Count: 5969

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Bharath Raj

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies).

Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep a
copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Reducing instance acquisition lag to improve scaling
out in the kubernetes cluster

Bharath Raj Kanthimathinathan
20225024

Abstract

Cloud infrastructure leverages containerization which allows developers to deploy
application anywhere in a repeatable and consistent manner without library or
package dependency failures. With kubernetes being the industry standard for
container orchestration, there is still tremendous scope for improvement in kubernetes
cluster autoscaling. Both vertical pod autoscaling and horizontal pod autoscaling
is limited by the cluster node autoscaling which acts as a bottleneck. Hence, a
new node autoscaling solution is required to overcome the limitation of cluster
autoscaling. This paper proposes a kubernetes cluster autoscaling solution called
ANA autoscaler which makes use of bash scripts which creates and adds a new
cluster node in a dormant state, ready to use when needed during cluster scale
out. Here, the instance acquisition time refers to the amount of time taken by the
kubernetes cluster node to add to the cluster and make it usable. The results show
72% improvement in comparison with the reaction time taken for a node to be added
in EKS amazon managed kubernetes cluster with a dynamic scaling setting. This
will massively improve the scale out time and reduce the application performance
degradation. This also indicates there is still scope for improvement in the reaction
time of node autoscaling in kubernetes cluster.

1 Introduction

Containerization has become widely used in the industry over the past few years, by using
the scalable features of the cloud and the application portability feature of the containers,
applications are able to scale faster and reliably than ever before. There are many research
papers done on many autoscaling techniques like horizontal pod autoscaling and vertical
pod autoscaling. These research papers used a number of techniques which could be
categorised into reactive and proactive autoscaling, but these were mostly concerned with
pod autoscaling. So even though there were multiple techniques proposed, the amount of
resources available will be limited to the total resources available in the cluster. There are
very few research papers which addresses this issue, where node autoscaling techniques
are explored, there is tremendous scope to improve on the scaling feature of the cluster
to make resources available quickly. Faster node autoscaling will improve the scale out
time in the clusters which are present in the production environment hence enabling to
support more traffic without any outage or drop in performance of the application.

This research focuses on improving the scale out time, it aims at improving the node
acquisition time by making use of a proposed custom autoscaling solution called ANA
autoscaler. Unlike other methods this method configures the node for acquisition and

1



uses them immediately when the resource shortage takes place. The objective of the
research is to improve the node addition time in the kubernetes cluster. On improving the
node addition time the other pod autoscalers will be able to leverage the resources that
are added to the cluster. The pod autoscalers will use the resources and scale to enable
faster scaling of application which in turn helps to support huge growing traffic. Through
this research if we are able to achieve improvement in time in comparison to the AWS
managed kubernetes cluster which uses node autoscaling, this research paper would prove
there is still more scope in the context of node cluster autoscaling techniques.

1.1 Research Question

Can the instance acquisition lag be reduced in the kubernetes cluster during
scaling out using a custom cluster auto-scaling solution called ANA autoscaler
on the kubernetes cluster which is manually managed in AWS Cloud?

The instance acquisition lag refers to the amount of time that is taken by the kubernetes
cluster to add a new node to the kubernetes cluster and make the resources usable for
the application scale out. The kubernetes cluster will be setup in the AWS cloud where
the custom ANA autoscaler solution will be installed. The time taken to autoscale is
compared with the amount of time taken by the EKS amazon cluster to autoscale the
nodes in the cluster. The EKS kubernetes cluster will be setup with a dynamic scaling
setting, which only autoscales reactively similar to the setup used in Ifrah (2019). In this
manner the results will be compared and the results will be concluded.

The ANA autoscaler will have a bash script which will add the nodes to the cluster
and set it in a power off state. Once the ANA autoscaler realises that the resources are
running short, the node which was in the power off state is started up and utilized in
the kubernetes cluster. This includes using a monitoring system to read the monitoring
metrics and also involves using a load generator script to generate CPU load on the
kubernetes. The research involves using an ideal setup which makes use of consistent load
which only considers CPU utilization as the fixed parameter. In the setup only the CPU
utilization intensive load will be generated, only this parameter will be considered in all
tests performed across different setups.

The report section consists of the literature review which analyses the different research
papers present in the area of kubernetes autoscaling. It analyses the solution as well as
the advantages and disadvantages of the research papers. Also some discussion is done on
which solutions and ideas can be used as inspiration for this research paper. Following
this the methodology section consists of the steps followed in the research work, which
discusses in detail the steps that are to be taken in the different stages of the research, the
tools used and the experiments to be carried out. Then the design specification section
consists of the specifications, architecture of the system and the autoscaler. Next, the
implementation of the ANA autoscaler system is discussed in the implementation section.
After this the evaluation section consists of the analysis of the experiments conducted in
this research paper. Finally the conclusion and the future work consists of the findings
and the analysis of the results along with discussion on further extension of the research.

2



2 Related Work

Research on kubernetes has been widely done in the area of autoscaling as containerization
is used widely in different areas of the IT as seen in Table 1.

2.1 Monitoring based solutions

2.1.1 Resource Provisioning algorithm

In Chang et al. (2017), the MAPE model is used which is the Monitor-Analyze-Plan-
Execute model. The system uses the monitoring, aggregation of the data, resource
scheduling and the pod scaler. In monitoring system the system resource metrics and the
application performance metrics are used which makes use of the heapster and the Apache
JMeter. The influxdb is used to aggregate and store the data. Following this the resource
provisioning algorithm is used which in turn provides the strategy to the pod scaler. The
biggest advantage of using this method is that not only the resource utilization of the
system is taken into consideration but also the QoS of the application metrics is considered.
The problem of using this method is that there are too many different components which
will cause version conflicts when one of them is updated over time. The monitoring and
the control loop is used which could be used for reactive based metrics.

2.1.2 Auto-adjusting algorithm

Node exporter which is part of the prometheus monitoring system is used in Zheng and
Yen (2018) as the monitoring component. Further an algorithm is used which determines
the number of application instances that are required. An autoscaling broker is used which
communicates with the API-server and the scheduler component of the kubernetes cluster.
It ingests all the information of the nodes, the application and then makes adjustments in
the application replicas. Port on each pod is used so that the autoscaling group can use a
HTTP GET and gather the required information. The advantage of using the approach
is that the response time for requests are improved whereas the drawback is that the
resources are underutilized when the demand is not consistent and regular.

2.2 Horizontal Pod Autoscaling

Previously the monitoring based autoscaling systems were discussed which utilised different
monitoring setups to control the application count. In Nguyen et al. (2020a) the selection
of the scrapping period and the type of metrics for the application are selected based on the
type of workload used in the application. The horizontal pod autoscaling is analysed with
the prometheus monitoring metrics and the kubernetes resource metrics. Experiments on
horizontal pod autoscaling with default kubernetes resource metrics are performed. Along
with this the experiments with different scraping periods are performed with fifteen, thirty
and sixty seconds period. This showed that with longer scraping periods only smaller
number of replicas were created. This was helpful in efficient use of resources but could
be detrimental when incoming traffic is too high.

Comparison of two node cluster and four node cluster is made to analyse the horizontal
pod autoscaling performance. The comparison showed that there is longer waiting time in
the two node cluster than the four node kubernetes cluster. Experiments with readiness
probes were also discussed which showed the balance between resources and the QoS

3



needs of the application. The advantage of using this method is that there is reduction in
the latency and improvement in the bandwidth when the right kind of metrics is selected
for the application. While the major drawback is that the solution does not have the
ability to understand the behaviour of the application and choose the correct metrics for
the application.

2.3 Vertical and Horizontal elasticity

Previously solutions based on different monitoring setups were discussed whereas in
Hoenisch et al. (2015) four dimensional scaling is considered where the virtual machines
and the containers can be scaled horizontally and vertically. Here, the virtual machines
and the containers are scaled horizontally by changing the number of instances where
as the scaling in vertical way takes place by changing the resources being used. Multi-
objective optimization model is used which interacts with different layers to control the
number of virtual machines and the containers. In spite of additional complexity that is
present with various degree of freedom in scaling, a reasonable distribution size is achieved.
About twenty eight percent scaling is achieved with few scaling dimensions in two baseline
scenarios.

The optimization model used in the solution focuses on reducing the over all cost
for the virtual machines that are leased. It follows a two step approach where first the
number of instances and the type that are needed are determined, following that the type
of configuration for the container to be used is determined. The virtual machines are
added and removed at any time, but the movement of containers could happen between
the virtual machines. Leasing the right virtual machine by using the correct vertical
scaling method could be useful in reducing the cost significantly with almost about twenty
five percent savings. The major drawback of using this method is that the mechanism
is unable to track the containers, that is in which virtual machine which container is
present. This could lead to poor availability issues where all the containers could land up
in the same virtual machine, so when there is a virtual machine failure the application
could have a massive outage. Although there is poor visibility of scheduling of containers,
the advantage is that the use of both scaling in virtual machines and containers leads to
reduced costs.

2.4 Node autoscaling

In Thurgood and Lennon (2019) a Free and Open Source(FOSS) solution is used which will
perform the cluster autoscaling in the kubernetes cluster. The solution was tested in the on-
premises environment setup which could also be replicated in a cloud environment. Here,
the virtual machine scaling is done on the basis of the foreman implementation. Foreman
implementation proved to be a better choice as this was compatible with VMware products.
Puppet modules is used for the installation of the foreman as well as the installation of
the kubernetes cluster. For the ingress the HA-proxy design is used which is the industry
based standard and apart from this a virtual machine is setup which behaves as the
certificate authority. Three physical ESXi hosts are used with anti-affinity rules which
separate the master nodes and the worker nodes. This provides redundancy in cases where
node failures occur. Weave net is used which is the docker container network, this enables
communication among containers present in different virtual machines. Foreman enables
scaling by interacting with the VCenter API. Preconfigured templates are used which

4



Research
paper

Advantage Disadvantage

Chang et al. (2017)

The solution ingests details of
both the utilization of resources
in system and performance of
application

Incompatability while
upgrading due to
many individual
and seperate
components

Zheng and Yen (2018)
Improvement in response time
with respect to the traffic needs

When the traffic is
uneven there is
underutilization of
resources

Nguyen et al. (2020a)
On selection of the suitable
metrics, delay is improved

Requires user
intervention for
mapping the correct
metrics with the
application

Hoenisch et al. (2015)

Cost reduction is achieved
by making use of scaling
in containers and virtual
machines

Provides no high
availability for the
containers

Thurgood and Lennon (2019)
Adding and deletion of node
is done automatically based
on load

Consumption of time
is high, takes more
than eight minutes
which is very long

Current
research

Huge improvement in time
when adding new node to
kubernetes cluster during
scale-out of cluster

NA

Table 1: Research methods

uses the ubuntu image where the kubernetes packages and scripts are configured. For the
setting and management of the IP, foreman tool takes care of the domain name system
and the dynamic host configuration protocol. Consortium is used for the dynamic host
configuration protocol and for the domain name system berkeley internet name domain
version 9 is used.

The scaling of the nodes is initiated by a VCenter alarm which is started when the
CPU or the memory utilization is increased beyond the set threshold. Locust is used for
generating the application load on the system. A unique identifier is generated which
is inputted to a command like tool called hammer, which is the command line tool for
foreman. Secure copy protocol is used to copy files inside and outside the virtual machines
when the draining or the scaling out of the kubernetes takes place. The advantage of
this method is that the auto-addition and the auto-deletion of the node takes place
automatically and reactively based on the application load, but the major disadvantage
of using this method is that solution is very costly in terms of time used. The time taken
for the virtual machine to build is around almost eight minutes which is very expensive in
the world of on-demand cloud and containerization.

5



Figure 1: Steps carried out during the research

3 Methodology

In this section the steps that are carried out in the research are explained, following that
the tools used and the experiments to be carried out are mentioned as seen in Figure 1.
This research focuses on whether the instance acquisition lag time can be reduced during
scale out. To further improve the time taken for the addition of the kubernetes node
during scale out an autoscaler solution called ANA autoscaler is used which will trigger
and handle the addition of node for a kubernetes cluster with an application workload
running.

3.1 Flow of research

The steps to be carried out in the research can be categorized into three major sections.
The first section is the creation of the kubernetes cluster, second is the autoscaler creation
and the third is performing the autoscaling process. In the first stage the cloud that is
selected is the amazon web services cloud, in this the virtual machine equivalent EC2
instance is created. The EC2 instances are created in the same subnet and the same VPC
network to ensure that the connectivity between them are established. Additionally the
same security group is also used for these created EC2 instances to ensure the inbound
and outbound rules between them are able to connect with each other. Following this all
the required kubernetes packages are installed in the EC2 instances. Once the required
packages are installed in the EC2 instances, the kubeadm command is used to install
the kubernetes cluster into the created nodes. Using the kubeadm tool the master nodes
and the worker nodes are created with the EC2 instances. After this the metrics server

6



component is installed which is used for monitoring by the ANA autoscaler. The metrics
server api is already used by the kubernetes in horizontal pod autoscaling internally. Once
the metrics server component is installed the metrics are collected from the nodes of the
kubernetes cluster. This gives visibility of the cpu utilization of the pods and the nodes
present.

In the second stage the autoscaler components are copied, which consist of bash scripts.
Once the bash script is copied into the master node, these scripts are added in the crontab
entry to be triggered repeatedly similar to Chang et al. (2006). Once the ANA autoscaler
starts the analysis, a dormant node is created and then added to the kubernetes cluster.
In the third stage the autoscaling process is done, here a PHP apache application is ran
on the kubernetes cluster as gathered from Vohra (2017). Once the load generation script
is started, the cpu utilization of the kubernetes cluster increases, this is recognised by the
ANA autoscaler . There are two possible actions that can be done by the ANA autoscaler,
first is the scale out and second is the no action taken. During the scale out once the
ANA autoscaler realises that the resources are insufficient the dormant node is brought
up and utilised for resource scheduling. Once the dormant node is used another dormant
node is created to be used when required.

3.2 Tools used

The tools that are used for the study are mentioned below as seen in Table 2. The
EC2 instances used in the AWS is t2.micro and the application which is used is a PHP
apache which is deployed as a deployment kubernetes object in the cluster. For CPU load
generation a load generation script is used which will hit the PHP endpoint in a loop.

• Docker: Docker version 20.10 is used which helps in deploying the application image
and provides the support to run pods in kubernetes.

• Kubeadm: Kubeadm is used to install the kubernetes cluster, manage and upgrade
the cluster similar to Sami et al. (2020). This handles all the low level actions like
managing all the certification that are required for communication among the nodes
present in the kubernetes cluster.

• Kubernetes: Kubernetes version used is 1.24 which helps in container orchestration
of the pods. This provides high availability for the application by running multiple
instances of the application in different nodes and providing load balancing to the
application.

• Metrics-server: Metrics server is used to get the CPU utilization of the kubernetes
worker nodes. Metrics server uses the in built APIs present in the kubernetes cluster
to get the kubernetes metrics.

• kubectl: Kubectl is the command line tool that is used to interact with the kubernetes
API. It is through kubectl by which the commands are interpreted and passed as
json to the kubernetes server in the back-end.

• krew: Krew is a kubectl plugin installer tool. Different plugins are available which
provides additional functionality to the kubectl command line tool.

7



Specification of the system
Cloud instance AWS t2.micro

Operating system Ubuntu 20.04
Container runtime Docker 20.10

Container orchestration Kubernetes 1.24
Cloud command line awscli 2.4.5

Table 2: Specification

• resource-capacity: Resource capacity is a plugin that is used to get the CPU
utilization of the kubernetes nodes. This is installed using the krew tool. This
provides the output in JSON file which makes it easier to perform operations on.

• jq: This is JQuery command line tool which is useful in bash scripts to filter the
json file outputs and perform filtering on.

• awscli: This is an amazon web services command line tool which enables to interact
with the AWS API services. This allows to create new EC2 instance through
command line when ever it is triggered as shown in Backes et al. (2019).

3.3 Experiments carried out

There are two experiments that are to be carried out in this study. Firstly, the time taken
for the ANA autoscaler to scale out is determined in a kubernetes cluster based out of
AWS EC2 instance. Secondly, to compare this value, the same tests are carried out in an
AWS managed kubernetes cluster which provides the autoscaling automatically. Whether
the time taken to scale out by the ANA autoscaler is less than the time taken by the
AWS EKS kubernetes cluster answers the purpose of this study.

In the first setup, there are two worker nodes configured and then one master node is
configured. Then the ANA autoscaler scripts are configured to scale out the kubernetes
cluster. Then the load generation scripts are ran, the logging captures the timestamps of
the scale out. Once done, in the second setup AWS EKS kubernetes managed cluster is
setup which helps in autoscaling of the nodes based on a dynamic settings configuration.
After this the same PHP apache application is ran on the EKS cluster to log the node
scale out time. On comparison of the logs present from the two setups the conclusion
could be drawn whether the node autoscaling can be improved in the kubernetes cluster
by a custom autoscaling solution.

4 Design Specification

Design specification contains the design of the system which are configuration settings of
the setup. This section also covers the architecture of the kubernetes system that is used
for the experiment. Finally the design of the proposed ANA cluster autoscaler system is
discussed.

4.1 Specification of the system

For the container runtime docker is used in the research. For the container orchestration
kubernetes tool is used for handling the lifecycle of containers. The kubernetes cluster will

8



Figure 2: Architecture of the cluster

be installed in the EC2 instances present in the AWS cloud. The instance type version
that is used is the t2.micro type. This consists of one virtual CPU and one GB of RAM.
Each AWS instance costs about 0.0116 dollars per hour. Additionally AWS command
line tool is installed in the master node to interact with the amazon api for triggering the
launch and shutting down of the instance as required by the ANA autoscaler.

4.2 Architecture of the system

The kubernetes cluster consists of one master node and two worker nodes as seen in Figure
2. Worker nodes handles all the application traffic that is created by the application
and the master node, also called as the control plane, manages all the pods and cluster
components. As seen in paper Islam Shamim et al. (2020) in the master node the kube-
apiserver, etcd, kube-scheduler, kube-controller-manager and cloud-controller manager are
present. The control plane for the kubernetes is exposed by the API server, this also scales
horizontally by creating replicas of the kube-apiserver. Etcd is used to store all the cluster
information in the form of key value pairs, it also provides high availability and backing up
feature for the stored data. Kube-scheduler schedules the pods based on the availability
and rules set for scheduling. Various rules to be considered are policy constraints, resource
requirements, locality of the data, anti-affinity rules and deadlines. Kube-controller-

9



Figure 3: ANA autoscaler architecture

manager runs different controller processes like job controller, node controller, endpoint
controller and token controller. The cloud-controller-manager helps in interaction of the
cluster with the cloud API. For cloud-controller-manager several controllers are used
which run under the same process. In this setup cloud-controller-manager is not used.

The components that run on the kubernetes master are discussed so far, now the
components that are present in every kubernetes node is discussed. Kubelet component
runs on every node which ensures that containers run successfully in the pods present in
the cluster. A network proxy called kube-proxy is installed in every node of the cluster
which maintains the network rules for the kubernetes nodes. Container runtime docker
is also installed in all nodes which are responsible for running containers same as the
runtime used in Liu and Zhao (2014). Now after the cluster is setup, the ANA autoscaler
components are installed into the master node of the cluster. The ANA autoscaler
primarily consists of ANA bash script, dormant creation script and logger script. Apart
from this the metrics-server component is also installed which is helpful in figuring out the
CPU utilization of the cluster when testing with the generated load which is inspired from
Rattihalli et al. (2019). The dormant node is a configured node in kubernetes which is
put into the sleep state. Once the dormant node is created the configuration and addition
to the kubernetes cluster is done, after that the kubernetes node is drained and then
the node is shutdown. The dormant node is started from shutdown state when the node
is required to be used in the kubernetes cluster. The ANA autoscaler always aims to
maintain one dormant node at all times.

4.3 Architecture of the autoscaler

The ANA autoscaler is setup completely in the master node of the kubernetes cluster.
It consists of three scripts which are create-dormant-node bash script, ANA bash script
and logger script as seen in Figure 3. These three scripts are triggered periodically
every minute through crontab settings present in the ubuntu operating system. Both
create-dormant-node bash script and ANA bash script have lock mechanism which present

10



multiple triggers, that is once it is triggered it does not allow additional re-trigger of the
same script until the script is completed. The create-dormant script is responsible for
interacting with the AWS API and spinning up an AWS instance as shown in Fernandez
and Renjith (2021) using AWS command line tool. User-data is passed to the AWS
API for the creation of the AWS instance, the user data contains all the commands
required to install the packages and onboard the node to the kubernetes cluster. Once
the node is created in the AWS, the output in the JSON form is collected, using JQuery
the instance ID and the kubernetes node name is filtered similar to the way used in
McCormick and De Volder (2004). These details are outputted into static files called
dormant node-instance ID and dormant node-kubernetes node files. Once the output
details are copied into the file, a flag file called a dormant node is created. This dormant
node flag file indicates whether the dormant node is created or not. The create-dormant
node script continuously checks for this flag for dormant node creation.

The ANA bash script continuously monitors the CPU utilization of the worker nodes.
Once the ANA bash script realises that the CPU utilization is more than sixty percent,
the dormant node is started from the shut down state and used for handling the additional
load. When ever the ANA bash script uses the dormant node, the dormant flag is removed
and this helps the creation of a new dormant node. Finally the logger script is trigger
every minute to capture the details of the kubernetes cluster. Details like the time, the
CPU utilization of the cluster and the nodes present in the cluster are written into log
file. This is used to track and get the amount of time that is taken to create and use
the dormant node. For the second experiment an EKS cluster with t2.micro is used with
a dynamic scaling settings similar to the dynamic pool described in Ling et al. (2019),
initially two worker nodes are created in the EKS setup.

5 Implementation

The implementation primarily consists of three scripts in ANA autoscaler. First is the
dormant node creation script which is responsible for the creation of the dormant instance.
The script is responsible for maintaining at least one dormant node in the kubernetes
cluster. Second is the ANA autoscaler script which is responsible for consuming the
dormant node to increase the overall resources of the kubernetes cluster. Finally a logger
script is also used to get the logs of the utilization and the node information of the
kubernetes cluster.

Algorithm 1 Dormant node creation

1: procedure dormant node creation(dormantflag) ▷ Create dormant node
2: if dormantflag ̸= 0 then ▷ Check dormant node flag
3: Create EC2 instance(User Data) ▷ Pre-install packages
4: Store(Instance ID) ▷ Store details in file
5: Store(NodeName)
6: Wait() ▷ Wait for five minutes
7: Drain(NodeName) ▷ Mark node as unschedulable in kubernetes
8: Shutdown(NodeName)
9: Create dormantflag ▷ Set dormant flag as dormant node present
10: else
11: No Action required ▷ Dormant node present

11



Algorithm 2 ANA Autoscaler

1: procedure ANA Autoscaler(AvgCpuUtilization) ▷ Perform scale-out
2: if AvgCpuUtilization > 60% then
3: Start(NodeName) ▷ Start up dormant node
4: Wait() ▷ Wait for 1 minute
5: Schedule(NodeName) ▷ Schedule dormant node in kubernetes
6: Delete(DormantFlag) ▷ Trigger creation of dormant node
7: else
8: No Action required ▷ Optimal utilization of resources

The dormant node creation script constantly checks for the dormant node flag. If the
flag is present then it indicates that a single dormant node exists. If the dormant flag
does not exist then the ec2 instance in aws is created along with user data. User data will
provide all the details of the packages to be installed as mentioned in Vanmechelen et al.
(2012) and the commands to join the kubernetes cluster. Once the ec2 instance is created
the output present in the json format is filtered to get the instance id and the node name
to store in files. Following this the node is drained and shutdown similar to the draining
method used in Sarajlic et al. (2018). Once this is done the dormant node flag is created
to indicate the completion of dormant node. The ANA autoscaler script on the other
hand checks for the average cpu utilization that is used by the kubernetes cluster, once
the utilization goes above sixty percent the dormant node that is in the shutdown state is
started. After this the dormant node that is started is scheduled in the kubernetes cluster
for the pods to be scheduled. Upon addition of the new node in the kubernetes cluster the
utilization of the kubernetes cluster becomes optimum. Now the dormant flag is deleted,
this will trigger the creation of the dormant node. In this manner it is ensured that always
a dormant node is maintained in the kubernetes cluster by the ANA autoscaler.

6 Evaluation

The scale out time in cluster autoscaler is recorded in the experiment to understand
whether the custom cluster autoscaler created could perform better than the autoscaler
used in the AWS managed kubernetes cluster which is same as the autoscaler used in Liu
et al. (2018). The cpu utilization is considered in both the cases of the experiment. For
the generation of the load a PHP application is deployed into the kubernetes cluster using
a deployment file. The deployment file will create a deployment object in the kubernetes
cluster, this in turn will create replica set as utilised in Eidenbenz et al. (2020). This
replica set will launch the pods into different nodes present in the kubernetes cluster.
The deployment manifest file will also launch a service object which will create various
endpoints in the cluster. A load generation bash script will be setup in the worker nodes,
this bash script will be triggered to hit the endpoints of the PHP apache application
similar to the method used in Johansson et al. (2022). Once the request reaches the
endpoint, the kubernetes will load balance the application where the traffic will be sent
to pods spread across worker nodes. To capture the logs a script is ran which will log the
details of the cluster every minute. Through the logs it is possible to determine the time
stamps and calculate the time that is taken for scale out.

12



Figure 4: Detailed steps

Figure 5: ANA autoscaler-before scale out test

13



Figure 6: ANA autoscaler-after scale out test

Figure 7: AWS autoscaler-before scale out

14



Figure 8: AWS autoscaler-after scale out

6.1 CPU load testing with ANA autoscaler

In the first experiment the cpu load generation is performed with the custom ANA
autoscaler setup. As shown in figure 5, the logs shows the state of the cluster before
the load generation is performed. So as shown in the logs the node ip-172-31-16-153
is the dormant node, the ANA autoscaler realises that the average load has reached
above 60 percent. Once the ANA autoscaler realises that the average CPU utilization is
above threshold, the dormant node in the shutdown state is started up and consumed.
At timestamp of 13:44 the dormant node was started up, by 13:45 the dormant node
is in ready state. As shown in 6 the dormant node in ready state is used. The node
ip-172-32-16-153 is being used in the cluster which shows a CPU utilisation of 2 percent,
now the cpu load is being load balanced among the cluster. So autoscaler checks every
minute in the crontab setup at the system level, once the load has reached above sixty
percentage of cpu load the dormant node is started up and scheduled in the kubernetes
cluster to take the cpu load. This only takes about 2 minutes to react to the CPU load
increase in the traffic.

6.2 CPU load testing with EKS-AWS autoscaler

To compare the results of the ANA autoscaler the cluster autoscaler in the EKS is used
as deployed in Poniszewska-Marańda and Czechowska (2021). The dynamic settings in
the EKS cluster is set to autoscale when sixty percentage is reached. As seen in figure 7
the cpu load generation is started by running scripts in the worker node. At timestamp
20:04, there are two nodes present as the worker nodes. The cpu utilization is about 73
percent and 87 percent in the worker nodes respectively. The same logger script is present
in the worker node to capture the logs. Once the the cpu utilization is increased the AWS
cluster autoscaler reactively scales out to meet the increasing cpu utilization demand.
In timestamp 20:11, four nodes are present in the EKS kubernetes cluster. The CPU
utilization is balanced in the cluster and traffic is getting distributed evenly among the
nodes. Now even after the nodes are utilised the cluster has started to scale in due to
excess resources available. In EKS the scale out takes almost 7 minutes and 7 seconds for

15



Timestamp
Node
Name

Autoscaling
type

Time
taken

13:44-13.46 ip-173-31-16-153 ANA autoscaler 120 seconds

20:04-20:11
ip-192-168-57-177
ip-192-168-65-227

AWS autoscaler 437 seconds

Result 72.54 % improvement

Table 3: Results

the cluster to react when the nodes CPU load average has reached above sixty percentage
as seen in Table 3.

6.3 Discussion

The table summarises the results of the experiments that is conducted in the research.
The cpu load was generated in the kubernetes cluster using the same load generation
method. The workload scripts are triggered from the worker nodes in both cases where
the php application endpoints are hit. In comparing the custom created ANA autoscaler
with the AWS autoscaler, the cluster autoscaler can improve around 72.54 percent. The
experiments are primarily focused on the cpu utilization load and only on the area of
improvement in the reactive strategies of the cluster autoscaling in kubernetes cluster.
The load is only applied in a linear method and the method could get complex when
dealing with scale in feature as well. The method has no predictive analysis, this could
also be integrated to improve the efficiency of the cluster scaling process as seen in Zhao
et al. (2019). There are other metrics like memory also which requires to be tested as
shown in Pereira Ferreira and Sinnott (2019). Another additional feature is the ability
to add and integrate even application metrics. These things can be added to make a
comprehensive solution which could be capable of choosing the best method and take the
right decisions based on the best metrics. Although the research has many improvements
that could be added, the results show that the instance acquisition lag in reaction to the
scale out could be improved.

7 Conclusion and Future Work

The research was carried out in the area of autoscaling in kubernetes with respect to the
resources available in the cluster. A custom solution called ANA autoscaler was created to
improve the node acquisition time during scale out of the kubernetes cluster. To compare
this, the same load generation scripts are used in the AWS managed EKS-kubernetes
service. The results showed that the node acquisition time can be improved using the
ANA autoscaler solution compared to the AWS cluster autoscaler. Results showed 72
percent improvement in the time taken by the kubernetes node to add the node to the
cluster. The limitation of the work is that only the cpu utilisation of the kubernetes
cluster is taken as the consideration for the research. This research shows that there is
still scope for improvement in the area of cluster autoscaling, this will encourage to create
solutions which will further improve the reactive time and compliment the horizontal pod
autoscaling as seen in Nguyen et al. (2020b) and vertically autoscaling as seen in Balla
et al. (2020).

16



For the future work there are many enhancements that could be made. The first
enhancement could be to test different metrics other than the cpu metrics of the kubernetes
cluster, additionally adding the ability to add custom metrics for application workload
could make the solution comprehensive. The other enhancement that could be performed
is that the scaling in feature could also be incorporated in addition to the scaling out
feature, this would lead to the best optimal use of resources. Another extension of the
research could be to add a predictive scaling in addition to the reactive scaling present,
in the predictive scaling a machine learning algorithm for the best resources usage could
be utilized as seen in Khaleq and Ra (2021). In an ideal world creating a complete
solution with all the features would provide the best possible use of resources and in turn
provide the best performance to cost ratio. Although realistically this would be very
complicated and difficult to achieve, the objective of reaching the ideal solution would
help in discovering different ideas and observations which are yet to be uncovered in the
area of autoscaling.

References

Backes, J., Bayless, S., Cook, B., Dodge, C., Gacek, A., Hu, A. J., Kahsai, T., Kocik, B.,
Kotelnikov, E., Kukovec, J. et al. (2019). Reachability analysis for aws-based networks,
International Conference on Computer Aided Verification, Springer, pp. 231–241.

Balla, D., Simon, C. and Maliosz, M. (2020). Adaptive scaling of kubernetes pods, NOMS
2020 - 2020 IEEE/IFIP Network Operations and Management Symposium, pp. 1–5.

Chang, C.-C., Yang, S.-R., Yeh, E.-H., Lin, P. and Jeng, J.-Y. (2017). A kubernetes-based
monitoring platform for dynamic cloud resource provisioning, GLOBECOM 2017 - 2017
IEEE Global Communications Conference, pp. 1–6.

Chang, Y.-H., Lee, C.-J. and Lin, B. (2006). Design and implementation of an automation
service system based on crontab, International Journal of Services and Standards
2(2): 203–214.

Eidenbenz, R., Pignolet, Y.-A. and Ryser, A. (2020). Latency-aware industrial fog
application orchestration with kubernetes, 2020 Fifth International Conference on Fog
and Mobile Edge Computing (FMEC), IEEE, pp. 164–171.

Fernandez, I. G. and Renjith, J. A. (2021). A novel approach on auto-scaling for re-
source scheduling using aws, International Virtual Conference on Industry 4.0: Select
Proceedings of IVCI4. 0 2020, Vol. 355, Springer Nature, p. 99.

Hoenisch, P., Weber, I., Schulte, S., Zhu, L. and Fekete, A. (2015). Four-fold auto-
scaling on a contemporary deployment platform using docker containers, International
Conference on Service-Oriented Computing, Springer, pp. 316–323.

Ifrah, S. (2019). Deploy a containerized application with amazon eks, Deploy Containers
on AWS, Springer, pp. 135–173.

Islam Shamim, M. S., Ahamed Bhuiyan, F. and Rahman, A. (2020). Xi commandments
of kubernetes security: A systematization of knowledge related to kubernetes security
practices, 2020 IEEE Secure Development (SecDev), pp. 58–64.

17



Johansson, B., R̊agberger, M., Nolte, T. and Papadopoulos, A. V. (2022). Kubernetes
orchestration of high availability distributed control systems, Proc. ICIT.

Khaleq, A. A. and Ra, I. (2021). Intelligent autoscaling of microservices in the cloud for
real-time applications, IEEE Access 9: 35464–35476.

Ling, W., Ma, L., Tian, C. and Hu, Z. (2019). Pigeon: A dynamic and efficient serverless
and faas framework for private cloud, 2019 International Conference on Computational
Science and Computational Intelligence (CSCI), IEEE, pp. 1416–1421.

Liu, B., Buyya, R. and Nadjaran Toosi, A. (2018). A fuzzy-based auto-scaler for web
applications in cloud computing environments, International Conference on Service-
Oriented Computing, Springer, pp. 797–811.

Liu, D. and Zhao, L. (2014). The research and implementation of cloud computing
platform based on docker, 2014 11th international computer conference on wavelet
actiev media technology and information processing (ICCWAMTIP), IEEE, pp. 475–478.

McCormick, E. and De Volder, K. (2004). Jquery: finding your way through tangled
code, Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pp. 9–10.

Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H. and Kim, S. (2020a). Horizontal pod
autoscaling in kubernetes for elastic container orchestration, Sensors 20(16).
URL: https://www.mdpi.com/1424-8220/20/16/4621

Nguyen, T.-T., Yeom, Y.-J., Kim, T., Park, D.-H. and Kim, S. (2020b). Horizontal pod
autoscaling in kubernetes for elastic container orchestration, Sensors 20(16): 4621.

Pereira Ferreira, A. and Sinnott, R. (2019). A performance evaluation of containers
running on managed kubernetes services, 2019 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom), pp. 199–208.

Poniszewska-Marańda, A. and Czechowska, E. (2021). Kubernetes cluster for automating
software production environment, Sensors 21(5): 1910.

Rattihalli, G., Govindaraju, M., Lu, H. and Tiwari, D. (2019). Exploring potential for
non-disruptive vertical auto scaling and resource estimation in kubernetes, 2019 IEEE
12th International Conference on Cloud Computing (CLOUD), IEEE, pp. 33–40.

Sami, H., Mourad, A. and El-Hajj, W. (2020). Vehicular-obus-as-on-demand-fogs: Resource
and context aware deployment of containerized micro-services, IEEE/ACM Transactions
On Networking 28(2): 778–790.

Sarajlic, S., Chastang, J., Marru, S., Fischer, J. and Lowe, M. (2018). Scaling jupyterhub
using kubernetes on jetstream cloud: Platform as a service for research and educational
initiatives in the atmospheric sciences, Proceedings of the Practice and Experience on
Advanced Research Computing, pp. 1–4.

Thurgood, B. and Lennon, R. G. (2019). Cloud computing with kubernetes cluster
elastic scaling, Proceedings of the 3rd International Conference on Future Networks and
Distributed Systems, pp. 1–7.

18



Vanmechelen, K., De Munck, S. and Broeckhove, J. (2012). Conservative distributed dis-
crete event simulation on amazon ec2, 2012 12th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (ccgrid 2012), IEEE, pp. 853–860.

Vohra, D. (2017). Using autoscaling, Kubernetes Management Design Patterns, Springer,
pp. 299–308.

Zhao, A., Huang, Q., Huang, Y., Zou, L., Chen, Z. and Song, J. (2019). Research
on resource prediction model based on kubernetes container auto-scaling technology,
IOP Conference Series: Materials Science and Engineering, Vol. 569, IOP Publishing,
p. 052092.

Zheng, W.-S. and Yen, L.-H. (2018). Auto-scaling in kubernetes-based fog computing
platform, International Computer Symposium, Springer, pp. 338–345.

19


	Introduction
	Research Question

	Related Work
	Monitoring based solutions
	Resource Provisioning algorithm
	Auto-adjusting algorithm

	Horizontal Pod Autoscaling
	Vertical and Horizontal elasticity
	Node autoscaling

	Methodology
	Flow of research
	Tools used
	Experiments carried out

	Design Specification
	Specification of the system
	Architecture of the system
	Architecture of the autoscaler

	Implementation
	Evaluation
	CPU load testing with ANA autoscaler
	CPU load testing with EKS-AWS autoscaler
	Discussion

	Conclusion and Future Work

