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Parallel Serverless Workloads in OpenWhisk on
Kubernetes

Neeti Sharma
20242778

Abstract

Recent advances in virtualisation technology have resulted in the widespread
use of Serverless computing, which provides the ability to programme and admin-
ister the cloud in an autoscaling, pay-as-you-go fashion. The platform handles
the invocation, execution, and scaling of a function thereby, managing the com-
plete lifecycle of a function. The most famous offering of Serverless computing is
Function as a Service (FaaS). Though FaaS provides ease of use, and flexibility it
also possesses significant overheads such as vendor-lock-ins, complex pricing mod-
els, functional restrictions, and security. In this paper, an open-source serverless
framework has been proposed which uses Apache OpenWhisk as FaaS on a single
master multi-worker Kubernetes cluster deployed on private cloud NCI OpenStack.
The results show that OpenWhisk deployed on Kubernetes works seamlessly on
OpenStack with the proposed framework and performs better when the compute
intensive workloads are parallelised for C++, Java and Go. The computed results
not only demystify the feasibility of OpenWhisk on Kubernetes but also checks the
resource utilisation and performance of the system for parallelised workloads.

1 Introduction

Serverless computing has recently become one of the most popular paradigms in the space
of cloud computing because of its unique ability to provide event-driven, short-lived, state-
less function execution on containers without the need for infrastructure management.
With the release of AWS Lambda in the year 2015, serverless computing quickly gained
popularity in different types of applications such as machine learning[1], linear algebra[2]
and high-performance computing[3]. The main reason behind this demand is its pay-
per-use billing strategy, reduced management overhead of the cloud and fast delivery to
market.

A key feature of serverless computing is providing infrastructure management for
running serverless functions, this responsibility is completely handed over to the FaaS
platform. At the moment, many open-source, as well as commercial FaaS platforms, are
available where the applications are coded in the form of small granular-level functions.
These functions are then packaged along with dependencies and are executed on FaaS
platforms based on an external trigger. When these functions are invoked, the FaaS
platform creates an execution environment to securely run the functions. Most of the
platforms allow developers to write serverless functions in different programming lan-
guages such as NodeJS, Python, Java and Go providing the respective language-specific
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runtime within the execution environment. However, there is also a limitation in terms of
the languages supported wherein, some of the FaaS platforms allow developers to build
container images and run them as functions.

Because of these features, FaaS has recently gained interest in the area of high-
performance computing applications. Some of the research [4] [5] showed that FaaS
can be used for data analytics application which led to the further analysis [6] [7] [8]
for compute-intensive workloads depicting its feasibility. However, other studies [9] por-
trayed challenges involving the high cost of running such applications and maintaining
the state of the serverless functions.

Most of the research conducted have evaluated the compute-intensive workloads on
commercial serverless platforms such as AWS Lambda, Google Cloud Functions (GCF),
and Azure Functions. Though these platforms provide all the functionalities required by
developers to produce faster-to-market products, they do come with several drawbacks
such as vendor lock-ins, unavailability of language runtimes, complex pricing models and
restrictions on security.

However, open-source FaaS frameworks give programmers the option to create applic-
ations using a variety of programming languages, preventing vendor lock-ins[10]. Addi-
tionally, developers are free from the burden of adhering to restrictions on code execution
time, code size and concurrency. Hence, the primary focus of this paper is one such
open-source FaaS OpenWhisk. Also, for large scale FaaS infrastructure providers the
pay-as-you-go model does not provide enough control over the billing which points to the
requirement of open-source FaaS in the private cloud giving more control over the cost
of serverless.

Kubernetes 1 is an open source platform for managing containerized workloads which
supports both Enterprise and open-source FaaS providers[11][12][13][14] but has not yet
been explored enough for private cloud.

Subsequently, this study fills the gap in research and benchmarks in the area of open
source serverless computing. Apache OpenWhisk 2 is an open-source distributed Server-
less platform which has not been explored much with Kubernetes container orchestrator
on a private cloud for parallel workloads, which posts the research question.

Can OpenWhisk be deployed on Kubernetes cluster running on OpenStack
to run parallel workloads for measuring speedup, response time and success
rate?

The key contributions of this research paper are:

• Checking feasibility of deploying OpenWhisk on Kubernetes cluster deployed on
NCI OpenStack.

• Gain insight into the underlying architecture OpenWhisk and how it runs functions
with Kubernetes.

• Understanding methods to parallelize code using libraries for Java, C++ and Go.

• Gain insight into the execution times for running parallel workloads using Open-
Whisk FaaS

The report is structured as follows section 2 describes and critically analysis related
work done in the same field. Followed by section 3 explaining the research methodology

1Kubernetes : https://kubernetes.io/docs/home/
2OpenWhisk : https://github.com/apache/openwhisk
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and specifications followed for completing the research. Finally, the results are discussed
along with the conclusion and future work.

2 Literature review

Function-as-a-service plays a significant role in improving the performance of applications
using cloud services and in reducing the cost of using them. In the following section,
several related works is discussed and critically analysed.

2.1 Serverless Performance evaluations

Serverless initially construed as not using servers is sometimes considered misleading in
terms of serverless computing as the functions with the application code runs on con-
tainers which are also partly physical machines or servers running on certain data centre.
Cold start is a well-known problem within serverless computing[15] which represents the
time taken for spinning up a new container when a warm container is not available to
run a function. Several studies have attempted to discuss cold starts and lowering the
start-up time to run the functions [16][17][18].

In [16] authors propose a performance based serverless architecture and compare it
with existing platforms. The platform is developed with .Net using azure storage and
its messaging layer. For managing and executing container service a worker service is
implemented and for exposing platforms APIs a web service is developed. To benchmark
their platform, they use concurrency tests which checks function invocation at scale.
Their results show linear growth for upto 15 requests. AWS gives the highest throughput
compared to other platforms and OpenWhisk gives the lowest throughput for up to 8
concurrent requests. Though their results discuss function expiration time, it does not
broadly discuss networking, CPU, and different language runtimes available.

On the other hand, the effect of using different language runtime on performance is
also conducted by few studies. The cost of function execution for different languages
for AWS and Azure is done by [18]. They conclude that python is well suited for AWS
Lambda and C# for azure functions. Whereas, in [19] the authors suggest that Nodejs or
python runtimes are best for frontend functions as they would help in reducing latencies
because these languages are less prone to cold starts than compiled languages compiled
languages on the other hand give better performance for subsequent invocations.

In another attempt to reduce function start up latency, in [17] authors isolate applic-
ations within containers and functions within these applications. Due to this isolation
the functions start up time reduces as the resources are allocated and deallocated faster.
Another interesting area examined in this paper is of memory footprint of running con-
current functions. They make up to 50 concurrent calls to a python function showing
a linear rise of memory in OpenWhisk and Greengrass whereas their platform adds an
extra 1.1 MB in each call. Their research shows a way to reduce function interaction
latency without considering the possibility that sandboxes could contend with each other
for resources thereby increasing overall application latency.
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2.2 Serverless and Parallel workloads

In terms of performance evaluation of serverless frameworks many research studies have
been done exploring parallel workloads. In [20] Four major cloud platforms such as
AWS, Azure ,Google Functions and OpenWhisk are studied comparing CPU performance,
n/w bandwidth and throughput by parallelizing function invocation for distributed data
processing. Their performance evaluation showed that AWS Lambda dominates elasticity
for running concurrent function invocation. In general, serverless computing can be used
for compute or data intensive workloads if the tasks are divided into small granular level
tasks and run concurrently resulting in cost savings for running such workloads.

Similarly, in [21] authors propose a model to overcome issues with data exchange
within serverless. The model uses information of the cluster configuration, storage and
about the workload type to create the model. Other information such as workload graph is
also used. For performance validation of the model, they have taken a traditional applic-
ation which involves exchange of large amount data. They have completely transformed
this application into serverless workload. The application used is Google’s Tesseract Op-
tical character recognition (OCR) engine. For translating this application into serverless
workload they have used profiling tools specifically, valgrind and Callgrind. By using
the computational graphs generated from the tools the application is split into small
units and run as functions. Their results show that the performance of the data-intensive
workloads can be increased by modifying the resource scheduling and deployment of the
workloads. But they have not given an in-depth explanation of why parallelism did not
perform so well for data-intensive workloads.

Another research where parallelism is explored is done by [22]. Authors have used
a trigger-based orchestrators to schedule massively parallel workloads which follow fork
join model. For this, they have used and compared existing orchestration services such
as AWS steps functions, OpenWhisk Composer and Azure Durable functions. For bench-
marking up to 320 parallel tasks are used. The outcome of the experiments shows a stable
behaviour for AWS step functions, which is not the case for durable functions which shows
inconsistent behavior after 20 concurrent tasks. OpenWhisk proves to be best choice for
fork-join workflows as it shows smooth growth. But their results do not indicate the
impact scheduling parallel tasks on such scale which could downgrade the performance of
the application overall. In any case, their study throws light on the OpenWhisk composer
and it’s in-depth architecture.

By examining the architecture and parallel performance of four major cloud providers,
the authors of [23] contend that most commercial FaaS platforms are not naturally suited
for parallelism. By analysing the inherent design of these platforms, they have identi-
fied components such as function invocation, function management, virtualization which
highly affect parallelism. Their experiments prove that different platforms follow differ-
ent architecture which affects how parallelism is handled by them. Similar to the study
[4] discussed earlier, they provide proof that AWS works well for parallelism; however,
Azures performance is lower it inherently groups functions into fewer instances to improve
resource utilisation. Their result provide evidence that resource scheduling and virtual-
ization are the two most important factors influencing parallelism in FaaS platforms, a
field that requires further investigation.

Similarly, [24] authors have explored parallelism in FaaS platforms with the difference
of using parallel code within a container showing how the memory and CPU configuration
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of the framework effects the performance of parallel code. They analyse data for different
types of workloads in different language runtime on AWS, GCF and GCR. Similar to [21]
they take existing applications and parallelize that code using profilers. There results
clearly show that the platform users can save cost upto 80% based on the language
runtime used and memory configuration of the container.

2.3 Open Source FaaS and Kubernetes

The majority of FaaS providers use virtualization with containers. These containers are
needed to be managed based on the workload. There are many container orchestration
platforms available, but Kubernetes 3 is the most widely used platform for orchestration.
Hence, in the proposed study Kubernetes is used for orchestrating containers. Kubernetes
has also been subjected to evaluation in some studies[13] [25]. Both these studies eval-
uate performance of containers managed by Kubernetes. Where authors in [25] explore
commercial cloud platforms, in [13] its feasibility is checked on private cloud with bare
metal setup. Both the studies show that there is almost no impact of using Kubernetes
as orchestrator on the performance which usually depends on deployment chosen for the
serverless setup.

Some studies have also extended Kubernetes towards edge computing. Given the
heterogenous nature of edge devices authors in [14] and [12] show methods to improve
the resource scheduling at the edge with the help of Kubernetes. The authors in [14] use
the features provided by Kubernetes to define node capabilities based on workload which
is used by kube-scheduler. The labels and selectors are pre-assigned before running the
workloads. This does not work well with heterogenous nature of the edge devices as the
workload type may change during runtime. Hence, [12] propose an advanced solution by
replacing the Kubernetes default scheduler itself with a custom scheduler skippy. This
helps in influencing and implementing a domain specific logic for scheduling which fits
the criteria of edge devices. Both the studies have used labels and node selectors only for
edge devices. Additionally, only OpenFaaS platform is considered for such scenario.

Mobile/IoT with serverless computing is explored by [26] where a combined archi-
tecture of edge and serverless computing is proposed. By creating a hybrid model, the
decision of running a serverless function in local edge network or cloud network is made
based on the history of the execution time of running functions. An edge proxy is presen-
ted between the serverless function and the requestor, this proxy analyses the functions
historical data and then decides where the function will be executed. Their work presents
the feasibility of OpenFaas with IoT environment.

Similarly, authors in [27] also merge serverless and edge by introducing a serverless-
edge framework using OpenWhisk. Here a prototype is presented a FaaS platform is
created with distributed fog network. Based on the current load, functions are offloaded
to other nodes distributing the traffic. Their work identifies various bottlenecks in the
setup related to latency, node sync up, computations but they fail to provide sufficient
clarity on how functions are offloaded to other fog nodes. They describe a regional
load balancer which performs this task but don’t provide the details of how many load
balancers are present. Nevertheless, the whole process of offloading adds extra latency to
the application.

Some of the studies have addressed the issues within commercial cloud platforms and

3Kubernetes : https://kubernetes.io/docs/home/
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evaluated of opensource frameworks. Authors in [10] evaluate the performance of 3 major
open source serverless platforms namely Fission, Kubeless and OpenFaaS deployed on
Kubernetes by characterizing the ratio of completed tasks and response time for different
types of workloads. The main reason for choosing Kubernetes is because it is supported
on all the platforms under test. For evaluation 2 types of experiments are used first,
a simple function which returns a string. Second a compute intensive function. These
experiments fail to evaluate the throughput of the platform under test. Furthermore,
they fail to assess the performance of OpenWhisk which also supports Kubernetes as
they could not bring up the set up.

Similarly, [28] also evaluated the performance of open source FaaS Kubeless, Knative,
OpenFaas along with OpenWhisk on a single node Kubernetes cluster with multi-layer
edge platform. They evaluated qualitative and quantitative metrics of the frameworks in
the edge environment. Both [10] and [28] conclude that when Kubernetes is integrated
with Kubeless it outperforms other platforms attributing to its simple architecture which
uses native components of Kubernetes. Based on their outcomes it is evident that Open-
Whisk is not well suited for edge computing. However, they have not assessed OpenWhisk
with Kubernetes in a cloud only environment. Moreover, their setup is built on-premises
using a single master-worker node leaving the area of private cloud unexplored.

In contrast, private cloud for open source FaaS is explored by [29]. The authors create
a fault tolerant, highly available Kubernetes cluster on private cloud OpenStack and use
OpenFaaS for triggering serverless functions. For benchmarking authors have used scaled
down workloads traces from azure dataset. They classify the logistic relation of response
time when concurrent functions are used.

OpenWhisks performance is measured by [30] by running different types of test func-
tions and a server based application. To compare the performance of OpenWhisk they
deploy this server-based application on Kubernetes cluster with VMs identical to Open-
Whisk setup. The results help in identifying different bottlenecks of OpenWhisk. But
they have only used OpenWhisk’s default configuration setup which does not help in
identifying the feasibility of OpenWhisk with Kubernetes.

2.4 Research Niche

Existing work discussed above shows that even though there is significant research done
for serverless computing very few studies have evaluated the performance of Open-source
frameworks. Most of the research is done with the focus on saving cost and memory
utilization of commercial cloud providers for parallel workloads. Moreover, the compute
intensive parallel workloads are split to run on different containers using container orches-
tration. Another research gap observed is that existing work have used open-source FaaS
for edge devices with less resources rather than using VMs. OpenWhisk performance has
been subject to very few studies with no research found relating to OpenWhisk deployed
on Kubernetes cluster in a private cloud setup.

Hence, the proposed research evaluates OpenWhisk’s feasibility on Kubernetes to
run parallel workloads. This work addresses the gaps in existing research studies by
parallelizing workloads using external libraries like OpenMP, Valgrind and running these
workloads on NCI OpenStack using only open-source technologies such as OpenWhisk,
Kubernetes, Prometheus, OpenStack, kubeadm, Grafana for 3 different languages C++,
Java and Go.
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3 Research Methodology and Specification

In this section, the research methodology used for this research is discussed. Figure 1
shows the steps followed for the evaluation. The first step is to create 4 OpenStack
instances. Once the instances are created Kubernetes is installed using kubeadm with
1 master and 2 worker nodes. Then, OpenWhisk is installed on the master node as
controller and worker nodes as invokers, the fourth node is used for metrics collection.
Next step in the research is the code profiling. To evaluate the framework 3 different
types of workloads are selected [31] 4 5. All 3 workloads are translated in C++, Java,
Go. Next the C++ code is run through a profiler Valgrind to get the areas that can be
parallelized. After these steps the code is run as actions in OpenWhisk. In the following
sections the architecture of the framework is discussed followed by the explanation of
serverless workloads used for evalaution in this work. Consequent subsections also discuss
the language runtimes used for translating and parallelizing the workloads. Finally, the
benchmarking workflow is described.

Figure 1: Process flow of the research

3.1 Proposed serverless architecture

A key contribution of this research is to check feasibility of OpenWhisk on Kubernetes on
private cloud. Figure 2 shows the main components of proposed serverless architecture
built on private cloud, NCI OpenStack 6

3.1.1 OpenWhisk

OpenWhisk is a production ready open-source function as a service. It comes with
many features such as fast runtime command-line tools, support for language runtime

4NP bench: https://github.com/spcl/npbench
5Pyperformance: https://github.com/python/pyperformance
6NCI OpenStack: http://www.ncirl.ie
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in different languages such as JavaScript, Python, Swift, Java, PHP and Go. If a pro-
grammer needs to develop functions in a language other than the ones supported then
they can bring their own Blackbox container. In this research both types of languages
with runtimes and with Blackbox container are evaluated. OpenWhisk is built on top
all opensource components nginx, controller, CouchDB, Kafka and Invoker 2. The entry
point into the system is nginx, which transfers the HTTP calls to controller. The con-
troller can identify what the user is trying to do. If it is a POST request it translates it
into an action. The controller then checks with the CouchDB if the user is authorized to
create/invoke the action. If the CouchDB authenticates the request. It is added to the
CouchDB. For the action to be invoked the controller publishes a message to Kafka, if a
response is received the action is invoked using Invoker and results are returned to the
CouchDB 2.

Figure 2: Proposed architecture of the framework

3.1.2 OpenWhisk on Kubernetes

In the serverless framework developed OpenWhisk is deployed on Kubernetes cluster, a
Kubernetes cluster is created with its own key components to form a cluster. A master
node is responsible for maintaining the cluster. It runs a kube-apiserver, a kube-scheduler
responsible for tracking pod creation and selecting the right pod for function execution.
kubeadm is used for bootstrapping the cluster with master and worker nodes. kubelet is
responsible for starting the pods and containers and finally kubectl is the command line
utility to interact with the cluster.

Once the Kubernetes cluster is ready OpenWhisk is deployed on top of this cluster.
But there are certain traits that needed to be considered before selecting the right de-
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ployment. The invoker is one of the main components of OpenWhisk. It is responsible
for creating and managing the containers that execute the functions. For OpenWhisk
to work in conjunction with Kubernetes there are 2 types of deployments supported
DockerContainerFactory and KubernetesContainerFactory.

In the case of DockerContainerFactory, the invoker runs on every worker node, and
it communicates directly with the docker daemon running on worker nodes to manage
containers for running user functions. Though this model can be helpful in terms of
latency for container management. it uses the default system and does not leverage
kubernetes powerful resource management and security configurations. Another disad-
vantage is that it cannot be used if the underlying container engine is cri-o. Hence, in
this research KubernetesContainerFactory is used wherein Kubernetes is responsible for
creating, managing, and scheduling pods where functions are run, and invoker is in con-
trol of the cache of user containers. Another advantage is that it can be used with any
container engine. The other 2 components used in the architecture are Prometheus and
Grafana.

3.1.3 Prometheus and Grafana

To monitor the health of the cluster and to see time-series data Prometheus is used which
is also an opensource tool. It will keep track of cloud metrics and report them to Grafana.
Grafana is also an open-source tool which is used for visualizing the cloud metrics. It
shows in its dashboard details of the functions run and its status. The detail of the cold
starts and warm start and a pictorial representation of the functions can be obtained
from these tools7 8 . These services are accessible from a different instance that is created
on OpenStack with centos. To connect to these services a load balancer is created and
the instance is added to the same subnet.

3.2 Workloads

The serverless workloads use a microbenchmark from NPBench. NPBench is a 3-clause
BSD licenced benchmarking Suite for High-Performance NumPy 4[31]. The microbench-
mark is called Atax which computes matrix and vector multiplication and stores the
result into Atax matrix after multiplying it with Atax. Another benchmark used from
the NPBench is Mandelbrot which implements an escape-time algorithm to spawn Man-
delbrot sets.

The third serverless workload used is an application Monte Carlo used from pyper-
formance 5 which is licensed under MIT. Monte carlo simulations workload estimates the
digits of pie. This is done using random number that are generated within a square. It
uses these values to count all the points with distance to the centre of the square < 1.
Then ratio of these points is calculated which is equal to pi /4 which can then be used to
retrieve the value of pi. All these workloads are implemented in python by default. These
are translated into three different languages. C++, Java, go runtimes that are invoked
as functions in the experiments.

7Grafana: https://github.com/grafana/grafana
8prometheus: https://prometheus.io/
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3.3 Language Runtime

To evaluate performance of parallelized functions for OpenWhisk on Kubernetes 3 lan-
guages are chosen i.e., C++, Java and Golang. C++ is chosen as it is one of most
widely used language in scientific high-performance computing applications. However,
OpenWhisk does not support C++ by default. To run the C++ code as functions on
OpenWhisk a docker Blackbox container is created with all the dependencies. Then this
docker image is uploaded on DockerHub. While invoking the function the image is passed
as argument.

Go is used because it is supported by default by OpenWhisk and can be run dir-
ectly without having to create docker Blackbox container. Also, Go was created with
concurrency, hence it makes parallelization simpler. Finally, Java is used for to its wide
popularity, its design and default runtime support by OpenWhisk.

3.4 Parallelization

To utilise parallelism for workloads discussed above in different languages first the areas
in the code are identified using profiling tool such as Valgrind and Callgraph[21]. Valgrind
provides tools that can be used to automatically detect memory management 9. First,
the code is run through Valgrind which generates PID extensions which is then passed
through Callgrind. Callgrind generates callgraphs used for analysing the code that can be
parallelized. In case of above workloads, for loops are indicated as areas that could exploit
parallelism. Once these regions are isolated additional libraries or features provided by
languages chosen are used for parallelization. For C++ code, OpenMP is used. its a
common library for parallel programming in shared memory architectures[32] to ease
the development of HPC applications and programs [33]. With OpenMP developers use
pragmas to split an area of code into multiple threads.

In the code implemented in this research the areas to be run in parallel are encapsu-
lated within these pragmas. First the number of cores available in the cluster is checked.
Based on the value of cores present, the tasks are split into multiple threads in a fork-join
manner. A single thread aka master thread spawns the threads and once the work is fin-
ished threads join back into master thread. For Go programs goroutines are used which
are lightweight threads provided by the language and for Java ExecuterService is used.
OpenMp is the best option for parallel code here as it automatically splits the tasks into
threads whereas for goroutines and executerservice this information is provided explicitly.

3.5 Experimental Setup and Workflow

The serverless architecture is built using 3 m1.Large Nova virtual machines and 1 m1.small
VM on the NCI OpenStack which is a private cloud 6. Each m1.Large machine is con-
figured with 4 vCPUs, 8GB RAM and 80GB of memory with Ubuntu-18.04-x86 64 image.
These 3 Vms are configured as 1 master and 2 worker nodes. All the nodes have docker
20.10.17 and Kubernetes v1.24.3 is installed for container management which is installed
using kubadm v1.24.3. Kubectl is installed as command line interface. The workloads
are implemented in C++ 11, Java 11, Go 1.13 languages. To deploy these as serveless
functions OpenWhisk 1.2.0 is which is deployed using Helm v3.9.2. OpenWhisk comes
with following by default: wsk cli 1.2.0, couchDB 2.3.1, Kafka 2.3.1, Nginx 1.21.1, Redis

9valgrind:https://valgrind.org/
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4.0.14, Zookeeper 3.4.14. Grafana 6.3.0 and Prometheus 2.14.0 are installed explicitly for
interacting with cluster and for monitoring. Once the above setup is ready. The code

Figure 3: Steps followed for code profiling

written in C++ is packaged as docker container and deployed as actions. But before the
functions are deployed all of the code is parallelized. Figure 3 shows the steps involved
in parallelizing the code which is an extension of the methods suggested by structural
parallel application development by [32]. The next step is running these functions as wsk
actions. For the evaluation each workload is run 10 times first for serial code and 10
times for parallel code. The inputs are recorded using log from standard output and wsk
list. Metrics related to success/failure, or any errors are collected from Prometheus and
Grafana. The same steps are repeated for other 2 language runtimes as well with dif-
ference that Java and Go runtime is supported by OpenWhisk. Although, each runtime
requires different configuration and parameters.

4 Evaluation

The key evaluation metrics in this research are the impacts of using different languages
on OpenWhisk, speed up achieved by parallelizing the code, Impact of cold starts and
success rate of running workloads.

4.1 Impact of language

One of the chief findings while performing experiments is for C++. As C++ runtime
is not directly supported, the code is first shipped as a docker container which is then
downloaded while creating action. As this Blackbox container is downloaded from the
repository and run as an action, it is taking lot of time which results in the action
command timing out resulting in developer error. From the logs, it is observed that
the code performed the computation for all three workloads, but it is not able to exit
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gracefully due to timeout. Another potential reason for this could be the use of OpenMP
which is an external library included in the docker file at compilation. While running the
C++ workloads it is observed that OpenWhisk/dockerskeleton supports Alpine docker
which does not support libstd++.so and other libraries. It is highly possible that OpenMP
is also not supported directly which results in developer error.

Figure 4: Execution times captured for different workloads

As the runtimes of Go and Java are supported by OpenWhisk actions run seamlessly
in these cases. Implementation done in C++ and Go outperforms Java as can be seen
Figure 4. The poor performance of java can be attributed to the way Java handles
multithreading. As the number of application threads and communication increase per-
formance of threads decreases. In case of Go, the performance is better than Java due to
the built-in support of threading in Go language. C++ on the other hand has the lowest
execution time as per logs.

4.2 Speedup achieved

One of the main goals of the research was to understand the speedup that is achieved
by parallelizing the compute-intensive workloads. Figure 5 depicts the average speedup
achieved by parallelizing the atax, monte carlo simulations and Mandelbrot set workloads
on Openwhisk. The average speedup is calculated by taking the mean of the run time of
running serial code and dividing it by mean of run time of running parallel code of each
workload. As mentioned in the earlier section the setup is composed of 4 vCPUs(cores)
which are used by the OpenMP, and other parallel libraries used in the code. When the
code is run in parallel the workload is distributed across these 4 cores each running in
parallel and sending the result back to main thread. Whereas serial code runs the code
sequentially on 1 core.
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Figure 5 shows the average speedup of small and medium types of workloads for Atax,
mandle, montecarlo in three different languages. Small depicting matrix multiplication of
1000 rows and 1500 columns. Medium has the values 2000 and 2500 for rows and columns
respectively. For Large configuration row = 20000 and col = 22000, in most of the cases
a timeout is observed or out of memory error is observed. Hence, those results are not
included in the graphs. From the figure, it is clear that for C++ there is an average
speedup of approximately 2 times. Whereas in case of java there is not much difference
observed by parallelising the code. In case of Go average speed is 1.5. The following
results are captured for 4 vCPUs and a maximum memory of 256MB per container. For
a lesser memory configuration of 128MB the results show almost no difference in speedup
with parallel code.

Figure 5: Average speedup achieved by parallel code

4.3 Impact of cold starts

The evaluations done also show the impact of cold start on parallel code. From the
experiments, it is observed that cold start time is long for both parallel as well as serial
code. This could affect the total time of running a parallel application impacting its
performance. The cold start of Java code is the highest. The reason behind this could be
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the time required to bring up Java virtual machine. Also, for C++ the cold start time is
high attributing to the Blackbox container that is used in this case also to install all the
dependencies that are installed after downloading container. Once the container is warm
the execution time is observed to be reduced by almost 80% compared to cold start.

4.4 Success rate

Figure 6: Graphana dashboard showing successful activation

Figure 7: Graphana dashboard depicting graphs of response rate

Figure 6 screenshot is capture of graphana dashboard showing the success rate of
running the workloads overall. Except C++ code where the Openwhisk shows a developer
error in cold start and Internal error in warm start the application runs seamlessly for
Java and Go without any errors. Figure 7 also shows the number of successful functions
application has executed and response rate.
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4.5 Discussion

The serverless framework developed shows the feasibility of OpenWhisk on Kubernetes
in a private cloud setup. Experiments performed showed that OpenWhisk works well
with Kubernetes on NCI OpenStack. The main experiments done were to understand
the impact of parallel workloads for different language runtimes. It is observed that for a
configuration with 4vCPUs i.e., 4 cores and 256MB used by the parallel code an average
speed up of 2 overall is achieved compared to serial code using one core. For a larger
setup with 16vCPUs more speed up can be achieved resulting in increase in performance
of compute-intensive workload.

Another observation is that OpenWhisk does not perform well for the language
runtimes which are not directly supported resulting in developer errors and internal er-
rors. For other languages, the code works well for compute-intensive workloads for lower
configurations. For example, in the case of Atax workload if the configuration is 20000 *
22000 the actions fail 90% of the time. A reason behind this could be the lower memory
available per container. For a higher memory of 2048MB per container, the results can be
improved. An observation of the results is that even though there are 4vCPUs available
to use for parallel code, its performance also depends on the maximum memory allocated
per container to execute the functions. This works well for simple serverless functions
but for a high-performance application more memory per container is needed to exploit
parallelism.

5 Conclusion and Future Work

This research studies the suitability of open source serverless offering OpenWhisk on a
private cloud and gains insight into its underlying system. The experiments show the
effect of parallel code for compute-intensive workloads that run within a container in-
stance and how it can help in the improvement of performance for such workloads. It is
observed that compute-intensive workload performs better with parallel code depending
on the type of workload and language runtime used. Performance degradation for some
language runtime is attributed to the underlying implementation of the threads. Addi-
tionally, It is also observed that the cold start latency is almost equal for both parallel
and serial code. The limitation of this research is in terms of the cluster size. A larger
cluster size with higher memory and CPU could provide a better insight into the larger
size of workloads and provide a better comprehensive understanding of speedup. Another
area for future research is to study other language runtimes provided by OpenWhisk for
comparing their performance with the runtimes used in this research.
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[6] V. Giménez-Alventosa, G. Moltó, and M. Caballer, “A framework and a performance
assessment for serverless mapreduce on aws lambda,” Future Generation Computer
Systems, vol. 97, pp. 259–274, 2019. JCR Impact Factor 2021: 7.187.

[7] D. Barcelona-Pons, M. Sánchez-Artigas, G. Paŕıs, P. Sutra, and P. Garćıa-López,
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