~

\ National

College
Ireland

Workload prediction for cloud services by

using a hybrid neural network
model-Configuration Mannual

MSc Research Project
MSc in Cloud Computing

Preeti Rawat
Student I1D: 20233507

School of Computing
National College of Ireland

Supervisor: Shivani Jaswal

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Preeti Rawat
Student ID: 20233507
Programme: MSc in Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Shivani Jaswal
Submission Due Date: 15/08/2022
Project Title: Workload prediction for cloud services by using a hybrid neural
network model-Configuration Mannual
Word Count: 761
Page Count: [1

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Preeti Rawat

Date: 18th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Workload prediction for cloud services by using a
hybrid neural network model-Configuration Mannual

Preeti Rawat
20233507

1 Introduction

This configuration manual helps the reader in understanding the system setup, system
requirements, and specification of the hardware and software used during the research.
It explains the steps to be followed to run the research project: Workload prediction for
cloud services by using a hybrid neural network model.

2 System configuration

2.1 Hardware Configuration
e Model: HP Pavillion Laptop 14 — dvOxxx

e Processor: Intel(R) Core(TM) i5-1135G7 @ 2.40GHz 2.42 GHz

Operating System: Windows 10

RAM: 16.0 GB (15.8 GB usable)

Hard Disk: 476.94 GB

3 Software Installation

3.1 Python Installation

To implement the proposed model and extract the results, python is used. Python can
be downloaded from https://www.python.org/downloads/. The required version of
python is 3.9.13 and is shown in Figure

Python 3.9.13

Figure 1: Python’s Version

https://www.python.org/downloads/

3.2 Required Python Libraries

Libraries shown in Figure [2| are imported while implementing the project.

import numpy as np

import sklearn.metrics as metrics
import math

import random

import matplotlib.pyplot as plt
from statistics import mean
import csv

import pandas as pd

import sys

import boto3

from botocore.exceptions import ClientError
import os

from io import StringIO

from scipy.signal import savgol_filter
import keras

from keras.models import Sequential

from keras.layers import Dense, Activation

from keras.layers import LSTM

from sklearn.pipeline import make_pipeline

from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR

import pywt

Figure 2: Imported Python libraries in the Project

matplot library is used to plot the graphs. Pywt library is responsible for carrying
out the wavelet transformation. Scipy library is used to include savgol filter, to perform
smoothening of the input series. Sklearn is used for incorporating the SVR algorithm
whereas Tensorflow Keras is used for using the LSTM algorithm in the project imple-
mentation.

To install certain required python libraries, below are the commands for Windows
operating system:

e python -m pip install -upgrade pip

e python -m pip install matplotlib

python -m pip install numpy

python -m pip install pandas

python -m pip install sklearn

python -m pip install tensorflow

e python -m pip install pywt

e python -m pip install boto3

4 Implementation and Analysis

4.1 Data Generation and Storage

For the research, synthetic data is generated which includes pseudo-randomness. The
proposed model trains this data and predicts the workload for the next time slot. Code
for data generation and storage is present in the data_generation.py file and shown in
Figure [3| Generated data is stored in the dataset.csv file, which in turn is stored in the
S3 bucket so that later on data can be fetched from the S3 Bucket directly.

t upload_File

*B.25) *randon. randon|)+ function3*6.88)*randon . random())

ring), header—

Figure 3: Data Generation Script

4.2 AWS credentials update

To use the AWS S3 service for the storage of the generated dataset, update the value
shown in Figure [4] for the user’s AWS account in the .env file. Since visual studio code is

=us-east-1

Figure 4: AWS credential’s Setting in .env file

used for the development, so, to connect visual studio code to AWS, get credentials file,
and update AWS account credentials. Credentials file is shown in Figure

C: > Users > preet > .aws > = credentials
[zrnﬂ—-caﬂ _msrr!ﬂﬂﬁ]

e o

=RIIOT I EETSUULU S LveY

=Oﬁfnhmcn;yu?“fujLW:FZMaa‘T-vn“a?cnép

—To -k _ e ———

— A e g - ami— -~
—_t-uUDJp/’LuA/“:_h“uunihLW“"_dt‘“u-_”_gu|

Figure 5: AWS credential’s Setting in Credentials file

Credentials shown in Figure [4] and Figure [5] are token based and they usually expire
after some hours, so they need to be updated after expiration.

4.3 Steps to run the project

After installing the prerequisite libraries and setting up the AWS credentials, the user
can run the project by using the below command:

e python main.py

when this command is run, data is generated by running the data_generation.py script.
The plot of the input signal is shown in Figure [0]

Simple LSTM Model: After synthetic data is generated, simple LSTM is applied
to the input signal, and metrics are calculated for that. Code in the Istmmodel.py file is
executed for training the processed input signal and the file is shown in Figure [7]] The
results of running simple LSTM are shown in Figure [§|in the command line.

Proposed model: After generating the synthetic time series and smoothing it using
SG filters, it is divided into low and high-frequency components using wavelet trans-
formation, and the code shown in wave_transform.py is executed for that. Code of
wave_transform is shown in Figure [0 After that, low-frequency components are trained
by the SVR model to predict the next 5 values, while high-frequency components are
modeled by LSTM to predict the next 5 values. After this by using inverse wavelet

i/p signal

—— time-series generated data

1.2

1.0+

0.8 1

0.6

CPU Load

0.4 4

0.2 1

0.0 1

T T T T T T
0 10000 20000 30000 40000 50000 60000
time(hrs)

Figure 6: Generated Data

pandas as pd
numpy as np
math
keras
rom keras.models Sequential
rom keras.layers ~t Dense, Activation
om keras.layers import LSTM

LSTMI Iy

predict(self,trainX, trainy,testx):

model = Sequential()

trainX = np.reshape(trainxX, (trainX.shape[@], trainX.shape[1],1))
testX = np.reshape(testX, (testX.shape[@], testX.shape[1],1))

model.add(LSTM(trainY.shape[1], input_sha trainX.shape[1],1)))

model. add(Dense(trainy.shape[1],activation="softn)

model. compile(loss=" uare ror', optin dam’, metrics=["acc
print(model. summary())

model.fit(trainX, trainy, epochs=5, batch_size=37, verbose = 2, shuffle =

trainPredict = model.predict(trainx)
testPredict = model.predict(testX)
return testPredict

Figure 7: LSTM algorithm Script

transformation, high and low-frequency components are combined and predicted 10 val-
ues are returned. The proposed model is mentioned in the proposed model.py file and
in Figure The performance metrics are calculated after main.py is run. Results
are displayed in the command line for the LSTM+SVR hybrid model and show in Fig-
ure Metrics reveal that the LSTM-+SVR hybrid model performs better compared to

] Could not load d . 110.d11°; dler 10.d11 not found
if you do not have a GPU set up on your machine.

re above cudart dler
cuda.d1l not found

library ‘nvcuda.dll®; dlerror: n

ould not load dynami
11 to cuInit: UNKNOWN ERROR (303)
ng CUDA diagnos LAPTOP-NECC9JEH

LAPTOP-NECCOIEH
optimized with oneAPI Deep Neural Network Library

Formation for hos
] hostname:
orflow binary i eDNN) to use the followir

(None, 10)

ne, 10)

MSE of LSTM
RMSE of LSTM is @.

R-Squared value of LSTM is ©.7849

Figure 8: Output of Simple LSTM model

the simple LSTM model.

wave_transform.p
1 import pywt

Wave_Transform:

divide(self, signal):
i "haar')

component_lowfreq, component_highfreg=pywt.dwt(signal,
return component_lowfreq,component_highfreq

combine(self, component_lowfreq, component_highfreq):
signal=pywt.idwt(component_lowfreq, component_highfreq, 'haar')

return signal

Figure 9: Wavelet Transform Script

t Divide Signal
rt Wave Transform
SVRModel
t LSTMModel

Smoothing

svr= SVRModel (ds. lowfreq_test x)

Towfreq_predictions=svr.predictions_by_svr()

lowfreq_combined=np.concatenate((ds.lowfreq_test_x, lowfreq_predictions), ax

Istm=LSTMModel()
highfreq predicted=1stm.predict(ds. highfreqcomp_X_train,ds.highfreqcomp_Y_train,ds.highfreqcomp X_test)

highfreq_combined=np. concatenate((ds.highfregcomp_X_test,highfreq predicted), axis=1)

ansform()
ange(highfreq_combined.shape[@]):
wt.combine(lowfreq_predictions[i], highfreq_predic
nal_combine.append (wv)
nal_combine=np.array(signal_combine)

-10:]

noothing.filter input(selected values)
ted_values

Figure 10: LSTM+SVR hybrid model Script

Model: "sequential 1"
Layer (type Output Shape
lstm 1 (LSTM) (None, 5)
dense 1 (Dense) (None, 5)
Total params: 170

Trainable params: 170
Non-trainable params: @

7.4948e-@4 - accuracy: 0.1940 - 2sfepoch - 17ms/step
7.3861e-@4 - accuracy: 0.2179 - 76lms/epoch
7.3191e-04 3ms/epoch

96e-04 s/epoch

52e-84 749ms fepoch

/63 [=
MSE of Proposed Model is ©.8119533280089
RMSE of Proposed Model is 8.189331276444
R-Squared value of Proposed Model is ©.8840308808389097
PS C:\Users\preetiImplementatio

Figure 11: Output of LSTM+SVR model

	Introduction
	System configuration
	Hardware Configuration

	Software Installation
	Python Installation
	Required Python Libraries

	Implementation and Analysis
	Data Generation and Storage
	AWS credentials update
	Steps to run the project

