

Latency Assessment on Inclusion of a FEC

Orchestrator Capable of Invoking

Serverless Functions

MSc Research Project

MSc in Cloud Computing

David Tynan

Student ID: 20153104

School of Computing

National College of Ireland

Supervisor: Shivani Jaswal

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

David Tynan

Student ID:

20153104

Programme:

MSc in Cloud Computing Year: 2022

Module:

MSc Research Project

Supervisor:

Shivani Jaswal

Submission Due

Date:

15/08/2022

Project Title: Latency Assessment on Inclusion of a FEC Orchestrator Capable of

Invoking Serverless Functions

Word Count:

 5863 Page Count: 17

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

David Tynan

Date:

15/08/2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple

copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both

for your own reference and in case a project is lost or mislaid. It is not

sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed

into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

1

Latency Assessment on Inclusion of a FEC

Orchestrator Capable of Invoking Serverless

Functions

David Tynan

20153104

Abstract

Fog and Edge Computing (FEC) is a computing paradigm in which traditionally

cloud provisioned resources are moved to distributed fog node devices in closer

proximity to user equipment (UE) devices. Whilst UE fog node resource usage can result

in lower latencies due to a reduction of required network hopping communications,

resources are more limited and less available than cloud provisioned resources.

Competition, amongst multiple UE devices, for simultaneous use of a single fog nodes

resources could potentially eliminate latency benefits associated with the reduction in

network hopping communications. Cases may exist in which UE devices incur less

latencies for requests which use cloud provisioned resources, than waiting for local fog

node resource availability. In acknowledgement to occurrences in which requests vary in

criticality, this paper proposes implementation of an FEC environment orchestrator

component capable of request classification and the ability to invoke serverless functions

for non-time critical classified requests. Amazon Web Services (AWS) Lambda

functions have been integrated, for execution of non-time critical classified requests,

allowing only time critical classified requests to have abilities for fog node resource

usage. Results indicate that, when implemented using the methodology addressed within

this specific paper, serverless function integration is detrimental to latency performance.

1 Introduction

Cloud computing provides the ability to provision and use resources that can be more

powerful than found on local UE devices, enabling users to avail of increased capabilities

than if restricted by local device resource limitations. Whilst the availability of more

powerful resources is beneficial for providing increased capabilities, cloud computing

resource requests have longer communication distances than local device resource usage

requests. Communications between UE devices and cloud provisioned resources require

network hopping, incurring increased latencies than sole usage of local UE resources.

Network hopping latencies may be acceptable for some use cases but would be detrimental

for time critical requests requiring close to real-time communications.

FEC is a computing paradigm developed to address communication latencies, between

UE devices and cloud provisioned resources, by moving traditionally cloud provisioned

resources to distributed fog nodes in closer proximities of UE devices [1]. FEC environments

are comprised of UE devices which communicate with resource provisioning fog nodes

2

capable of allocating local resources for UE functionality. Compared to cloud provisioned

resources, fog node resource usage reduces the amount of required network hops for

communications, but resources are more constrained which could cause resource availability

issues. Competition for simultaneous use of a single fog nodes resources amongst multiple

UE device requests may potentially eliminate latency benefits associated with FEC, creating

cases in which cloud provisioned resource usage may incur less latency than waiting for fog

node resource availability. Potential FEC resource availability latencies may be acceptable

for some use cases but be detrimental for time-critical requests.

Through the implementation of a FEC environment simulation, with the context of a

hospital monitoring its patients using heart rate, blood pressure, oxygen saturation and

respiratory rate sensors, this paper aims to assess if inclusion of an environment orchestrator

component, capable of invoking serverless functions for requests it identifies as non-time

critical, can reduce environment latency. Serverless functions provide users the ability to

provision and assign cloud resources for the runtime duration of an invoked function. Use of

serverless functions for non-time critical requests may increase fog node resource availability

for time critical requests, with potential environment latency reductions.

Serverless functions require dependencies, specific to each, to be initialised within

purpose-built environments for successful execution. The process of building serverless

function environments can be classified as either a cold or warm start. Cold starts relate to the

build of completely new environments and are more time consuming than warm starts, which

reuse suitable environments stored in memory from prior builds [2]. To minimise serverless

function environment build latencies, the implemented simulation integrates serverless

function auto scaling policies to build environments prior to their use.

The European Telecommunications Standards Institute (ETSI) Multi Access Edge

Computing (MEC) framework, a framework for the efficient running of UE consumable

applications in a multi-access network, already includes an MEC Orchestrator (MEO)

component which differs in functionality to the proposed FEC orchestrator. MEO

components are responsible for information monitoring of environment fog nodes, resources,

services and topologies and can select specific fog nodes for UE requested application

hosting [3], however, they do not classify request priorities or invoke serverless functions.

The major contribution of this research is the implementation of a Java developed FEC

environment simulation consisting of sensors, actuators and data processing fog nodes which

host orchestrator application modules capable of either invoking AWS Lambda functions or

using local node resources, determined by request priority classification type. All Lambda

functions have been implemented with the ability to publish sensor data to AWS Simple

Notification Service (SNS) topics to which environment endpoints are subscribed.

Limitations caused by the unavailability of a physical device topology have required

assumptions to be made for fog device uplink bandwidth, downlink bandwidth, busy power

consumption, idle power consumption and associated cost usage specification values. Use of

simulated fog devices has also resulted in the inability to subscribe simulated devices to

AWS Simple Notification Service (SNS) topics, responsible for publishing messages relating

to non-critical classified sensor transmit data to device endpoints, preventing SNS message

delivery status metrics to be established and aggregated to the local environment usage

execution time. Uncertainties in actual application resource consumption demands has

3

required specification assumptions to be applied to application module RAM and CPU

requirements, in addition to module communications, which could potentially result in

scenarios which consist of specification assumptions which are realistically inaccurate.

This research project has been undertaken to provide an answer to the research question

of:

Can FEC environment latency be reduced upon inclusion of an orchestrator component

capable of invoking serverless functions for non-time critical identified requests?

The rest of this paper is organised as follows: Section 2 addresses prior related work. Section

3 outlines the undertaken research, design and implementation methodology. Section 4

provides an evaluation of results identified by this paper. Section 5 provides a conclusion and

outlines any future work that can be taken.

2 Related Work

Prior related work concerning MEC architecture, MEC environment request classification,

MEO innovation, MEC environment lightweight virtualisation, serverless MEC integration,

serverless function cold start time reduction and data transfer amongst serverless functions is

addressed throughout this section.

As outlined in the ETSI MEC architecture [3], a user application lifecycle management

(LCM) proxy component is the MEC environment entry point for UE device requests and

determines the pre-existence of suitable environments, containing required dependencies, for

successful execution of each received request. If a suitable environment does not exist, the

LCM proxy instructs an operations support system (OSS) component to build a suitable

environment which is deployed on resources assigned by the MEO. The MEO also ensures

identification and inclusion of request required dependencies for environment builds. If the

LCM proxy identifies a suitable pre-existing environment, for successful execution of a

request, it establishes direct communication with the MEO which locates and directs the

request to the environment, bypassing the OSS. Component responsibilities for MEC

environment request lifecycles are outlined in the ETSI MEC architecture but the notion of

varying request criticalities is not addressed.

M2EC [4] is an orchestration solution in which MEC resource users are classified as

either basic, premium or gold, determined by user service level agreements. User capabilities

and delay guarantees differ for each classification type. A broker component, capable of

determining user classification types, is integrated into the MEC environment either by

adjusting existing environment components or as a separate broker component. The broker is

used to provide loose delay guarantees to basic users, stringent delay guarantees to premium

users and low delay guarantees to gold users. Gold users also have application deployment

privileges, host resource specification capabilities and the ability to communicate directly

with the MEO. Results obtained in M2EC usage identified a 40 percent reduction in MEC

host resource utilization, however, it is limited to using only user origin for request

classifications.

4

Proposed in [5] is a serverless edge computing methodology in which MEC hosts run

local serverless frameworks, consisting of serverless function execution resources and an on-

demand application activation platform. Self-adjusting MEO tables, containing mappings for

UE and function identifiers to application service endpoints, are integrated to allow available

application listings to be provided to UE devices. Upon receiving a requested listing of

available applications, UE devices select a listed application, creating a context containing an

identifier and uniform resource identifier for application access. Analysis results, on this

methodology’s integration, outline differences between static, centralized and distributed

serverless function host assignments, but exclusion of the methodology is not considered to

form a basis of comparison. Serverless functions are stored amongst MEC hosts, which could

result in latencies relating to host memory issues, however, use of cloud provisioned

serverless functions are not considered for non-time critical requests to alleviate host memory

usage.

Proposed in [6] is a latency aware proximity zone defining quality of service MEC

environment enhancement, as a means of reducing latencies in an applications consumption

of services residing in locations outside its host device. The MEO asynchronously gathers

and classifies proximity measurements between host devices, enabling host groupings,

determined by host service consumption latencies, which are stored in MEO tables to provide

statistical performance information metrics. Application migration to a host in closer

proximity of the requested service can be recommended by the MEO upon identification of

detrimental service consumption latencies. Analysis on the inclusion of latency aware

proximity zones identified reduced latencies and host processing times, when compared with

their exclusion, however, integration is only concerned with local environment services

without investigating the potential of also integrating serverless functionalities.

Investigated in [7] is whether virtual machine (VM), container and unikernel lightweight

virtualisation technologies can be exploited to benefit FEC application environment builds.

An acknowledgement is established that use of virtualisation for real-time or mission critical

tasks, demanding low and predictable latencies, may not be suitable due to additional delays

and resource utilization associated with it. Docker container usage is identified as resulting in

less resource consumption than VM/unikernel use which require non-negligible hyper

virtualisation overheads of operation system installation and virtual hardware device/driver

emulation. Whilst use of various lightweight virtualisation technologies is assessed in FEC,

serverless functionality integration usage is not investigated.

Defuse [2] is a dependency guided function scheduler developed to reduce serverless

function cold start times by identifying dependent subsequent functions and building suitable

environments for their execution prior to their invoke. Function dependencies are classified

as either strong or weak, with strong dependencies relating to predictable functions, identified

through frequent pattern mining and weak dependencies relating to unpredictable functions,

identified through use of positive point-wise mutual information values relative to the invoke

of subsequent strong functions. An initial mining stage establishes a graph of function

dependencies, determined by invocation histories, which is used to generate dependency sets

prior to a scheduling stage at which all functions within a set are invoked. Analysis of Defuse

identified a 35 percent reduction in cold start rates and a 22 percent memory usage reduction

in its use.

5

Function Fusion [8] is a solution developed to reduce cold start times for parallel

functions, through use of a mediator function responsible for encapsulating and coordinating

nested functions. It was developed in response to the identification that nested sequential

parallel functions can still increase workflow response times, even with cold start reductions

associated with subsequent nested functions. Analysis on use of Function Fusion identified

decreased workflow response times for both cold and warm starts, however, use cases outside

the scope of artificial intelligence are not considered.

In response to an identification of runtime start-up (RTS) and application initialization

serverless function phases having the most impact on function start-up times, a prototype is

developed in [9] to reduce cold start times through use of the Checkpoint/Restore in

Userspace (CRIU) Linux tool. CRIU is used to capture snapshots of previously executed

function processes, with the purpose of allowing their restoration for newly invoked

functions. Deployment, invocation, scaling, information gathering and metric retrieval of

serverless function instances is conducted through use of application programming interfaces

(APIs) accessible via a gateway API. Prototype analysis identified 0ms RTS times with

improvements of up to 71 percent for serverless function runtime environment build and

loading times in its use. Functions containing more complex and larger amounts of code were

identified as achieving greater speed up times using the prototype.

Comparisons are made in [10] between commercial data flow tool (DFT), object storage

service based and MQTT based serverless data pipelines, containing serverless function

pipeline tasks invoked upon movement of pipeline data, in a FEC context. Commercial DFT

usage consisted of Apache Minifi located in close proximity to UE devices to receive and

pre-process their data prior to transferring it to an Apache NiFi service, responsible for data

processing and flow management. Object storage service pipeline usage consisted of

serverless function triggering by both gateway nodes and MiniIO storage bucket events.

MQTT pipeline usage consisted of serverless function triggering upon message publishing

into specific MQTT topics. Comparison results identified commercial DFT usage performed

best for large bandwidth demanding applications, object storage service usage performed best

for bandwidth and compute intensive applications and MQTT usage was best for non-

bandwidth sensitive compute intensive applications.

Fog Function [11], a data centric fog function programming model and context-driven

orchestration runtime system, was proposed as a solution to data management issues amongst

separate serverless functions. The orchestration system leverages data contexts relating to

either UE device data or functions, system contexts relating to fog node resource availability

and usage contexts relating to how functions should be executed. Function arguments can

accept priority attributes to determine the most suitable resources to use. All fog nodes share

and communicate with a common management component, containing an orchestrator and

centralized system data indexer, to form a context management layer enabling generation of a

global system view of system components and functions. The orchestrator subscribes to each

function registered to the system data indexer, allowing access of all fog nodes to the

function. Use of Fog Function identified a 30 percent reduction in service latency when

compared with its exclusion.

6

3 Research, Design & Implementation Methodology

The Eclipse Integrated Development Environment (IDE) was used to develop a Java Apache
Maven based FEC environment simulation consisting of sensors, actuators, Raspberry Pi devices
and application modules with AWS software development kit (SDK) integration for cloud

communication. As illustrated in figure 1, the simulations system architecture consists of both
FEC and serverless environments.

Figure 1: System Architecture

Physical, logical and management components from the iFogSim2 Toolkit, a toolkit

providing FEC environment resource management technique modelling and simulation

capabilities [12], have been integrated and customised for this projects source code. To

provide transparency, in use of the projects serverless environment resources, the AWS

serverless application model (SAM) framework has been integrated. SAM integration has

enabled local environment development of AWS lambda function code with resource

provisioning requirements declared in a YAML formatted template text file [13], located in

the project resources directory. In addition to providing AWS CloudFormation details of

resources to provision, the YAML file also includes function auto scale provisioning

instructions, allowing a function usage tracking scaling policy to invoke concurrent function

executions when applicable. An AWS SDK Maven bill of materials (BOM) module is

included as a project dependency listed in the project object model (POM) file, allowing

inclusion of specified AWS service SDK dependencies only, rather than the entire AWS

SDK.

The device topology, illustrated in Figure 2, provides a small-scale device hierarchy level

interactivity overview, in which there are three hospital wings with each wing containing two

patients, however, evaluations have been conducted for simulations consisting of five wings,

with each containing ten patients, and a single wing containing ten patients. Whilst cloud and

7

proxy server devices have been implemented using device specification values provided by

the default iFogSim2 source code [14], patient monitor and patient monitor master devices

have been implemented with RAM and CPU clock speed specification values found in

Raspberry Pi3 Model B+ devices [15]. All simulated fog devices, sensors and actuators are

instantiated and stored in array lists, responsible for storage of specific component types, with

each component having an identifier reference to other relative components for

communication.

Figure 2: Device Topology

Each patient monitor device is assigned to an individual patient and receives values

transmitted by heart rate, oxygen saturation levels, respiratory rate and blood pressure

monitoring sensors. Patient monitor master devices are responsible for collection and display

of all patient sensor information generated within their assigned wing. The simulation event

flow is outlined below:

I. A patient’s heart rate, blood pressure, oxygen saturation and respiratory rate sensors

transmit their independent values to a patient monitor fog device specifically assigned

to them.

II. The patient monitor fog device assesses each received sensor value and assigns a

priority value determined by the sensor value.

III. If the priority value is classified as high priority, the patient monitor fog device sends

data, relative to the sensor, to the patient master fog device, responsible for collecting

sensor data from all patients within a hospital wing to be viewed on a display actuator

device, and the event flow finishes at this stage with the duration of time between the

sensor transmit and actuator display logged. If the priority value is classified as low

priority the serverless environment is utilised, as detailed in the following stages.

8

IV. An AWS lambda function is invoked which takes in the sensor data as an input.

V. The AWS lambda function publishes the sensor data, as a message with identifiable

attributes, to an AWS SNS topic.

VI. After execution, the AWS Lambda functions metrics are sent to Amazon

CloudWatch.

VII. All patient monitor fog devices subscribed to the SNS topic to which the message is

published receive sensor data correlating to subscription filters relative to their

specific hospital wing.

VIII. The SNS message delivery time metric value is sent to CloudWatch.

IX. A CloudWatch function is invoked to retrieve metric statistics for CloudWatch

received duration data for all Lambda executions and SNS delivery times from the

simulations start time to its end time.

X. Lambda duration metrics and SNS delivery times are summed and aggregated to the

local resource usage execution time from stage III, finishing the event flow.

With the aid of a sequence diagram, figure 3 illustrates events which occur as a sensor emits

its registered value.

Figure 3: Sequence Diagram

iFogSim2 source code has been configured to overcome its limitations in transmitting actual

sensor values, executing actions determined by sensor values and lack of serverless function

integration. A class diagram, for the implemented project, is illustrated in figure 4 with an

assumption of each Java class also having undocumented getter and setter methods for their

declared variables.

9

Figure 4: Class Diagram

10

To enable sensors to emit actual values for processing, the default iFogSim2 Sensor, Tuple

and Application classes have been configured. An initialSensorValue integer variable has

been declared in the Sensor class and is assigned a value upon instantiation of sensor objects.

Sensor objects are instantiated by use of class constructors which accept array index values as

constructor initialSensorValue parameter values. The arrays from which index values are

retrieved have been hardcoded to allow multiple simulation executions to consist of identical

initial sensor values, enhancing comparability abilities amongst different simulation

executions. The transmit method of the default Sensor class has been configured to allow a

randomly generated integer value to be emitted by the sensor. To prevent drastic fluctuation

of a sensors emitted values, the randomly generated integer has a threshold boundary of

either five above or below the initialSensorValue set upon sensor instantiation.

Tuple instances are the default iFogSim2 representation of input and outputs amongst

simulation components. A tupleValue integer variable has been declared in the Tuple class to

allow each tuple instance to contain a sensor value which is assigned a value upon each tuple

instantiation. Application modules process tuple instances and the getResultantTuples

method of the Application class has been configured to allow application module output

tuples have their tupleValue variable value set to match their tuple input. To align with FEC

simulation implementations outlined in [16], all application modules have been instantiated

with a RAM specification value of ten. Figure 5 illustrates the data flow amongst the

simulation’s sensors, application modules and display actuator.

Figure 5: Application Module Data Flow

Tuples transmitted by sensors are received by patient monitor fog devices which host heart

rate, blood pressure, o2 saturation and respiratory rate application modules responsible for

receiving sensor values from their respective sensor types and transmitting them to

orchestrator application modules. Orchestrator application modules are also hosted on patient

11

monitor fog devices and are responsible for priority classification of received sensor values.

The default iFogSim2 AppModule class has been configured by declaring a snsTopicName

string variable and inclusion of an additional instance constructor, specifically for

orchestrator module instantiations, which accepts a parameter value for assigning a value to

the snsTopicName variable.

The executeTuple method of the default FogDevice class has been configured to enable

orchestrator modules to classify received sensor value priorities and determine subsequent

executable actions, based on classification types. Sensor value priorities are identified by

invoking a determinePriority method which accepts arguments for tuple type and sensor

value. The determinePriority method returns a sensor priority based on the type of sensor

which emitted its transmitted value. Priority classification types can either be p1 or p2, with

p1 relating to high priority and p2 relating to low priority. Upon p1 classification, the

executeTuple method instantiates a tuple, containing the sensor transmit data, which is sent

directly to a patient monitor master module hosted on patient monitor master fog devices.

P2 classifications indicate cloud resource use latencies are acceptable and the simulations

serverless environment is utilised with the invocation of a transmitTupleData method which

accepts arguments for the sensor source, tuple type and sensor value of the classification

subject, in addition to the orchestrator modules snsTopicName variable value. There is a

return statement directly after the transmitTupleData invoke statement to ensure execution

time increments are not appended to the FEC resource usage execution time. The

transmitTupleData method is encapsulated in a LambdaInvoke class. The transmitTupleData

invokes nested functions responsible for instantiating a client for AWS Lambda service

communication, creating a HashMap consisting of key value pairs related to its arguments

and instantiating a Lambda InvokeRequest instance consisting of a JSON formatted version

of the HashMap, with an identifier of the Lambda function to invoke which is then executed.

As SAM was used to develop the Lambda function, its source code is viewable in the

TransmitTuple class of the project resources directory. The Lambda function invokes nested

functions responsible for instantiating a client for AWS SNS communication, retrieving the

SNS topic ARN using the snsTopicName contained in its HashMap argument value,

instantiating a SNS PublishRequest instance consisting of the sensor value to publish and

message attributes relative to the emitting sensor, which is then published to the SNS topic.

Executed Lambda function metrics are transferred to Amazon CloudWatch.

The simulation loops through multiple iterations of sensor transmit values travelling

amongst system components to reach their endpoint destination of the patient monitor master

device, assigned for their residing hospital wing, using the methodology determined by their

priority classifications. The printTimeDetails method of the default iFogSim2 Controller

class has been configured to enable serverless function latencies to be considered in

simulation execution time calculations, when applicable, upon inclusion of a

getExecutionTime method.

The getExecutionTime method determines if serverless functions have been integrated or

not by invoking a method which returns a Boolean value representing the presence of

serverless function integration. If serverless integration is identified as false, the default

iFogSim2 methodology of execution time calculation, by subtracting the simulation start time

from the time upon which the getExecutionTime method has been invoked, is used. If

12

serverless integration is identified as true, a getDuration method, responsible for retrieving

Lambda metrics from CloudWatch, is invoked. The getDuration method consists of nested

functions responsible for instantiating a client for CloudWatch communication, instantiating

a CloudWatch GetMetricStatisticsRequest instance with details for retrieving and summing

all duration metrics for the Lambda functions responsible for publishing sensor information

to SNS topics between the simulation start and end times. The summed duration of all

Lambda function durations is then aggregated to the default iFogSim2 calculated execution

time. Execution times are measured in milliseconds.

4 Evaluation

Throughout execution of multiple simulations of identical specification, it was observed that

the calculated execution time amongst each varied. Unsuccessful remediation attempts, to

allow simulations of identical specification to result in identical execution times, were

actioned by integrating Docker, AWS EC2 and multithreading approaches. Docker was used

to containerize the simulation source code but errors, related to lack of memory, were

encountered when running containers containing simulations of the same scale which were

successfully executing within the Eclipse IDE. An AWS EC2 instance was provisioned and

configured to enable Apache Maven capabilities for simulation source code obtained from its

GitHub repository, but errors related to lack of memory resulted in the killing of the

application process prior to simulation completion. Use of multithreading techniques, to

allow multiple simultaneous running simulation executions, were considered but integration

was unsuccessful due to null errors relating to array lists implemented for storage of

environment components.

Running multiple simulation executions, of identical specification, in the Eclipse IDE

with average execution time calculation was considered a capable methodology for obtaining

system latency metrics. Case studies were conducted, in which varying amounts of sensors

were instantiated with high priority classified initial transmit values and resulting execution

times rounded down to their nearest whole number. It was initially planned to run each case

study ten times for both serverless integration inclusion and exclusion but due to the length of

time required to calculate execution times, each case study was only executed twice for

serverless integration and twice without its integration. Patients in all case studies have four

sensors each - heartrate, blood pressure, oxygen saturation and respiratory rate sensors

4.1 Case Study One

Case study one consisted of running simulations in which there are five hospital wings with

each wing containing ten patients. 33 percent of the sensors are instantiated with high priority

classified values. Table 1 outlines results for both sole FEC resource usage and serverless

function integration execution times.

Table 1: Case Study One Results

Simulation Run 1 Run 2 Average

FEC Only 618055 604572 611313

13

W/ Serverless 20443142 17749457 19096299

An average execution time increase of 3023.82 percent is observable in case study one,

indicating that serverless integration is detrimental to system latency.

4.2 Case Study Two

Case study two consisted of running simulations in which there are five hospital wings with

each wing containing ten patients. 67 percent of the sensors are instantiated with high priority

classified values. Table 2 outlines results for both sole FEC resource usage and serverless

function integration execution times.

Table 2: Case Study Two Results

Simulation Run 1 Run 2 Average

FEC Only 601298 547015 574156

W/ Serverless 21786033 21503399 21644716

An average execution time increase of 3669.83 percent is observable in case study two,

indicating that serverless integration is detrimental to system latency.

4.3 Case Study Three

Case study three consisted of running simulations in which there is a single hospital wing

containing ten patients. 35 percent of the sensors are instantiated with high priority classified

values. Table 3 outlines results for both sole FEC resource usage and serverless function

integration execution times.

Table 3: Case Study Three Results

Simulation Run 1 Run 2 Average

FEC Only 18174 15194 33368

W/ Serverless 8315945 3338651 5827298

An average execution time increase of 17363.73 percent is observable in case study three,

indicating that serverless integration is detrimental to system latency.

4.4 Case Study Four

Case study four consisted of simulations in which there is a single hospital wing containing

ten patients. 65 percent of the sensors are instantiated with high priority classified values.

Table 4 outlines results for both sole FEC resource usage and serverless function integration

execution times.

Table 4: Case Study Four Results

Simulation Run 1 Run 2 Average

FEC Only 17343 17940 17641

W/ Serverless 3699700 3743620 3721660

14

An average execution time increase of 20996.65 percent is observable in case study three,

indicating that serverless integration is detrimental to system latency.

4.5 Discussion

Throughout simulation executions, FEC environment execution times were monitored prior

to the addition of serverless function execution times and it was observed that, upon

serverless integration, FEC environment execution times would drastically increase. Figure

6a portrays results for a simulation which has no serverless integration and shows an

execution time of 19439. As portrayed in figure 6b, results from a simulation, consisting of

identical specifications but with serverless integration, show an execution time of 1222362

just for the FEC environment resource use, contradicting the assumption that reduced local

environment resource usage would result in reduced execution times for FEC environment

resource use. To further investigate this contradiction, another simulation consisting of

identical specifications but with innovation of a return statement instead of the Lambda

function trigger statement, was executed and as portrayed in figure 6c, resulted in a reduced

execution time of 11515 than sole FEC resource usage, indicating that the serverless

integration aspect of the system is not working according to its intended design.

Figure 6a: FEC Resource Only Figure 6b: W/ Serverless

 Figure 6c: W/ Serverless FEC Resource Only

15

The possibility that the system was waiting for successful execution of single Lambda

functions before invoking subsequent functions was considered but, as portrayed in figure 7,

AWS CloudWatch metrics indicate that multiple Lambda functions are running concurrently.

Also considered, was the possibility that durations required for SNS topic message publishing

were detrimental for execution times, but simulations were executed with the commands to

publish to the SNS topic, within the Lambda function source code, commented out and

making them unreadable during function executions, however, this approach indicated that

the message publishing was not the root cause of the issue. Also considered, was the

possibility that the Lambda functions RAM allocations of 512MB was not efficient enough to

enable function executions in quick succession time. Difficulties with obtaining requested

relevant AWS account permissions, to allow Lambda and SNS communications, in a timely

manner have resulted in too short a timeframe to further investigate and possibly rectify this

issue.

Figure 7: Maximum Concurrent Lambda Function Execution Metric

5 Conclusion and Future Work

This research aimed to assess if an orchestrator component capable of invoking serverless

functions for non-time critical identified requests could reduce FEC environment latency.

Implementation of a FEC environment simulation, integrated with serverless functionalities

with the context of a hospital monitoring its patients using heart rate, blood pressure, oxygen

saturation and respiratory rate sensors was established as an objective. A simulation has been

implemented in which sensor transmitted values are classified based on priority with

subsequent actions determined by classification types. Serverless functions are invoked for

use by requests classified as low priority whilst local environment resource usage is reserved

for high priority classified requests. AWS Lambda functions publish low priority sensor data

to an SNS topic responsible for publishing received messages to subscribed endpoints. AWS

CloudWatch has been used to retrieve and sum all Lambda function durations from the start

of a simulation execution to its end.

Simulation results indicate that FEC environment latency does not reduce with the

integration of serverless functions for low priority classified sensor values, however,

limitations caused by uncertainties of resource consumption specifications for fog device

16

hosted application modules and their communications may have resulted in application

module specifications which do not reflect realistic specifications. Future work could be

undertaken in which application modules are instantiated using realistic resource

consumption specifications with realistic communication protocols between each. Future

work could also be undertaken in which cloud resource usage differs than implemented in

this simulation. Use of a cloud hosted database, such as DynamoDB, could be investigated to

allow endpoints to retrieve low priority classified sensor data instead of the SNS

publish/subscribe model implemented for this simulation. Various Lambda function

configurations, such as different scaling policies and RAM allocations could also be

investigated and finely tuned to determine if they can reduce execution times.

References

[1] M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, no. 1, pp.

30-39, Jan. 2017. doi: 10.1109/MC.2017.9

[2] J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu, “Defuse: A dependency-guided

function scheduler to mitigate cold starts on FaaS platforms,” in 2021 IEEE 41st International

Conference on Distributed Computing Systems (ICDCS), DC, USA, July 7-10, 2021, pp. 194-

204. doi: 10.1109/ICDCS51616.2021.00027

[3] ETSI, “Multi-access edge computing (MEC); Framework and reference architecture,”

RGS/MEC-0003v221Arch, Dec. 2020.

[4] L. Zanzi, F. Giust, and V. Sciancalepore, “M2EC: A multi-tenant resource orchestration in

multi-access edge computing systems”, in 2018 IEEE Wireless Communications and

Networking Conference (WCNC), Barcelona, Spain, April 15-18, 2018, pp. 1-6. doi:

10.1109/WCNC.2018.8377292

[5] C. Cicconetti, M. Conti, A. Passarella, and D. Sabella, “Toward distributed computing

environments with serverless solutions in edge systems,” IEEE Communications Magazine,

vol. 58, no. 3, pp. 40-46, Mar. 2020. doi: 10.1109/MCOM.001.1900498

[6] M.C. Filippou, D. Sabella, and V. Riccobene, “Flexible MEC service consumption

through edge host zoning in 5G networks,” in 2019 IEEE Wireless Communications and

Networking Conference Workshop (WCNCW), Marrakech, Morocco, April 15-18, 2019, pp.

1-6. doi: 10.1109/WCNCW.2019.8902852

[7] R. Morabito, V. Cozzolino, A. Y. Ding, N. Beijar and J. Ott, “Consolidate IoT edge

computing with lightweight virtualization," IEEE Network, vol. 32, no. 1, pp. 102-111, Jan.

2018. doi: 10.1109/MNET.2018.1700175

[8] S. Lee, D. Yoon, S. Yeo, and S. Oh, “Mitigating cold start problem in serverless

computing with function fusion,” Sensors, vol. 21, no. 24, p. 8416, 2021. doi:

10.3390/s21248416

17

[9] P. Silva, D. Fireman, and T.E. Pereira, “Prebaking functions to warm the serverless cold

start,” in Proceedings of the 21st International Middleware Conference (Middleware ’20),

Delft, Netherlands, December 7-11, 2020, pp. 1-13. doi: 10.1145/3423211.3425682

[10] S. R. Poojara, C. K. Dehury, P. Jakovits, and S. N. Srirama, “Serverless data pipeline

approaches for IoT data in fog and cloud computing,” Future Generation Computer Systems,

vol. 130, pp. 91-105, May. 2022. doi: 10.1016/j.future.2021.12.012

[11] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada, “Fog function: Serverless fog computing

for data intensive IoT services,” in 2019 IEEE International Conference on Services

Computing (SCC), Milan, Italy, July 8-13, 2019, pp. 28-35. doi: 10.1109/SCC.2019.00018

[12] R. Mahmud, S. Pallewatta, M. Goudarzi, and R. Buyya, “Ifogsim2: An extended ifogsim

simulator for mobility, clustering, and microservice management in edge and fog computing

environments,” Journal of Systems and Software, vol. 190, no. 111351, pp. 111351, Aug.

2022

[13] Amazon Web Services, “AWS Serverless Application Model – Developer Guide,”

AWS, 2021. [Online]. Available: https://docs.aws.amazon.com/serverless-application-

model/latest/developerguide/serverless-application-model.pdf

[14] The Cloud Computing and Distributed Systems (CLOUDS) Laboratory (2021), iFogSim

[Source code]. https://github.com/Cloudslab/iFogSim

[15] Raspberry Pi, “Raspberry Pi 3 Model B+,” 2018. [Online]. Available:

https://datasheets.raspberrypi.com/rpi3/raspberry-pi-3-b-plus-product-brief.pdf

[16] K. S. Awaisi, A. Abbasm S. U. Khan, R. Mahmud, and R. Buyya, “Simulating Fog

Computing Applications Using iFogSim Toolkit,” in Mobile Edge Computing, Cham:

Springer International Publishing, 2021, pp. 565-590.

