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Abstract 

Fog and Edge Computing (FEC) is a computing paradigm in which traditionally 

cloud provisioned resources are moved to distributed fog node devices in closer 

proximity to user equipment (UE) devices. Whilst UE fog node resource usage can result 

in lower latencies due to a reduction of required network hopping communications, 

resources are more limited and less available than cloud provisioned resources. 

Competition, amongst multiple UE devices, for simultaneous use of a single fog nodes 

resources could potentially eliminate latency benefits associated with the reduction in 

network hopping communications. Cases may exist in which UE devices incur less 

latencies for requests which use cloud provisioned resources, than waiting for local fog 

node resource availability. In acknowledgement to occurrences in which requests vary in 

criticality, this paper proposes implementation of an FEC environment orchestrator 

component capable of request classification and the ability to invoke serverless functions 

for non-time critical classified requests. Amazon Web Services (AWS) Lambda 

functions have been integrated, for execution of non-time critical classified requests, 

allowing only time critical classified requests to have abilities for fog node resource 

usage. Results indicate that, when implemented using the methodology addressed within 

this specific paper, serverless function integration is detrimental to latency performance.    

 

 

1 Introduction 
 

Cloud computing provides the ability to provision and use resources that can be more 

powerful than found on local UE devices, enabling users to avail of increased capabilities 

than if restricted by local device resource limitations. Whilst the availability of more 

powerful resources is beneficial for providing increased capabilities, cloud computing 

resource requests have longer communication distances than local device resource usage 

requests. Communications between UE devices and cloud provisioned resources require 

network hopping, incurring increased latencies than sole usage of local UE resources. 

Network hopping latencies may be acceptable for some use cases but would be detrimental 

for time critical requests requiring close to real-time communications. 

FEC is a computing paradigm developed to address communication latencies, between 

UE devices and cloud provisioned resources, by moving traditionally cloud provisioned 

resources to distributed fog nodes in closer proximities of UE devices [1]. FEC environments 

are comprised of UE devices which communicate with resource provisioning fog nodes 
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capable of allocating local resources for UE functionality. Compared to cloud provisioned 

resources, fog node resource usage reduces the amount of required network hops for 

communications, but resources are more constrained which could cause resource availability 

issues. Competition for simultaneous use of a single fog nodes resources amongst multiple 

UE device requests may potentially eliminate latency benefits associated with FEC, creating 

cases in which cloud provisioned resource usage may incur less latency than waiting for fog 

node resource availability. Potential FEC resource availability latencies may be acceptable 

for some use cases but be detrimental for time-critical requests. 

Through the implementation of a FEC environment simulation, with the context of a 

hospital monitoring its patients using heart rate, blood pressure, oxygen saturation and 

respiratory rate sensors, this paper aims to assess if inclusion of an environment orchestrator 

component, capable of invoking serverless functions for requests it identifies as non-time 

critical, can reduce environment latency. Serverless functions provide users the ability to 

provision and assign cloud resources for the runtime duration of an invoked function. Use of 

serverless functions for non-time critical requests may increase fog node resource availability 

for time critical requests, with potential environment latency reductions. 

Serverless functions require dependencies, specific to each, to be initialised within 

purpose-built environments for successful execution. The process of building serverless 

function environments can be classified as either a cold or warm start. Cold starts relate to the 

build of completely new environments and are more time consuming than warm starts, which 

reuse suitable environments stored in memory from prior builds [2]. To minimise serverless 

function environment build latencies, the implemented simulation integrates serverless 

function auto scaling policies to build environments prior to their use. 

The European Telecommunications Standards Institute (ETSI) Multi Access Edge 

Computing (MEC) framework, a framework for the efficient running of UE consumable 

applications in a multi-access network, already includes an MEC Orchestrator (MEO) 

component which differs in functionality to the proposed FEC orchestrator. MEO 

components are responsible for information monitoring of environment fog nodes, resources, 

services and topologies and can select specific fog nodes for UE requested application 

hosting [3], however, they do not classify request priorities or invoke serverless functions.  

The major contribution of this research is the implementation of a Java developed FEC 

environment simulation consisting of sensors, actuators and data processing fog nodes which 

host orchestrator application modules capable of either invoking AWS Lambda functions or 

using local node resources, determined by request priority classification type. All Lambda 

functions have been implemented with the ability to publish sensor data to AWS Simple 

Notification Service (SNS) topics to which environment endpoints are subscribed.  

Limitations caused by the unavailability of a physical device topology have required 

assumptions to be made for fog device uplink bandwidth, downlink bandwidth, busy power 

consumption, idle power consumption and associated cost usage specification values. Use of 

simulated fog devices has also resulted in the inability to subscribe simulated devices to 

AWS Simple Notification Service (SNS) topics, responsible for publishing messages relating 

to non-critical classified sensor transmit data to device endpoints, preventing SNS message 

delivery status metrics to be established and aggregated to the local environment usage 

execution time. Uncertainties in actual application resource consumption demands has 
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required specification assumptions to be applied to application module RAM and CPU 

requirements, in addition to module communications, which could potentially result in 

scenarios which consist of specification assumptions which are realistically inaccurate.  

This research project has been undertaken to provide an answer to the research question 

of: 

 

Can FEC environment latency be reduced upon inclusion of an orchestrator component 

capable of invoking serverless functions for non-time critical identified requests? 

  

The rest of this paper is organised as follows: Section 2 addresses prior related work. Section 

3 outlines the undertaken research, design and implementation methodology. Section 4 

provides an evaluation of results identified by this paper. Section 5 provides a conclusion and 

outlines any future work that can be taken. 

 

    

2 Related Work 
 

Prior related work concerning MEC architecture, MEC environment request classification, 

MEO innovation, MEC environment lightweight virtualisation, serverless MEC integration, 

serverless function cold start time reduction and data transfer amongst serverless functions is 

addressed throughout this section. 

As outlined in the ETSI MEC architecture [3], a user application lifecycle management 

(LCM) proxy component is the MEC environment entry point for UE device requests and 

determines the pre-existence of suitable environments, containing required dependencies, for 

successful execution of each received request. If a suitable environment does not exist, the 

LCM proxy instructs an operations support system (OSS) component to build a suitable 

environment which is deployed on resources assigned by the MEO. The MEO also ensures 

identification and inclusion of request required dependencies for environment builds. If the 

LCM proxy identifies a suitable pre-existing environment, for successful execution of a 

request, it establishes direct communication with the MEO which locates and directs the 

request to the environment, bypassing the OSS. Component responsibilities for MEC 

environment request lifecycles are outlined in the ETSI MEC architecture but the notion of 

varying request criticalities is not addressed.    

M2EC [4] is an orchestration solution in which MEC resource users are classified as 

either basic, premium or gold, determined by user service level agreements. User capabilities 

and delay guarantees differ for each classification type. A broker component, capable of 

determining user classification types, is integrated into the MEC environment either by 

adjusting existing environment components or as a separate broker component. The broker is 

used to provide loose delay guarantees to basic users, stringent delay guarantees to premium 

users and low delay guarantees to gold users. Gold users also have application deployment 

privileges, host resource specification capabilities and the ability to communicate directly 

with the MEO. Results obtained in M2EC usage identified a 40 percent reduction in MEC 

host resource utilization, however, it is limited to using only user origin for request 

classifications.  
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Proposed in [5] is a serverless edge computing methodology in which MEC hosts run 

local serverless frameworks, consisting of serverless function execution resources and an on-

demand application activation platform. Self-adjusting MEO tables, containing mappings for 

UE and function identifiers to application service endpoints, are integrated to allow available 

application listings to be provided to UE devices. Upon receiving a requested listing of 

available applications, UE devices select a listed application, creating a context containing an 

identifier and uniform resource identifier for application access. Analysis results, on this 

methodology’s integration, outline differences between static, centralized and distributed 

serverless function host assignments, but exclusion of the methodology is not considered to 

form a basis of comparison. Serverless functions are stored amongst MEC hosts, which could 

result in latencies relating to host memory issues, however, use of cloud provisioned 

serverless functions are not considered for non-time critical requests to alleviate host memory 

usage. 

Proposed in [6] is a latency aware proximity zone defining quality of service MEC 

environment enhancement, as a means of reducing latencies in an applications consumption 

of services residing in locations outside its host device. The MEO asynchronously gathers 

and classifies proximity measurements between host devices, enabling host groupings, 

determined by host service consumption latencies, which are stored in MEO tables to provide 

statistical performance information metrics. Application migration to a host in closer 

proximity of the requested service can be recommended by the MEO upon identification of 

detrimental service consumption latencies. Analysis on the inclusion of latency aware 

proximity zones identified reduced latencies and host processing times, when compared with 

their exclusion, however, integration is only concerned with local environment services 

without investigating the potential of also integrating serverless functionalities.  

Investigated in [7] is whether virtual machine (VM), container and unikernel lightweight 

virtualisation technologies can be exploited to benefit FEC application environment builds. 

An acknowledgement is established that use of virtualisation for real-time or mission critical 

tasks, demanding low and predictable latencies, may not be suitable due to additional delays 

and resource utilization associated with it. Docker container usage is identified as resulting in 

less resource consumption than VM/unikernel use which require non-negligible hyper 

virtualisation overheads of operation system installation and virtual hardware device/driver 

emulation. Whilst use of various lightweight virtualisation technologies is assessed in FEC, 

serverless functionality integration usage is not investigated.  

Defuse [2] is a dependency guided function scheduler developed to reduce serverless 

function cold start times by identifying dependent subsequent functions and building suitable 

environments for their execution prior to their invoke. Function dependencies are classified 

as either strong or weak, with strong dependencies relating to predictable functions, identified 

through frequent pattern mining and weak dependencies relating to unpredictable functions, 

identified through use of positive point-wise mutual information values relative to the invoke 

of subsequent strong functions. An initial mining stage establishes a graph of function 

dependencies, determined by invocation histories, which is used to generate dependency sets 

prior to a scheduling stage at which all functions within a set are invoked. Analysis of Defuse 

identified a 35 percent reduction in cold start rates and a 22 percent memory usage reduction 

in its use.  
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Function Fusion [8] is a solution developed to reduce cold start times for parallel 

functions, through use of a mediator function responsible for encapsulating and coordinating 

nested functions. It was developed in response to the identification that nested sequential 

parallel functions can still increase workflow response times, even with cold start reductions 

associated with subsequent nested functions. Analysis on use of Function Fusion identified 

decreased workflow response times for both cold and warm starts, however, use cases outside 

the scope of artificial intelligence are not considered.  

In response to an identification of runtime start-up (RTS) and application initialization 

serverless function phases having the most impact on function start-up times, a prototype is 

developed in [9] to reduce cold start times through use of the Checkpoint/Restore in 

Userspace (CRIU) Linux tool. CRIU is used to capture snapshots of previously executed 

function processes, with the purpose of allowing their restoration for newly invoked 

functions. Deployment, invocation, scaling, information gathering and metric retrieval of 

serverless function instances is conducted through use of application programming interfaces 

(APIs) accessible via a gateway API. Prototype analysis identified 0ms RTS times with 

improvements of up to 71 percent for serverless function runtime environment build and 

loading times in its use. Functions containing more complex and larger amounts of code were 

identified as achieving greater speed up times using the prototype. 

Comparisons are made in [10] between commercial data flow tool (DFT), object storage 

service based and MQTT based serverless data pipelines, containing serverless function 

pipeline tasks invoked upon movement of pipeline data, in a FEC context. Commercial DFT 

usage consisted of Apache Minifi located in close proximity to UE devices to receive and 

pre-process their data prior to transferring it to an Apache NiFi service, responsible for data 

processing and flow management. Object storage service pipeline usage consisted of 

serverless function triggering by both gateway nodes and MiniIO storage bucket events. 

MQTT pipeline usage consisted of serverless function triggering upon message publishing 

into specific MQTT topics. Comparison results identified commercial DFT usage performed 

best for large bandwidth demanding applications, object storage service usage performed best 

for bandwidth and compute intensive applications and MQTT usage was best for non-

bandwidth sensitive compute intensive applications. 

Fog Function [11], a data centric fog function programming model and context-driven 

orchestration runtime system, was proposed as a solution to data management issues amongst 

separate serverless functions. The orchestration system leverages data contexts relating to 

either UE device data or functions, system contexts relating to fog node resource availability 

and usage contexts relating to how functions should be executed. Function arguments can 

accept priority attributes to determine the most suitable resources to use. All fog nodes share 

and communicate with a common management component, containing an orchestrator and 

centralized system data indexer, to form a context management layer enabling generation of a 

global system view of system components and functions. The orchestrator subscribes to each 

function registered to the system data indexer, allowing access of all fog nodes to the 

function. Use of Fog Function identified a 30 percent reduction in service latency when 

compared with its exclusion.  
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3 Research, Design & Implementation Methodology 
 

The Eclipse Integrated Development Environment (IDE) was used to develop a Java Apache 
Maven based FEC environment simulation consisting of sensors, actuators, Raspberry Pi devices 
and application modules with AWS software development kit (SDK) integration for cloud 

communication. As illustrated in figure 1, the simulations system architecture consists of both 
FEC and serverless environments. 
  

Figure 1: System Architecture 

 

Physical, logical and management components from the iFogSim2 Toolkit, a toolkit 

providing FEC environment resource management technique modelling and simulation 

capabilities [12], have been integrated and customised for this projects source code. To 

provide transparency, in use of the projects serverless environment resources, the AWS 

serverless application model (SAM) framework has been integrated. SAM integration has 

enabled local environment development of AWS lambda function code with resource 

provisioning requirements declared in a YAML formatted template text file [13], located in 

the project resources directory. In addition to providing AWS CloudFormation details of 

resources to provision, the YAML file also includes function auto scale provisioning 

instructions, allowing a function usage tracking scaling policy to invoke concurrent function 

executions when applicable. An AWS SDK Maven bill of materials (BOM) module is 

included as a project dependency listed in the project object model (POM) file, allowing 

inclusion of specified AWS service SDK dependencies only, rather than the entire AWS 

SDK.  

The device topology, illustrated in Figure 2, provides a small-scale device hierarchy level 

interactivity overview, in which there are three hospital wings with each wing containing two 

patients, however, evaluations have been conducted for simulations consisting of five wings, 

with each containing ten patients, and a single wing containing ten patients. Whilst cloud and 
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proxy server devices have been implemented using device specification values provided by 

the default iFogSim2 source code [14], patient monitor and patient monitor master devices 

have been implemented with RAM and CPU clock speed specification values found in 

Raspberry Pi3 Model B+ devices [15]. All simulated fog devices, sensors and actuators are 

instantiated and stored in array lists, responsible for storage of specific component types, with 

each component having an identifier reference to other relative components for 

communication. 

 

 
Figure 2: Device Topology 

 

Each patient monitor device is assigned to an individual patient and receives values 

transmitted by heart rate, oxygen saturation levels, respiratory rate and blood pressure 

monitoring sensors. Patient monitor master devices are responsible for collection and display 

of all patient sensor information generated within their assigned wing. The simulation event 

flow is outlined below:  

 

I. A patient’s heart rate, blood pressure, oxygen saturation and respiratory rate sensors 

transmit their independent values to a patient monitor fog device specifically assigned 

to them. 

II. The patient monitor fog device assesses each received sensor value and assigns a 

priority value determined by the sensor value. 

III. If the priority value is classified as high priority, the patient monitor fog device sends 

data, relative to the sensor, to the patient master fog device, responsible for collecting 

sensor data from all patients within a hospital wing to be viewed on a display actuator 

device, and the event flow finishes at this stage with the duration of time between the 

sensor transmit and actuator display logged. If the priority value is classified as low 

priority the serverless environment is utilised, as detailed in the following stages. 



8 

 

 

IV. An AWS lambda function is invoked which takes in the sensor data as an input. 

V. The AWS lambda function publishes the sensor data, as a message with identifiable 

attributes, to an AWS SNS topic.  

VI. After execution, the AWS Lambda functions metrics are sent to Amazon 

CloudWatch. 

VII. All patient monitor fog devices subscribed to the SNS topic to which the message is 

published receive sensor data correlating to subscription filters relative to their 

specific hospital wing. 

VIII. The SNS message delivery time metric value is sent to CloudWatch. 

IX. A CloudWatch function is invoked to retrieve metric statistics for CloudWatch 

received duration data for all Lambda executions and SNS delivery times from the 

simulations start time to its end time. 

X. Lambda duration metrics and SNS delivery times are summed and aggregated to the 

local resource usage execution time from stage III, finishing the event flow.  

 

With the aid of a sequence diagram, figure 3 illustrates events which occur as a sensor emits 

its registered value. 

 

Figure 3: Sequence Diagram 

 

iFogSim2 source code has been configured to overcome its limitations in transmitting actual 

sensor values, executing actions determined by sensor values and lack of serverless function 

integration. A class diagram, for the implemented project, is illustrated in figure 4 with an 

assumption of each Java class also having undocumented getter and setter methods for their 

declared variables. 
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Figure 4: Class Diagram 
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To enable sensors to emit actual values for processing, the default iFogSim2 Sensor, Tuple 

and Application classes have been configured. An initialSensorValue integer variable has 

been declared in the Sensor class and is assigned a value upon instantiation of sensor objects. 

Sensor objects are instantiated by use of class constructors which accept array index values as 

constructor initialSensorValue parameter values. The arrays from which index values are 

retrieved have been hardcoded to allow multiple simulation executions to consist of identical 

initial sensor values, enhancing comparability abilities amongst different simulation 

executions. The transmit method of the default Sensor class has been configured to allow a 

randomly generated integer value to be emitted by the sensor. To prevent drastic fluctuation 

of a sensors emitted values, the randomly generated integer has a threshold boundary of 

either five above or below the initialSensorValue set upon sensor instantiation.  

Tuple instances are the default iFogSim2 representation of input and outputs amongst 

simulation components. A tupleValue integer variable has been declared in the Tuple class to 

allow each tuple instance to contain a sensor value which is assigned a value upon each tuple 

instantiation. Application modules process tuple instances and the getResultantTuples 

method of the Application class has been configured to allow application module output 

tuples have their tupleValue variable value set to match their tuple input. To align with FEC 

simulation implementations outlined in [16], all application modules have been instantiated 

with a RAM specification value of ten. Figure 5 illustrates the data flow amongst the 

simulation’s sensors, application modules and display actuator. 

 

Figure 5: Application Module Data Flow 

 

Tuples transmitted by sensors are received by patient monitor fog devices which host heart 

rate, blood pressure, o2 saturation and respiratory rate application modules responsible for 

receiving sensor values from their respective sensor types and transmitting them to 

orchestrator application modules. Orchestrator application modules are also hosted on patient 
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monitor fog devices and are responsible for priority classification of received sensor values. 

The default iFogSim2 AppModule class has been configured by declaring a snsTopicName 

string variable and inclusion of an additional instance constructor, specifically for 

orchestrator module instantiations, which accepts a parameter value for assigning a value to 

the snsTopicName variable. 

The executeTuple method of the default FogDevice class has been configured to enable 

orchestrator modules to classify received sensor value priorities and determine subsequent 

executable actions, based on classification types. Sensor value priorities are identified by 

invoking a determinePriority method which accepts arguments for tuple type and sensor 

value. The determinePriority method returns a sensor priority based on the type of sensor 

which emitted its transmitted value. Priority classification types can either be p1 or p2, with 

p1 relating to high priority and p2 relating to low priority. Upon p1 classification, the 

executeTuple method instantiates a tuple, containing the sensor transmit data, which is sent 

directly to a patient monitor master module hosted on patient monitor master fog devices.  

P2 classifications indicate cloud resource use latencies are acceptable and the simulations 

serverless environment is utilised with the invocation of a transmitTupleData method which 

accepts arguments for the sensor source, tuple type and sensor value of the classification 

subject, in addition to the orchestrator modules snsTopicName variable value. There is a 

return statement directly after the transmitTupleData invoke statement to ensure execution 

time increments are not appended to the FEC resource usage execution time. The 

transmitTupleData method is encapsulated in a LambdaInvoke class. The transmitTupleData 

invokes nested functions responsible for instantiating a client for AWS Lambda service 

communication, creating a HashMap consisting of key value pairs related to its arguments 

and instantiating a Lambda InvokeRequest instance consisting of a JSON formatted version 

of the HashMap, with an identifier of the Lambda function to invoke which is then executed. 

As SAM was used to develop the Lambda function, its source code is viewable in the 

TransmitTuple class of the project resources directory. The Lambda function invokes nested 

functions responsible for instantiating a client for AWS SNS communication, retrieving the 

SNS topic ARN using the snsTopicName contained in its HashMap argument value, 

instantiating a SNS PublishRequest instance consisting of the sensor value to publish and 

message attributes relative to the emitting sensor, which is then published to the SNS topic. 

Executed Lambda function metrics are transferred to Amazon CloudWatch. 

The simulation loops through multiple iterations of sensor transmit values travelling 

amongst system components to reach their endpoint destination of the patient monitor master 

device, assigned for their residing hospital wing, using the methodology determined by their 

priority classifications. The printTimeDetails method of the default iFogSim2 Controller 

class has been configured to enable serverless function latencies to be considered in 

simulation execution time calculations, when applicable, upon inclusion of a 

getExecutionTime method.  

The getExecutionTime method determines if serverless functions have been integrated or 

not by invoking a method which returns a Boolean value representing the presence of 

serverless function integration. If serverless integration is identified as false, the default 

iFogSim2 methodology of execution time calculation, by subtracting the simulation start time 

from the time upon which the getExecutionTime method has been invoked, is used. If 
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serverless integration is identified as true, a getDuration method, responsible for retrieving 

Lambda metrics from CloudWatch, is invoked. The getDuration method consists of nested 

functions responsible for instantiating a client for CloudWatch communication, instantiating 

a CloudWatch GetMetricStatisticsRequest instance with details for retrieving and summing 

all duration metrics for the Lambda functions responsible for publishing sensor information 

to SNS topics between the simulation start and end times. The summed duration of all 

Lambda function durations is then aggregated to the default iFogSim2 calculated execution 

time. Execution times are measured in milliseconds.  

 

4 Evaluation 
 

Throughout execution of multiple simulations of identical specification, it was observed that 

the calculated execution time amongst each varied. Unsuccessful remediation attempts, to 

allow simulations of identical specification to result in identical execution times, were 

actioned by integrating Docker, AWS EC2 and multithreading approaches. Docker was used 

to containerize the simulation source code but errors, related to lack of memory, were 

encountered when running containers containing simulations of the same scale which were 

successfully executing within the Eclipse IDE. An AWS EC2 instance was provisioned and 

configured to enable Apache Maven capabilities for simulation source code obtained from its 

GitHub repository, but errors related to lack of memory resulted in the killing of the 

application process prior to simulation completion. Use of multithreading techniques, to 

allow multiple simultaneous running simulation executions, were considered but integration 

was unsuccessful due to null errors relating to array lists implemented for storage of 

environment components.  

Running multiple simulation executions, of identical specification, in the Eclipse IDE 

with average execution time calculation was considered a capable methodology for obtaining 

system latency metrics. Case studies were conducted, in which varying amounts of sensors 

were instantiated with high priority classified initial transmit values and resulting execution 

times rounded down to their nearest whole number. It was initially planned to run each case 

study ten times for both serverless integration inclusion and exclusion but due to the length of 

time required to calculate execution times, each case study was only executed twice for 

serverless integration and twice without its integration. Patients in all case studies have four 

sensors each - heartrate, blood pressure, oxygen saturation and respiratory rate sensors 

4.1 Case Study One 
 

Case study one consisted of running simulations in which there are five hospital wings with 

each wing containing ten patients. 33 percent of the sensors are instantiated with high priority 

classified values. Table 1 outlines results for both sole FEC resource usage and serverless 

function integration execution times.   

Table 1: Case Study One Results  

Simulation  Run 1 Run 2 Average 

FEC Only 618055 604572 611313 
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W/ Serverless 20443142 17749457 19096299 

 

An average execution time increase of 3023.82 percent is observable in case study one, 

indicating that serverless integration is detrimental to system latency.  

4.2 Case Study Two 

 

Case study two consisted of running simulations in which there are five hospital wings with 

each wing containing ten patients. 67 percent of the sensors are instantiated with high priority 

classified values. Table 2 outlines results for both sole FEC resource usage and serverless 

function integration execution times.   

Table 2: Case Study Two Results 

Simulation  Run 1 Run 2 Average 

FEC Only 601298 547015 574156 

W/ Serverless 21786033 21503399 21644716 

 

An average execution time increase of 3669.83 percent is observable in case study two, 

indicating that serverless integration is detrimental to system latency.  

4.3 Case Study Three 

 

Case study three consisted of running simulations in which there is a single hospital wing 

containing ten patients. 35 percent of the sensors are instantiated with high priority classified 

values. Table 3 outlines results for both sole FEC resource usage and serverless function 

integration execution times.   

Table 3: Case Study Three Results 

Simulation  Run 1 Run 2 Average 

FEC Only 18174 15194 33368 

W/ Serverless 8315945 3338651 5827298 

 

An average execution time increase of 17363.73 percent is observable in case study three, 

indicating that serverless integration is detrimental to system latency.  

4.4  Case Study Four 

 

Case study four consisted of simulations in which there is a single hospital wing containing 

ten patients. 65 percent of the sensors are instantiated with high priority classified values. 

Table 4 outlines results for both sole FEC resource usage and serverless function integration 

execution times.    

Table 4: Case Study Four Results 

Simulation  Run 1 Run 2 Average 

FEC Only 17343 17940 17641 

W/ Serverless 3699700 3743620 3721660 
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An average execution time increase of 20996.65 percent is observable in case study three, 

indicating that serverless integration is detrimental to system latency.  

 

4.5 Discussion 

 

Throughout simulation executions, FEC environment execution times were monitored prior 

to the addition of serverless function execution times and it was observed that, upon 

serverless integration, FEC environment execution times would drastically increase. Figure 

6a portrays results for a simulation which has no serverless integration and shows an 

execution time of 19439. As portrayed in figure 6b, results from a simulation, consisting of 

identical specifications but with serverless integration, show an execution time of 1222362 

just for the FEC environment resource use, contradicting the assumption that reduced local 

environment resource usage would result in reduced execution times for FEC environment 

resource use. To further investigate this contradiction, another simulation consisting of 

identical specifications but with innovation of a return statement instead of the Lambda 

function trigger statement, was executed and as portrayed in figure 6c, resulted in a reduced 

execution time of 11515 than sole FEC resource usage, indicating that the serverless 

integration aspect of the system is not working according to its intended design. 

 

      
Figure 6a: FEC Resource Only              Figure 6b: W/ Serverless        

    

            

         Figure 6c: W/ Serverless FEC Resource Only               
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The possibility that the system was waiting for successful execution of single Lambda 

functions before invoking subsequent functions was considered but, as portrayed in figure 7, 

AWS CloudWatch metrics indicate that multiple Lambda functions are running concurrently. 

Also considered, was the possibility that durations required for SNS topic message publishing 

were detrimental for execution times, but simulations were executed with the commands to 

publish to the SNS topic, within the Lambda function source code, commented out and 

making them unreadable during function executions, however, this approach indicated that 

the message publishing was not the root cause of the issue. Also considered, was the 

possibility that the Lambda functions RAM allocations of 512MB was not efficient enough to 

enable function executions in quick succession time. Difficulties with obtaining requested 

relevant AWS account permissions, to allow Lambda and SNS communications, in a timely 

manner have resulted in too short a timeframe to further investigate and possibly rectify this 

issue.  

 

Figure 7: Maximum Concurrent Lambda Function Execution Metric 

 

 

5 Conclusion and Future Work 
 

This research aimed to assess if an orchestrator component capable of invoking serverless 

functions for non-time critical identified requests could reduce FEC environment latency. 

Implementation of a FEC environment simulation, integrated with serverless functionalities 

with the context of a hospital monitoring its patients using heart rate, blood pressure, oxygen 

saturation and respiratory rate sensors was established as an objective. A simulation has been 

implemented in which sensor transmitted values are classified based on priority with 

subsequent actions determined by classification types. Serverless functions are invoked for 

use by requests classified as low priority whilst local environment resource usage is reserved 

for high priority classified requests. AWS Lambda functions publish low priority sensor data 

to an SNS topic responsible for publishing received messages to subscribed endpoints. AWS 

CloudWatch has been used to retrieve and sum all Lambda function durations from the start 

of a simulation execution to its end. 

Simulation results indicate that FEC environment latency does not reduce with the 

integration of serverless functions for low priority classified sensor values, however, 

limitations caused by uncertainties of resource consumption specifications for fog device 
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hosted application modules and their communications may have resulted in application 

module specifications which do not reflect realistic specifications. Future work could be 

undertaken in which application modules are instantiated using realistic resource 

consumption specifications with realistic communication protocols between each. Future 

work could also be undertaken in which cloud resource usage differs than implemented in 

this simulation. Use of a cloud hosted database, such as DynamoDB, could be investigated to 

allow endpoints to retrieve low priority classified sensor data instead of the SNS 

publish/subscribe model implemented for this simulation. Various Lambda function 

configurations, such as different scaling policies and RAM allocations could also be 

investigated and finely tuned to determine if they can reduce execution times. 
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