
Early Prediction of HDD Failures in the
Cloud Using Interpretable AI Models

MSc Research Project

MSc in Cloud Computing

Ashwini Ashok Patil
Student ID: 20218745

School of Computing

National College of Ireland

Supervisor: Jitendra Kumar Sharma

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ashwini Ashok Patil

Student ID: 20218745

Programme: MSc in Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Jitendra Kumar Sharma

Submission Due Date: 15/08/2022

Project Title: Title

Word Count: 6000 aprx

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ashwini Ashok Patil

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Early Prediction of HDD Failures in the Cloud Using
Interpretable AI Models

Ashwini Ashok Patil
20218745

14/08/2022

Abstract

Hard Disk Drive(HDD) storage devices are essential to the cloud datacenter’s
dependability. The availability of cloud services can be significantly impacted by
HDD failures, which can be expensive for both the cloud provider and the end user
financially and in terms of reputation. To reduce the effects of failure, it is crucial to
foresee HDD failure beforehand and arrange the necessary corrective actions. In this
study, we offer an HDD failure prediction system that uses RUL(Remaining Use-
ful Life) predictions to anticipate HDD failures in advance. To accurately forecast
failures and enable simple user understanding of prediction findings, the sugges-
ted system uses a composite model composed of bi-directional LSTM(Long Short-
Term Memory) and RFC(Random Forest Classification)/OCT(Optimal Classifica-
tion Tree). The models are trained and evaluated using publicly available Backblaze
dataset. The model performance of composite model was evaluated against the
baseline RFC and OCT models. From the experiments, we observed the composite
model made up of RFC and bi-directional LSTM had an accuracy of 99% against
the baseline RFC model accuracy of 94%. This promising result requires further
experimental validation.

1 Introduction

Storage devices are one of the most important components of a datacenter, and HDDs
are the most commonly used storage device. Pinciroli et al. (2020) Storage device failures
account for 28% of data-center failure events, according to Xu et al. (2019). HDDs, like
any other piece of hardware, are prone to failure, with an estimated annual failure rate of
15% Huang et al. (2019). With data-centers housing hundreds of thousands of HDDs, it
is possible that tens of HDDs will fail every day in the data-center. Failure of HDD has a
noticeable impact on data-center performance, ranging from minor write issues to com-
plete service failure Ganguly et al. (2016). Most modern data centers have fault-tolerant
mechanisms in place to deal with such failures, but they are insufficient because the time
between service disruption and resumption can be significant for complex services.This
service outage affects the SLA (Service Level Agreement) and has a significant financial
and reputational cost for both the cloud service provider and the end user. Furthermore,
the data center would be operating with reduced resources until the HDDs were physic-
ally replaced, which could take anywhere from hours to weeks depending on replacement
availability.

1



Researchers have been studying the problem of early prediction of failures in HDDs in
order to effectively handle such situations in large data centers. The goal is for the cloud
service provider to be able to plan a replacement strategy for the failing disk as well as
a migration policy for the data and VMs running on the failing disk to a healthy diskXu
et al. (2018). Device manufacturers have integrated SMART metric reporting into device
hardware to aid in disk failure prediction.

Here is a summary of major objectives to be achieved by this work: (a) A composite
AI model made up of OCT/RFC and Bi-directional LSTM is proposed, (b) A detailed
evaluation of performance of composite model against RFC and OCT using the publicly
available Backblaze dataset.

The report is organized as follows: section2 focuses on the literature review portion
of the work on HDD failure prediction and defines problem statement. Section3 talks
about the research methodology used. Section4 talks about overall composite model and
predictor system design.Section5 mentions the implementation details.Section6 discusses
the experiments and results of this work.Section7 concludes the work done so far and
provides future research directions.

2 Related Work

In the section, we provide an overview of major works found in the literature to address
the problem of Failure prediction of HDD’s.

To monitor the internal attributes or states of individual disk drives, most modern
Hard Disk Drives (HDD) report S.M.A.R.T Zeydan and Arslan (2020) metrics. Some
manufacturers even provide an impending drive failure prediction feature to warn users
of an impending disk failure. These approaches are based on simple SMART attrib-
ute thresholding methods Pinheiro et al. (2007); Schroeder and Gibson (2007).However,
studies have found that thresholding-based methods have poor prediction performance,
and to overcome this, researchers have proposed using a data-driven approaches to disk
failure prediction.

In literature, failure prediction based on data-driven approach comes in two formu-
lations: (a) binary classification problem formulation in which the output ”1” indicates
the presence of failure and ”0” indicates the absence of failure, or (b) Remaining Useful
Lifetime(RUL) estimation of a disk, which is a regression problem.

In Liu et al. (2020), tackle the prediction of HDD failure as a binary classification
problem. This study was notable for taking into account both short- and long-term
temporal dependencies of SMART data when predicting failure. The study created a
framework for failure prediction called SHARP, which consists of an ensemble of models
made up of XGBoost (Gradient Boosting Trees) and GRU (Gated Recurrent Units) and
demonstrated that building an ensemble of sufficiently different models can result in better
prediction performance. Based on the findings of this study, we construct a Predictor
system composed of sequence models such as LSTM and interpretable models such as
OCT, to improve both prediction accuracy and interpretability.

Anantharaman et al. (2018) tackle HDD failure prediction as a regression problem
and use Random Forests models to predict hard disk RUL. Because RF models do not
require sequence data, they are easier to train as compared to sequence-based models.
Furthermore, unlike sequence models, RF models can generate predictions on a single in-

2



stance of SMART data. Because RF models can provide accurate estimates of RUL, they
are frequently used as baseline models in the literature to evaluate model performance.
In our work, we compare model performance using a classifier variant of the Random
Forest model as one of the baseline models.

In Coursey et al. (2021) addresses the HDD failure prediction problem as a regression
problem This paper develops a prediction pipeline based on bidirectional LSTM with
a look-back period of multiple days that accounts for the long-term temporal depend-
encies in failure data. The bidirectional LSTM model was tested against the baseline
LSTM model, and it outperformed the baseline LSTM model. The authors also looked
at the Random Forest baseline and discovered that it performed worse than bi-directional
LSTM. The authors reported that the bi-directional LSTM model had the highest repor-
ted accuracy of 96.46% for a 15-day look up period and is one of the most advanced
models in the literature.Based on the findings of this study, we decided to incorporate
the bi-directional LSTM model into our composite AI model.

Amram et al. (2021) is one of the first works in the literature to use newly improved
optimal tree models to predict HDD failures. HDD failure prediction, like other major
works in this field, is treated as a binary classification task. The authors employ optimal
tree models such as Optimal Classification Trees (OCT) and Optimal Survival Trees
(OST), On the publicly available Backblaze dataset. On test data, OCT had an accuracy
of 86.1 % and OST had an accuracy of 69.2 % on a 30-day prediction window. These
results for single tree-based models appear promising. Furthermore, these models are
simple to interpret,making them suitable for use in critical applications. Based on the
findings of this study, we decided to incorporate the OCT model into our composite AI
model for HDD failure prediction system, allowing for easy interpretation of prediction
results.

2.1 Problem Formulation

We address the problem of accurately predicting HDD Remaining Useful Lifetime (RUL)
using interpretable AI models such as tree-based models in this work (RFC, OCT). This
work builds on and expands on the ideas and concepts presented in Zeydan and Arslan
(2020),Amram et al. (2021)Coursey et al. (2021). As in Zeydan and Arslan (2020), we
formulate the problem of predicting HDD failure as a multi-class classification problem,
with failure states identified based on HDD RUL estimates. HDDs can be classified as
Critical, Low Ideal, or High Ideal.

The main objectives of this work are as follows: (a) Composite AI model for HDD fail-
ure prediction that combines LSTMs for SOTA predictive performance and an OCT/RFC
tree for ease of interpretation. According to our understanding, this is the first work that
addresses the problem of failure prediction as a multi-class classification problem by com-
bining the strengths of Deep Learning and interpretable AI models, (b) On the publicly
available Backblaze dataset, compare the performance of the composite AI model to
SOTA models such as RFC and OCT. We believe that the benchmarking results will
provide insights into the performance of OCT against ensemble models such as RFC,
which has yet to be addressed in any work, (c) Integration of this composite model into
a complete HDD failure prediction system via web app which is described in section4.4.

3



3 Methodology

In this section, we discuss and detail the steps used to gather required data and transform
it to format suitable for training AI models. We also discuss about feature selection and
scaling applied on the dataset.

3.1 Dataset - Backblaze

Backblaze is an American cloud storage and data backup company, that regularly pub-
lishes the SMART metrics of all HDD’s located in it’s datacenter, as an opensource
and freely accessible dataset on it’s website. According to it’s website, Backblaze hosts
around 206,928 drives in it’s datacenter as of December 2021. The dataset is updated on
a quarterly basis and the same can be easily accessed via it’s website.1

For the research and implementation of this project, we decided to make use of publicly
available dataset opensourced by Backblaze. The reasons for selecting this dataset are as
follows: (a) It is opensource and one can use it for research purposes freely without any
legal obligations, (b) Prior works like Anantharaman et al. (2018); Shen et al. (2018);
Aussel et al. (2017), which this project extends on, makes use of this dataset. This enables
us to compare the results from our work with the prior ones, since all of them make use
of this dataset as baseline. Moreover, this dataset has become standard for evaluating
the performance of HDD failure prediction task as can be seen from the referred prior
works above, (c) Since we don’t have access to datacenter to gather raw data, the best
possible source for the required data was met through this dataset.

The dataset consists of SMART metrics for all the drives captured for a particular
day. Each row in the dataset corresponds to a unique drive in the datacenter and contains
it’s associated metric information for the day. Backblaze collates information from all
drives into single csv file, denoting the snapshot of all disks for that particular day. The
csv files follow the file naming format YYYY-MM-DD.csv.

In this project, we made use of Backblaze data from the period 2021 Q1 to Q3,
amounting to 9 months worth of disk data available for training and evaluating the
prediction models.

3.2 SMART Metrics

SMART is a disk health monitoring system that is designed for HDD, SSD and eMMC
storage devices. SMART stands for Self-Monitoring, Analysis, and Reporting Techno-
logy. It’s goal is to measure and report drive health status metrics denoting the reliability
of drives, which can then be used to locate and report imminent drive failures Schroeder
et al. (2017). Table 1 describes some of the metrics defined in SMART. There are about
255 different SMART metrics and every drive manufacturer has the freedom to select
which SMART metrics will be measured and reported by his device.

1BackBlaze dataset: https://www.backblaze.com/b2/hard-drive-test-data.html

4

https://www.backblaze.com/b2/hard-drive-test-data.html


ID Attribute Description

07 Seek Error Rate Rate of magnetic head seek errors
09 Power-On Hours Total count of hours in drive power on state
240 Transfer Error Rate Time spent in positioning drive heads
241 Total LBA’s Written Count of LBA’s written
242 Total LBA’s Read Count of LBA’s read

Table 1: S.M.A.R.T attributes contributors (2022)

Figure 1: Overview of Data pre-processing step

3.3 Data Pre-processing

This is the first step in a machine learning or deep learning project. The goal of this step
is to clean the data and transform it into a format suitable for model training step. The
output of this step is a cleaned data along with extracted informative features, that can
be used to train the models. Figure 1 depicts the major sub-steps involved in the data
pre-processing step.

3.3.1 Data Extraction

Before we can start with data pre-processing step, we first need to extract the data from
the dataset. In it’s current state, the dataset is not directly usable, since the entire data
is scattered around multiple files. The dataset contains information about both failed
and working disks. Since the goal of our research project is to build a model to predict
the failure of HDD, we identify and only extract information on all failed disks for model
ST4000DM000 similar to approach used in Coursey et al. (2021), from the entire dataset
in following steps: (a) Identify all the failed disks in the dataset, (b) For each failed disk,
identify it’s failure date and from then onwards extract the failed disk smart metrics for
the previous 60 days. The collected data was then concatanted to the dataset in the long
format, similar to the approach used by Coursey et al. (2021).

At the end of failed disk extraction step, we have a dataset consisting information
of failed disks 60 prior from it’s date of failure. This dataset is then used for feature
extraction and model training steps.

3.3.2 Data Cleaning

The input to this step is the failed disk data with estimated RUL generated in previous
step from the original Backblaze dataset. Since the device manufacturers are free to

5



report only subset of SMART metrics, few columns in the dataset have valid values and
rest of them are all either set to 0 or NaN. Since ML(Machine Learning) or DL(Deep
Learning) algorithms are sensitive to missing and NaN values, we have to clean up these
values before the data can be used to train the model.

The data cleaning process followed for this project is as follows: (a) Identify and
remove all columns/features with all 0 or NaN values, (b) Delete columns/features like
model,size, capacity bytes, failure, date, which do not provide any intrinsic value for
model training, (c) In the remaining feature/columns identify any missing values or NaN.
For filling up with missing values, we used sklearn implementation of KNN Imputer al-
gorithm. The algorithm estimates the missing value based on the values of it’s neighbors.
ML/DL model implementations tend to have issues with missing values in the dataset.
As a result, we have to make the dataset free of missing or NaN values. The output from
this step is dataset free of missing values and unnecessary columns.

3.3.3 Feature Engineering/Selection

The goal of this step is to add new features and identify relevant features in the dataset
using multiple metrics. The input to this step is a cleaned dataset from the previous
step. In this project, the feature engineering process is done as follows:

• A new feature called RUL(Remaining Useful Life) is added to the dataset. RUL is
calculated using disk failure date as 0 and every day prior to it is incremented by
1. For a failed disk, failure day would have RUL of 0 and 60 days prior to failure
will have RUL of 60. This approach is also used by Coursey et al. (2021).

• Since our composite model predicts both the disk state as well RUL, we need to
add target disk state in the dataset, which is currently missing. Target disk state
is estimated from RUL using a similar approach followed in Zeydan and Arslan
(2020). Similar to Zeydan and Arslan (2020), we classify the disk in three possible
states: Critical[0,20], Low Ideal[21,40], High Ideal[41, 60]. We add a new column
called Disk State to our dataset after this step.

• The next step is to identify relevant features. This is done as follows:

– Identify linear relationships between features and target variables in the data-
set. This can be easily measured using Pearson’s correlation co-efficient, also
known as Pearson’s r score. We make use of sklearn implementation of Pearson
r-score. An r score has values between -1 and 1, where: -1 (negatively correl-
ated), 0 (unrelated), 1(positively correlated). Pearson’s r-score only captures
linear relationships between features and target variables.

– Identify non-linear relationships between features and target variables using
decision trees. We made use of sklearn implementation of decision tree al-
gorithm to fit a decision tree model to the dataset. The feature importance
weights assigned to different features in the data was extracted.

– The features having best scores from both Pearson r-score and decision tree
feature importance values were selected for bi-directional LSTM model train-
ing similar to Zeydan and Arslan (2020).

6



Figure 3: Relationship between selected SMART features and RUL

Figure 2 depicts the results obtained from the feature selection step. Green
bar plots indicate selected features, red bar plots indicate ignored features,
yellow diamond plots indicate feature importance from decision trees. X-axis
denotes smart features, while Y-axis denotes Pearson r-score/ decision tree
feature importance values.

Figure 2: Results from feature selection step

From the plots in Figure 2, we can infer that SMARTmetrics 7,9,190,193,194,240,241,242
have the best scores and these are used for training the bi-directional LSTM
models.Figure 3 depicts the relationship between some selected features and
RUL.

– For training OCT and RFC models, all the features in the data are considered.

7



Figure 4: Result of applying scaling entire dataset to smart metrics

This approach was taken taken to ensure that our composite model does not
lose out on valuable information, thereby enabling us to train better models.

The output of this step are dataset consisting only of selected features for bi-directional
LSTM model training and all features dataset for RFC and OCT model training.

3.3.4 Feature Scaling

Since ML/DL models are sensitive to feature values, the values need to be scaled before
the start of training step. The goal of this step is to scale the feature values in the dataset
to a mean of 0 and standard deviation of 1. This process is also referred to as centering
the data. We make use of standard scaler from sklearn to scale the dataset.

Figure 4 depicts the results of applying scaling to the entire dataset as a whole. From
the plots, we can observe that, even after applying scaling, we see some extreme values
in the dataset. Regression models like LSTM’s are sensitive to such noise in the data
and this can affect the learned model accuracy on unseen data. This problem can be
solved in two ways: (a) Drop the entries having extreme values after scaling the dataset.
The drawback of this approach is that we lose some valuable information, which might
hamper the performance of the trained model, (b) Instead of scaling for all disks at once,
scale the data individually for each disk. The advantage of this approach is that we do
not lose any information from the dataset, thereby enabling us to train better models.
This approach was followed by Coursey et al. (2021) for training LSTM models.

In this project, we follow the approach of scaling data for each disk separately. The
output from this step is properly scaled dataset that can now be used for training the
models.

4 Design Specification

In this section we provide a detailed description of the design of proposed system con-
sisting of composite AI model. Figure 5 depicts the overall architecture of HDD failure
predictor system and it’s associated components.

4.1 Data Logger

The function of data logger is to capture and aggregate SMART metrics from all the
drives located in the datacenter or cloud and store into a database for further processing

8



Figure 5: HDD failure prediction system for cloud using composite AI models

by the services like HDD failure prediction system.
In this project, since we don’t have access to physical cloud to capture the data, we

make use of data published by Backblaze as input to our project. Backblaze would make
use of service similar to data logger in their datacenter to capture the SMART metrics.
More information on the dataset can be found in section 3.1.

4.2 HDD Failure Predictor System

The function of this component is to predict RUL and Disk state for given input sequence
of SMART data. In order to achieve this, the component makes use of composite AI
model for prediction estimates. This component is responsible for training, updating the
AI models and offering inference service to end-users.

4.2.1 Training Mode

In this mode, the components goal is to train new composite AI models using the data
stored in the system database. The intention is to keep models updated on recent data
that might contain new trends in the disk behavior, which might hamper the failure
prediction performance of the model if model is not updated.

Figure 6 depicts sequence of steps involved in training composite AI models:

• Data Pre-processing: In this step raw data is processed and transformed to format
suitable for training the AI models. section 3.3 discusses in detail the pre-processing
steps used for training the composite AI models in this project.

• Data Sampling: This step is already done during data extraction step described in
section 3.3.1, since we capture last 60 days of data of all failed disks in the dataset.
The dataset thus extracted is well-balanced.

• Model Training: In this step, the dataset obtained from the pre-processing step is
made use of. This dataset is split into two halves in the ratio 90:10, where the

9



Figure 6: Interpretable HDD failure prediction system for cloud

90% of samples in the data are used for model training and remaining 10% of the
samples are used for evaluating the accuracy of the trained model. In this work,
This train-test split strategy is used for training tree-based models like RFC and
OCT. For training bi-directional LSTM models, We further split the train set in
the ratio 80:20, where 80% of earlier train set samples are used for training and the
remaining 20% of train samples are used as dev set, which is used for tuning the
model hyper parameters. The output from this step are trained tree-models like
OCT and RFC along with bi-directional LSTM.

• Model Evaluation: This is the final step in the training mode, where the newly
trained models are measured for performance against the existing models and
baseline models. If the new models match or exceed the performance criteria,
then these models are integrated into the system, thereby replacing earlier models.

In this work, the model training process is currently implemented as offline step. The
work to extend this to online mode will taken up as part of future work.

4.2.2 Inference Mode

In this mode, the component offers disk failure prediction service. For given data, it
makes use of trained composite AI models for predictions.

Figure 7 depicts the steps involved in the inference process. The steps are as follows:
(a) Pre-processing- Here, raw data is transformed to format suitable for making predic-
tions using composite AI model. The detailed processing strategy is already discussed
in section3.3, (b) Composite AI model prediction- The prep-processed data is then fed
to the composite AI model. The model outputs RUL estimates along with disk states.
These are then passed onto the end-users. In addition, the system stores a copy of input
data along with it’s predictions to database as shown in Figure 2for further use.

10



Figure 7: Detailed system design for inference mode

Figure 8: Bi-directional LSTM Coursey et al. (2021)

4.3 Composite model

Composite AI model is the core idea of this work. As discussed in section 2.1, the idea
behind composite models is to combine of the predictive power of bi-directional LSTM
models on temporal data, along with predictive power and ease of interpret-ability of tree
based models like RFC or OCT for failure prediction. We now provide a brief overview
of the workings of LSTM, RFC and OCT models.

4.3.1 bi-directional LSTM

For tasks involving temporal or sequence data, Recurrent Neural Networks(RNN) and
it’s variants like LSTM, GRU and bi-directional have demonstrated SOTA performance
and these are the most widely used models in the literature for tasks involving this kind
of data Tokgöz and Ünal (2018),Tokgöz and Ünal (2018),Hochreiter and Schmidhuber
(1997).

In this work, we make use of bi-directional LSTM which is a variant of RNN. Figure
8 depicts the structure of bi-directional LSTM model.

11



bi-directional LSTM consists of two LSTM’s, one running on forward input sequence
and the other running backwards Guo et al. (2019). The idea behind using two LSTM’s
is to better capture the relationships between the features in sequence or temporal data.
Bidirectional LSTM models were first applied to HDD failure prediction proiblem by
Coursey et al. (2021). The reasoning behind this is that bi-directional LSTM’s are better
equipped to capture the relationship between input features and the RUL target variable
in the data, since one LSTM is running in forward direction i.e. towards the failure and
the other is running backwards i.e. away from the failure. These models were found to be
best-performing in the literature for the given task and hence were chosen for this work
as well.

4.3.2 OCT

Optimal tree models like OCT, OST and other are designed to address the problem
of constructing small trees that deliver SOTA performance. Trincavelli (2021) Optimal
tree models are able to construct small trees in a single step by taking advantage of
global optimization methods instead of greedy methods. The global optimization methods
leverage the advances made in solvers in last 25 years to train smaller trees in a single
step. This approach has following advantages: (a) Optimal trees model are small, (b)
Impose Global constraints, (c) Generalization.

4.3.3 RFC

Education (2020)RFC are an extension of decision trees. Instead of single decision tree.
RFC trains several decision trees by randomly sampling from input data. The algorithm
works as follows: For given input data, randomly select the samples, Individual trees are
constructed for each selected sampled subset,Each decision tree will generate an output,
The results from all trees are put to majority voting scheme. The result that gets major
votes is selected as final output. The benefits for using RFC are: (a) reduce the risk of
over-fitting (b)Easy to determine feature importances.

4.3.4 Composite Model

The internal design of composite model is depicted in the Figure 7. The working of
individual blocks is described below:

• bi-directional LSTM: The best performing bi-directional LSTM model from the
train step is integrated into the composite model. This model ingests both spatial
and temporal features present in the input data fetched from the pre-processor and
outputs RUL estimates.

• OCT: The best performing OCT model from the train step is integrated into the
composite model. This model ingests the input data from the pre-processor and
outputs the disk state i.e. Critical, Low Ideal, High Ideal. Definition of these states
can be found in section 3.3.3.

• RFC: The best performing RFC model from the train step is integrated into the
composite model. This model ingests the input data from the pre-processor and
outputs the disk state i.e. Critical, Low Ideal, High Ideal.

12



• RUL mapper: The output from bi-directional LSTM are RUL estimates. These
estimates are then mapped to their corresponding disk states using RUL mapper
function. This is done to enable easy merging of outputs from both the models into
single disk state estimate.

• Post-processor: It’s function is to merge the disk state outputs from both the LSTM
and tree-based models into one unified disk state estimate.The merging is done as
follows: (a) if the disk state estimates are same from both the models, it is added to
the final output, (b) if disk state estimates are different, then the final state output
is decided based on confidence of disk estimates from tree-based models.if tree-
based models have high confidence, their estimates are used a final state estimates
otherwise LSTM estimates are used.

The final output from composite AI models are RUL estimate and Disk state for the
given input data.

4.4 HDD Health Monitor App

This component is responsible to keep track RUL and disk state for all HDD’s located in
the datacenter and make necessary statistics available to different stakeholders.

As part of this work, a subset of functionality of this app is implemented, where in
it takes input data from user and outputs the RUL estimates and disk state predictions
from the model, along with pie-chart visualization of disk state statistics i.e. Critical,
Low Ideal and High Ideal count for the given data.

5 Implementation

In this section we provide details about the implementation of composite AI model and the
HDD failure prediction system. We also provide short overview of tools and frameworks
used for the implementation. The entire work is implemented using Python programming
language using native python tools and frameworks.

As discussed in section4, the HDD failure prediction systems consists of multiple
steps like data pre-processing, composite model training, model inference and web app
to display the prediction results. Backblaze dataset from year 2021 Q1-Q4 was used for
model training and evaluation 2

5.1 Data pre-processing

In this step, the raw data is cleaned, processed and transformed into a format suitable for
model training and evaluation. The code for this step can be found in utils/data preprocessing.py.
The data pre-processing pipeline is implemented as follows:

• Data extraction: It’s function is to identify and extract list of failed disks from the
entire Backblaze dataset. ClassExtractFailedDisk implements the data extraction
functionality. This class takes as input: location of dataset stored, disk model name,
dataset year, no:of months of data present in dataset and max days for each month.
The output from this class is list of failed disks for the given model from the dataset,
the output list is stored as failed disk.csv file in the data/ folder.

2Backblaze dataset: https://www.backblaze.com/b2/hard-drive-test-data.html

13

https://www.backblaze.com/b2/hard-drive-test-data.html


Figure 9: Snapshot of learned estimator from RFC

• Data Sampling: It’s function is to extract last 60 days worth of disk data for
every failed disk found in the previous stage. ClassCreateDataset implements the
required functionality as described. The input to this class are:location of dataset
stored, year, csv file containing failed disk info, duration of previous disk data to
be extracted for each failed disk. The output from this class is sampled dataset
consisting of disk data for all failed disks from last 60 days up-to the date of failure.

• Data Pre-processing: It’s function is to transform the raw disk data extracted in
previous step to format suitable for ML/DL model training. ClassPreprocessData
implements the required functionality as described in section 3.3. The class takes
as input: file path for data extracted in previous step. The output from is this class
are csv files containing transformed data in a format suitable for training ML/DL
models.

The following python packages were used for implementing the above pipeline: Pan-
das,Numpy, Scikit-Learn, Matplotlib.

5.2 RFC model

In this step, an RFC model is trained from the dataset obtained from the pre-processing
step. The dataset was split into train and test sets in the ratio 90:10. The code to
train RFC model can be found in rfcmodel/. The implementation makes use of Ran-
domForestClassifier implementation from scikit-learn package. The model was trained
with following parameters: (a) n estimators: 100, (b) max depth: [2,3,4,5]. The best-
performing RFC model on test set was stored for future-use. The results will be discussed
in the evaluation section 6. Figure 9 depicts one of the learned decision tree estimator
from trained RFC.

5.3 OCT model

In this step, an OCT model is trained from the dataset obtained from the pre-processing
step. The dataset was split into train and test sets in the ratio 90:10. The code to train
OCT model can be found in octmodel/. For OCT model training:

• Interpretable AI 3 OCT model implementation from this package was initially con-
sidered. Due to package installation complexity and license issues as it is proprietary

3Interpretable AI: https://docs.interpretable.ai/stable/

14

https://docs.interpretable.ai/stable/


software, this was not preferred

• Python OCT implementationTang (2021): Alternatively an open-sourced python
implementation for OCT was found. The OCT implementation from this package
was used for OCT model training. This implementation makes use of gurobi solver.
An academic license for the same can be easily obtained from gurobi solver website.

The model was trained with following parameters: (a) alpha: 0, (b) max depth:
[2,3,4,5]. The best-performing OCT model on test set was stored for future-use. The
results will be discussed in the evaluation section 6.

5.4 bi-directional LSTM model

In this step, bi-directional LSTM model was trained from the dataset obtained from
the pre-processing step. The dataset was split into train,dev and test sets in the ratio
72:18:10. The code to train the model can be found in bilstmmodel/. The code train
LSTM is implemented as a metaflow pipeline:

• Data Loader: ClassBackblazeDataset implements the functionality to read data
from csv files into pytorch data format.

• Vanilla LSTM model: ClassHDDRULPredictorSystem implements the vanilla
LSTM model for HDD failure prediction. It makes use of pytorch Lightning frame-
work for model implementation. It takes dataloader object as input and outputs a
trained model and results of model on test set.

• bi-directional LSTMmodel: ClassHDDRULPredictorSystemBiLstm implements
the bi-directional LSTM model for HDD failure prediction. It makes use of pytorch
Lightning framework for model implementation. It takes dataloader object as input
and outputs a trained model and results of model on test set.

The following frameworks and tools were used for implementation: (a)Pytorch Lightning-
It’s user-friendly DL framework built on top of pytorch, (b) Metaflow- It is python frame-
work that streamlines the process of creating ML/DL projects from design to deployment
stage. In this work, metaflow was primarily used to streamline model training and eval-
uation.

Figure 10 denotes train/val loss curves for one of training runs. These curves can be
used to debug if model implementation is correct and model is learning.

The model was trained with following parameters: (a) input size: 5 (i.e. input feature
size), (b) hidden size: 32 (i.e no:of cells in each hidden layer), (c) num layers: 1 (i.e. no:of
hidden layers), (d) timesteps: [5, 10, 15, 30] (i.e. look back period), (e) loss: MAE (Mean
Absolute Error) - More robust to outliers

The best-performing bi-directional LSTM model on test set was stored for future-use.
The results will be discussed in the evaluation section 6.

5.5 Composite Model

In step, we implement a composite model, that integrates the best performing RFC/OCT
model and bi-directional LSTM model into a unified entity. For given input dataset, the
function of this model is to predict both RUL estimates and Disk state. The code for
composite model implementation can be found in compoistemodel/ folder.

15



Figure 10: Train/Val loss curves for Bi-LSTM

5.6 HDD Health Monitor App

This step implements the functionality described in section 4.4 as web application using
python flask framework. The app integrates the composite model built in previous step,
and uses it to make predictions for the given input data. The app also visualizes the disk
state predictions as a pie chart. Figure11 depicts a snapshot of the web app for given
input.

6 Evaluation

In this section we discuss the train and test results for models trained. We will also
compare and contrast the performance of composite model against tree-based models like
OCT and RFC which are considered as baseline models due to their SOTA performance
Zeydan and Arslan (2020), Amram et al. (2021).

6.0.1 Classification Metrics

Accuracy: It is defined as the fraction of correct predictions(TP + TN) over all the
predictions(TP + TN + FP + FN) made by the model.
Precision: It is defined as the fraction of predicted true positives(TP) over total number
of positive predictions(TP + FP).
Recall: It is the fraction of true positives(TP) labels predicted overall the total actual
positive(TP + FN) labels in the dataset.
F1-score: It is computed via harmonic mean between Precision and Recall scores. F1-
score lies in the range [0, 1]. higher the F1-score the better, Where TP,FP,TN,FN stands
for True Positive, False Positive, True Negative, False Negative respectively.

6.0.2 Regression Metrics

Mean Absolute Error(MAE): Average difference between the expected and predicted
values.
R2 score: Measures the goodness of fit. If the regression model perfectly captures the

16



Figure 11: Web App- Prediction results

Depth Train Accuracy
(%)

Test
Accuracy(%)

2 99.69 99.71
3 99.93 1.0
4 99.93 1.0
5 99.94 1.0

Table 2: RFC train and test results

variance in the target variable, R2 score is closer to 1.0 (ideal). If the regression model
fails to capture the variance in the target variable, R2 score is closer to 0.0 (bad-fit).

6.1 RFC model results

For our work, we trained RFC models for different depths [2,3,4,5] and the model with
highest accuracy score on test set was stored for integration with composite model. Table
2 denotes the performance of RFC models on test set for different depths. We can observe
that RFC models with differing depths have similar performance on the test set. For our
work, we chose to integrate RFC model with depth of 2 into the composite model.

6.2 OCT model results

For our work, we trained OCT models for alpha: 0, depths [2,3,4,5], and the model with
highest accuracy score on test set was stored for integration with composite model. Table
3 denotes the performance of OCT models on test set for different depths. From the table

17



Depth Train Accuracy
(%)

Test
Accuracy(%)

2 77.24 77.86
3 67.13 66.93
4 67.13 66.93
5 67.13 66.93

Table 3: OCT train and test results

Timesteps MAE loss R2-score

5 0.1014 0.9994
10 0.1003 0.9994
15 0.0855 0.9995
30 0.1212 0.9971

Table 4: Bi-directional LSTM test results

we infer that the model accuracy decreases slightly for depths 3,4 and 5 as compared to
depth of 2.

The model was also trained for different values of alpha [0,0.05, 0.5]. The OCT open-
source implementation had crash issues while training for alpha’s 0.05 and 0.5 for depth
greater than 3, so no results are reported for the same.

6.3 bi-directional LSTM model results

For our work, we trained bi-directional LSTM models for multiple look-back periods
[5,10, 15, 30]. We compare the performance different models using their MAE loss and
r2-score. From the table 4, bi-directional LSTM model with look back of 15 timesteps
has the lowest MAE loss and r2-score closer to 1.0 on the test set among all the models.
Hence, this bi-directional model is chosen for integration with the composite model.

6.4 Composite Model results

The best performing tree based models RFC/OCT and bi-directional LSTM model were
then integrated into the composite model. The performance of this composite model was
then compared against baseline models from Zeydan and Arslan (2020), Amram et al.
(2021).

6.5 Experiment 1

Integrate the best performing model of RFC and bi-directional LSTM as a composite
model and evaluate it’s performance on the test set. Table5 presents the results of
composite model performance against baseline RFC model. Clearly the composite model
appears to be the better model among the two.

18



Model Accuracy (%) F1-score Precision Recall

RFC 94 0.94 0.94 0.94
Composite Model 99.71 0.9970 0.9971 0.9971

Table 5: Composite model vs baseline RFC model results

Model Accuracy (%) F1-score Precision Recall

OCT 86.1
Composite Model 77.87 0.74374 0.9970 0.9971

Table 6: Composite model vs baseline OCT model results

6.6 Experiment 2

Integrate the best performing model of OCT and bi-directional LSTM as a composite
model and evaluate it’s performance on the test set. Table6 presents the results of
composite model performance against baseline OCT model. Clearly the stand-alone
OCT model appears to be the better model among the two.

6.7 Discussion

In experiment 1, we compared the performance of our composite model consisting of RFC
and bi-directional model against the baseline RFC model. On the surface, it appears that
our composite model might be better of the two. But, it needs some more experiments
on the composite model to confirm the improved performance. More

In experiment2, we compared the performance of our composite model consisting of
OCT and bi-directional model against the baseline OCT model.Our composite model has
lower accuracy than the baseline OCT model. The difference in performance can be due to
multiple factors like: (1) Implementation issues in open source OCT implementation. The
suggested approach is to train our OCT model using the Interpretable AI package that is
written by original authors of the algorithm, (2) The current OCT implementation does
not provide confidence values for predictions, hence the disk state predictions obtained
from LSTM are not take into account. If LSTM disk state predictions are taken into
account, there should further improvement in model performance.

6.7.1 Improvements

The following improvements are suggested: (a) Re-classify the dataset and retrain bi-
directional LSTM model training as discussed in Zeydan and Arslan (2020). The current
RUL predicted estimates are still not accurate as the baseline model estimates. Also, ex-
periment by increasing more hidden layers from the existing 1 layer to improve the overall
LSTM model performance, (b) Setup the interpretable AI package from original authors
and retrain the OCT model for better model performance comparison with baseline mod-
els.

19



7 Conclusion and Future Work

In this work, we tackled the problem of HDD failure prediction as multi-class classifica-
tion problem, where in the HDD can be in one of the following three states: Critical, Low
Ideal and High Ideal based on RUL estimatesZeydan and Arslan (2020). The objective
of this work was to make use of combination of tree-based models like RFC/OCT and
along with black box Deep Learning models like bi-directional LSTM to achieve both
the ease of interpretability of results and still achieve SOTA performance. The RFC,
OCT and bi-directional LSTM models were trained using publicly available backblaze
dataset. The best performing models on test set were then integrated into the composite
model. Two composite models were built, one with RFC and bi-directional LSTM and
the other with OCT and bi-directional LSTM. The performance of these two composite
models were compared against the baseline models RFC and OCT respectively. The
composite model consisting of OCT and bi-directional LSTM had an accuracy of 78%
against the baseline OCT model accuracy of 86%. The OCT model code used for training
had some implementation issues, which needs further investigation. The OCT model has
to be re-implemented using interpretable AI package and this will be taken up as part
of future work. The composite model consisting of RFC and bi-directional LSTM had
an accuracy of 99% against the baseline RFC model accuracy of 94%. Though the com-
posite model shows promising result, it needs further experiments to come to a conclusion.

7.1 Future Work

The following topics will be taken up as part of future work: (a) Retrain OCT model
using stable implementation of OCT trees from interpretable AI package from the original
authors, (b) Benchmark the performance OCT trees against baseline RFC trees, (c)
Perform more experiments on the composite model consisting of RFC and bi-directional
LSTM model to validate the improved model performance against the baseline RFC
model, (d) Integrate the online model training feature to the web app from the existing
offline procedure.

References

Amram, M., Dunn, J., Toledano, J. J. and Zhuo, Y. D. (2021). Interpretable predictive
maintenance for hard drives, Machine Learning with Applications 5: 100042.

Anantharaman, P., Qiao, M. and Jadav, D. (2018). Large scale predictive analytics for
hard disk remaining useful life estimation, 2018 IEEE International Congress on Big
Data (BigData Congress), IEEE, pp. 251–254.

Aussel, N., Jaulin, S., Gandon, G., Petetin, Y., Fazli, E. and Chabridon, S. (2017). Pre-
dictive models of hard drive failures based on operational data, 2017 16th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA), IEEE, pp. 619–
625. CORE2021 Rank: C.

contributors, W. (2022). S.m.a.r.t, https://en.wikipedia.org/w/index.php?title=
S.M.A.R.T.&oldid=1078605550.

20

https://en.wikipedia.org/w/index.php?title=S.M.A.R.T.&oldid=1078605550
https://en.wikipedia.org/w/index.php?title=S.M.A.R.T.&oldid=1078605550


Coursey, A., Nath, G., Prabhu, S. and Sengupta, S. (2021). Remaining useful life estim-
ation of hard disk drives using bidirectional lstm networks, 2021 IEEE International
Conference on Big Data (Big Data), IEEE, pp. 4832–4841. CORE2021 Rank: B.

Education, I. C. (2020). Random forest, https://www.ibm.com/cloud/learn/

random-forest.

Ganguly, S., Consul, A., Khan, A., Bussone, B., Richards, J. and Miguel, A. (2016). A
practical approach to hard disk failure prediction in cloud platforms: Big data model
for failure management in datacenters, 2016 IEEE Second International Conference on
Big Data Computing Service and Applications (BigDataService), IEEE, pp. 105–116.

Guo, G., Wang, C., Chen, J., Ge, P. and Chen, W. (2019). Who is answering whom? find-
ing “reply-to” relations in group chats with deep bidirectional lstm networks, Cluster
Computing 22(1): 2089–2100.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory, Neural computation
9(8): 1735–1780.

Huang, S., Liang, S., Fu, S., Shi, W., Tiwari, D. and Chen, H.-b. (2019). Characterizing
disk health degradation and proactively protecting against disk failures for reliable stor-
age systems, 2019 IEEE International Conference on Autonomic Computing (ICAC),
IEEE, pp. 157–166. CORE2021 Rank: B.

Liu, W., Xue, Y. and Liu, P. (2020). Sharp: Smart hdd anomaly risk prediction, AI Ops
Competition, Springer, pp. 74–84.

Pinciroli, R., Yang, L., Alter, J. and Smirni, E. (2020). The life and death of ssds and
hdds: Similarities, differences, and prediction models, arXiv preprint arXiv:2012.12373
.

Pinheiro, E., Weber, W.-D. and Barroso, L. A. (2007). Failure trends in a large disk drive
population.

Schroeder, B. and Gibson, G. A. (2007). Understanding disk failure rates: What does an
mttf of 1,000,000 hours mean to you?, ACM Transactions on Storage (TOS) 3(3): 8–es.

Schroeder, B., Merchant, A. and Lagisetty, R. (2017). Reliability of nand-based ssds:
What field studies tell us, Proceedings of the IEEE 105(9): 1751–1769. JCR Impact
Factor 2021: 10.961.

Shen, J., Wan, J., Lim, S.-J. and Yu, L. (2018). Random-forest-based failure pre-
diction for hard disk drives, International Journal of Distributed Sensor Networks
14(11): 1550147718806480. JCR Impact Factor 2021: 2.03.

Tang, L. B. (2021). Optimalclassificationtrees, .

Tokgöz, A. and Ünal, G. (2018). A rnn based time series approach for forecasting
turkish electricity load, 2018 26th Signal Processing and Communications Applications
Conference (SIU), IEEE, pp. 1–4.

Trincavelli, M. (2021). Optimal decision trees - mlearning.ai - medium, https://medium.
com/mlearning-ai/optimal-decision-trees-dbd16dfca427.

21

https://www.ibm.com/cloud/learn/random-forest
https://www.ibm.com/cloud/learn/random-forest
https://github.com/LucasBoTang/Optimal_Classification_Trees
https://medium.com/mlearning-ai/optimal-decision-trees-dbd16dfca427
https://medium.com/mlearning-ai/optimal-decision-trees-dbd16dfca427


Xu, E., Zheng, M., Qin, F., Xu, Y. and Wu, J. (2019). Lessons and actions: What
we learned from 10k SSD-Related storage system failures, 2019 USENIX Annual Tech-
nical Conference (USENIX ATC 19), USENIX Association, Renton, WA, pp. 961–976.
CORE2021 Rank: A.
URL: https://www.usenix.org/conference/atc19/presentation/xu

Xu, Y., Sui, K., Yao, R., Zhang, H., Lin, Q., Dang, Y., Li, P., Jiang, K., Zhang, W.,
Lou, J.-G. et al. (2018). Improving service availability of cloud systems by predicting
disk error, 2018 USENIX Annual Technical Conference (USENIX ATC 18), pp. 481–494.
CORE2021 Rank: A.
URL: https://www.usenix.org/conference/atc18/presentation/xu-yong

Zeydan, E. and Arslan, S. S. (2020). Cloud 2 hdd: large-scale hdd data analysis on
cloud for cloud datacenters, 2020 23rd Conference on Innovation in Clouds, Internet
and Networks and Workshops (ICIN), IEEE, pp. 243–249. CORE2021 Rank: National:
France.

22


	Introduction
	Related Work
	Problem Formulation

	Methodology
	Dataset - Backblaze
	SMART Metrics
	Data Pre-processing
	Data Extraction
	Data Cleaning
	Feature Engineering/Selection
	Feature Scaling


	Design Specification
	Data Logger
	HDD Failure Predictor System
	Training Mode
	Inference Mode

	Composite model
	bi-directional LSTM
	OCT
	RFC
	Composite Model

	HDD Health Monitor App

	Implementation
	Data pre-processing
	RFC model
	OCT model
	bi-directional LSTM model
	Composite Model
	HDD Health Monitor App

	Evaluation
	Classification Metrics
	Regression Metrics

	RFC model results
	OCT model results
	bi-directional LSTM model results
	Composite Model results
	Experiment 1
	Experiment 2
	Discussion
	Improvements


	Conclusion and Future Work
	Future Work


