~

N\ National
College
Ireland

Cloudlet caching algorithm to improve
quality of experience for users in vehicular
edge computing

MSc Research Project
Cloud Computing

Nileshwari Vispute
Student ID: x19200960

School of Computing
National College of Ireland

Supervisor: Jitendra Kumar Sharma

National College of Ireland

Project Submission Sheet
School of Computing

National
College
Ireland

Student Name:

Nileshwari Chandrakant Vispute

Student ID: x19200960
Programme: Cloud Computing
Year: 2021

Module: MSc Research Project
Supervisor: Jitendra Kumar Sharma

Submission Due Date:

15/08,/2022

Project Title:

Word Count:

6533

Page Count:

9

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Nileshwari Vispute.
Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

a copy on computer.

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for | O

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Cloudlet caching algorithm to improve quality of
experience for users in vehicular edge computing

Nileshwari Chandrakant Vispute
x19200960

Abstract

Cloud computing has witnessed tremendous growth over the past few years due
to its capacity to provide customers and organizations with mighty computational
power for data processing and analysis in their data centers at reasonable prices.
However, owing to the lack of cloud data centers worldwide, accessing faraway
clouds results in increased response latency, hence reducing the efficiency of cloud
computing. As a result, it may be able to provide users with robust computation
resources and low turnaround time due to its location at the edge.However, because
a cloudlet is a mini-scale cloud, it must choose which data should be cached in its
data center. This project intends to provide cloudlet information caching.Utilizing
k-means clustering, the technique identifies the diverse usage patterns and the most
popularly requested content to cache.The selection rule is then utilized to get poten-
tially accessible data. This method was tested on AWS lambda edge. The findings
indicate that, compared to existing caching strategies, the proposed method boosts
the cloudlet content cache hit ratio and reduces response latency. The recommended
technique has already been deployed on AWS lambda edge. Therefore, this post
will attempt to develop it utilizing the cost-efficient and potentially more effective
open-source platform OpenStack.

1 Introduction

Cloud computing is a paradigm which is providing a resource-rich, dynamic, adaptable
and economical service to a user located all over the world. Recently, this technique
has become a dynamically developing technology as it is proving a stable, consistent,
and effective method for data access. Whilst cloud computing enhances cost-efficiency,
it still has some downsides. One of the greatest disadvantages is the lack of data centers
generally available around the globe. Because of this, a user that accesses the data from a
distance from the data center may have a prolonged response latency. Constructing new
data centres is impossible since the process is too expensive and time extensive. In order
to solve this problem, mobile edge computing, a small-scale form of cloud computing, is
introduced.

ETSI and ISG, telecommunication standardization bodies, introduce mobile edge com-
puting, also known as multi-access edge computing.In 2015, they issued a white paper
(1) that describes MEC as a technology that enables IT software services and cloud
computing possibilities at the network’s edge, allowing users to contact the closest avail-
able server within Radio Access Network (RAN) range. MEC helps end-users to meet

their computing needs and performs offloading of computations when low-computing or
time-sensitive tasks are required (2]).

Vehicular edge computing extends to the booming mobile edge computing with a
traditional vehicular network. VEC aims to bring connectivity, computing, and cache
management services proximate to vehicular end users. In contrast to standard MEC,
VEC prioritizes vehicle activity, resulting in more rapid and dramatic topology changes
and complex communication features. However, the time and energy-intensive technique
is severely performed in a vehicular network due to MEC’s insufficient resources (3)).

As MEC is referred as small-scale cloud computing, cloudlets can be referred to as
small-scale cloud servers, as cloudlets are positioned close to the user. As with MEC,
cloudlets provide the offloading of computational tasks from the mobile user to the net-
work. The term cloudlet was originated by Satyanarayanan et al.(4). It refers to a
mini server positioned close to the end user delivering cloud functionalities. It focuses
primarily on legitimate and latency-sensitive activities. However, cloudlets do not require
interaction with a centralized cloud server; thus, they can operate independently. Cloud-
lets employ virtualisation on the basis of virtual machines, while MEC may also consider
other techniques like docker.

1.1 Motivation

Internet-based vehicular networks have arisen to provide a platform that connects all
automobiles using the Internet of things paradigm. Multiple I'T advancements have been
made to connect all vehicles for intelligent roads and traffic management. Smart sensors
and actuators are installed in vehicles and roadside units for data collection and ana-
lysis and are linked to the Internet via advanced, effective communication. Despite the
remarkable development of technologies in vehicular networks, certain obstacles impede
the expansion of vehicular networks due to limited storage. Therefore, it is difficult
for each vehicle to provide active support for applications requiring complex analysis
and vast storage. Bringing computational power nearer to the vehicles or sharing them
among them is a potential solution to these problems. This inspires the paper to develop
a vehicular network based on cloudlets.

1.2 Research Question

Can the quality of experience for users in vehicular edge computing be im-
proved using the cloudlet cluster based caching algorithm on OpenStack?

Caching techniques for online caching, content distribution networking, and data-
centric networking have received a lot of attention in wired networks. The basic idea
behind caching is to pre-cache data in multiple locations in order to reduce network
congestion caused by heavy traffic.

MEC is a revolutionary technology that relocates caching and compute assets to the
network’s edge so that users may easily get data according on their needs (5)). A cloudlet
can utilise its local memory to save cache data and transmit it to mobile devices on
demand. A cloudlet design can predict future user requests based on prior behaviour and
location by storing the content. Likewise, the cloudlet can operate as a remote server
for the central cloud server. It can cache info asked by one device and serve that info
to the same device in the upcoming request. In this application, cloudlets can assist
users in locating nearby public services and other pertinent information. A Cloudlet can

save data for such services before their usage, based on geographical data, and offer the
stored information to connected device ([6)). Storing the data in the cloudlets surrounding
the device will enable faster retrieval of the required data due to low latency and high
bandwidth (7).

Meanwhile, suppose the desired information is missing at the cloudlet. In that case,
users must wait to get it because they are not directly linked to the central cloud, result-
ing in a degraded user experience (QoE). Consequently, it is essential to utilize cloudlet
sources intelligently by selecting the precise data to cache. Zhang et al.(8) have sugges-
ted and tested a cluster-based cloudlet caching method in the AWS environment using
lamda egde to address this issue. This study will implement the same methodology on
OpenStack, an open-source technology.

1.3 Structure Of The Paper

The remaining paper is designed as follows. Section [2] describes the Related work of
cloudlet and caching technique. Section |3 provides the methodology for obtaining the
desired outcome . Section [4 gives the design specification of the proposed system. Section
will provide a comprehensive explanation of the implementation. and Section [6] and [7]
give the performance evaluation along with discussion and conclusion respectively.

2 Related Work

2.1 Vehicular edge computing

Regarding the general vehicular network, Vehicular Edge Computing is a compliment
to Mobile Edge Computing. Components for computation, connectivity, and caching
will be moved closer to end users by VEC. This is the main factor contributing to the
growing demand for VEC as it only concentrates on providing steadily growing low latency
and high transmission rate for the edge devices. As the vehicle position is dynamic
and constantly changing, which would require complex computations to establish the
network, which would lead to rapid variations in the networking context over time, are the
distinctive features of Vehicular Edge computing as compared to Mobile Edge Computing.
VEC systems have a very efficient system named caching, which helps in reducing the
workload that needs to be transmitted to enhance the Quality of Experience(QoE). Cache
in each node is limited to a certain amount and cannot exceed because of the storage
limitations (3).

Due to the increasing number of various data-consuming applications, a significant
increase in data traffic for the vehicular network has happened as people have started
shifting their focus toward smart vehicles. This created an issue for the backhaul network.
To address this issue, Lien e. al. .(9)) suggested a system built on edge with energy-efficient
caching that uses Lyapunov optimization and optimal control theory.

The roadside unit can be utilized by transferring the most requested content near the
user vicinity as the form of cached content in the vehicular network. However, storing
data and connecting ability of RSUs are constrained, making it difficult to choose whether
content should be considered good enough to be cached. The main issue here would be
the size of files, as the files with audio or video content range in larger sizes. To enhance
the QoE of the system, it is necessary to make effective decisions regarding the caching
material.

Hu et al.(10]) analysis of the situation took into account various views of the suppliers.
A multi-object auction method was suggested as an alternative to cope with the com-
petition of multiple contents caching their material while utilizing constrained resources.
The whole system’s throughput is managed using the segmentation method, which is the
algorithm used to use RSU properly. Hence, the user should download the data which is
remaining in a manual fashion or wait till RSU is connected. Rahim et al. (II]) proposed
the solution in which the RSU will store everything, and once the user connects with
the RSU, it can download all its data directly. Ding et al. (12) have concentrated on
distributing the data among the various RSU by considering the quantity of data and
analysing the amount of RSU present and the cache storage.

2.2 State-of-the-art Cloudlet

In today’s world, everyone is surrounded by mobile gadgets, and with the help of inform-
ation services, they can converse with other people. These applications are becoming
resource hungry and need to increase the device’s battery life. Because there are limita-
tions on the devices such as the processing power, ability to storage space and bandwidth
for communication. To solve this problem, scientists have devised an idea to relocate the
place where computation takes place, i.e. distant cloud servers, and use those servers as
the extension for data processing, thanks to the notion of mobile cloud computing (13).

Cloud Servers used in MCC have assisted in the expansion of the processing and
storing capability inside the mobile applications. The data calculations are done in MCC
on distant cloud servers using a WAN. But because of the intricate structure of the WAN|
the performance of some applications requiring low latency may get affected as intricate
structure means high latency sometimes. This was the main reason for Satyanarayanan
et al. (4) to propose cloudlet, a mobile cloud computing extension. A cloudlet is a
dependable, powerful computing device or group of computing devices in constant contact
with the internet and access to adjacent mobile devices. The reason cloudlet is so popular
is that it is just one hop away the bandwidth for transmission is also very high. They can
meet the real-time needs of mobile engagement. Offloading the resource-intensive jobs to
cloudlets might save a lot of time for the device.

Cloudlet will operate as a small subset of the central cloud to carry out its fundamental
functions in the event of a failure. After the job is completed, a completed task might
need to be sent to the main cloud for validation. Cloudlets also offer another advantage,
i.e. the maintenance of confidentiality and privacy. Users’ data must be sent to a remote
cloud server for computation on the cloud, raising concerns about the security of the
data. However, employing cloudlets will keep all sensitive information beside the user,
protecting security and privacy (14]).

2.3 Data Caching Technique

The process of compiling data replicas using directories in a temporary area so users may
quickly access the material is known as caching. Various caching methods are used in
MCC to store frequently required data close to the user, thus reducing the backhaul and
enhancing the user quality experience (I5]) (16)).

2.3.1 Caching Techniques in Cloudlets

Caching the content in the gadget’s cloudlets will aid in obtaining the necessary inform-
ation faster since short-range, single-hop networks between cloudlets and edge devices
offer low latency and high bandwidth. Before considering data caching in cloudlets, the
following crucial factors must be taken into account (7)):

e Data needs for future use: Data prediction is an excellent option for deciding
which data should be considered for caching. The data forecast can be given by
users viewing the data they accessed in the past. For instance, Lymberopoulos et
al. (I7) have used the machine learning method based on the stochastic gradient
boosting technique to give the site of data web browsing for prediction. In contrast,
Pitkow et al.(I8) use the Markov model approach, which only considers the features
that change with time but not a location for future access to a user’s data on the
web.

e Prior to being sent to mobile apps, data can be processed To prevent con-
verting incorrect data to the gadget, prefetching can be considered on the cloudlet
after the future data has been forecasted. Additionally, the cloudlet may forecast
data from several endpoints, decreasing duplicate data by caching the data just
once if they make the same request more than once. This same module establishes
a connection to the closest cloudlet upon a phone and offers that the data must be
stored if the latency of the file system is very high (19).

e Deciding which cloudlet will perform pre-fetching: The user mobility must
be predicted to choose the cloudlet that will handle data prefetching. Users’ move-
ment can be forecasted based on their present position, status, movement direction
or speed. Akyildi et al. (20)) developed an algorithm to signify the future’s role or
state by examining the travelling principle. Nicholson et al.(21]) developed a motion
forecasting method that looks at the users’ often travelled similar pathways. Then,
using the information obtained, a forecast is created.

The customer profits by caching data on cloudlets because it reduces the period of
time it takes to connect to and receive information from the server, which enhances the
user QoE. Most of the time, cloudlets can cache the data provided by Content Delivery
Network (CDN) servers (7).

Koukoumidis et al. (22) make use of the huge storage capability of smartphones to
cut down on latencies and power use when accessing cloud-based services. They have put
forth a micro cloudlet; a memory buffer architecture made up of the ROM of the gadget.
This architecture incorporates a small environment and single-user access strategies to
increase hit rate, cut overall service latency, and save energy.

2.4 Comparison of algorithm analysis

Reference Title Design Outcome
/Algorithm
AmazingStore] A system that uses cloud- Data accessibility
Available, lets to extend the cloud is improved along
(23) Low-Cost ¢ ith reduci
Yang et al. ow-Cos server storage. wi reducing
Online storage cloud
Storage expenses
Service
Using
Cloudlets
In-Network A system for reducing re- Data redundancy
@) Cache Sim- dundant video data by is reduced
ulations caching material on an
Ando et al.
Based on edge router
a YouTube
Traffic
Analysis at
the Edge
Network
A Task offloading using clus- Computational
@5) Cloudlet- let based model efficiency of
Guan et al based task- task and total
' centric throughput
offloading achieved with en-
to enable ergy conservation
energy-
efficient
mobile ap-
plications

Table 2: Comparison of algorithm analysis.

3 Methodology

This sections describes about the methodology which is used in this research. The process
flow is explained in [3.1] and [3.2] section will give a overview of tools and technologies used.

This research aims to improvise the end user’s quality of experience in vehicular edge
computing by using cloudlets and caching techniques. A cloudlet caching algorithm is
performed on the data from the central cloud to provide data using low latency and
bandwidth to the user. Then by using the selection rule, the result data is stored in the
cache memory of cloudlet.

In this research, the user firstly asks for the data from the cloudlet. Cloudlet will check
its local cache memory for data availability. If data is available, it will provide the result
to the end user. If data is unavailable on the cloudlet, then the cloudlet will go to the
central cloud for data requests and fetch the data from the central cloud. Cloudlet will
use the user clustering technique on the central cloud data and then, using the selection
rule, will store the result data in the cache memory and return the requested data to the
user.

3.1 Flow chart of research method

Below is the flow chart of complete process implementation. Firstly input is taken from
the user and then searched it on cache storage OpenStack Cloudlet. If data is not available
then it will access the storage of AWS cloud. It will perform then k-means clustering and
selection rule respectively on the data and then stored in cloudlet cache storage. At the
end it gives the required output to the user.

Input data from user

is data available on

Search data in center r Perform k-means
cloudlet cache? [} [}

cloud algorithm

output to user cached the data on Pgﬁqrm aprlo_rl
cloudlet storage asociation algorithm

Figure 1: Flow chart of research method.

3.2 Tools and Technologies Used In Research

This project is performed on the OpenStack instance of m1.medium (Ubuntu). The user
application and algorithms are developed in python language.
The following tools and technologies are used in the given project:

e MySQL: MySQL relational database management system which is used here for
the data storage. The version of MySQL used is 8.0 (26]).

e AWS Relational Database Service(RDS): Amazon cloud is used as central
cloud in the research. AWS RDS Service is relational database service that simplifies
the configuration, administration, and scalability of relational databases in the AWS
Cloud. It provides scalable, cost-effective storage for an industry-standard relational
database and performs common database administration activities. All the datasets
which are been used in the project are configured with AWS RDS service (27).

e Python3 : Python is interpreted and object oriented programming language. The
user application is built up on python language hence python3 is installed on the
cloudlet instance.

e scikit-learn : The scikit-learn is a open source machine learning library. It is a
simple yet efficient tool used for predictive data analysis. It is used to perform
k-means algorithm on a data (28§]).

e mixtend : mlxtend is a maching learning extension and is a python library which
consist of various tools which are beneficiary for the daily data science operations.
This library is used to perform apriori association rule (29).

3.3 Assessment Carried Out In This Research

A total of two experiments is performed to obtain evaluation of the system. First one has
been to assessed the cache hit ratio by comparing the proposed algorithm with the least
recently used (LRU) which is a traditional type of cache algorithm. In second experiment
response time is measured for data access by comparing if data is available on cloudlet
or it has been fetched from central cloud.Both experiments are examined using different
volumes of dataset to obtain consistency in the result.

4 Design Specification

The further section is describes about the design specification of the project. The section
includes [.Iproposed specification of the system, [4.2proposed architecture of cloudlet and
[4.3proposed caching algorithm.

4.1 Proposed Specification Of The System

In this research, OpenStack virtual instance is used as a cloudlet. This instance is created
using Ubuntu 20.04-x86_x64 as a machine image with flavour type ml.medium. The
instance is created using keypair. A floating IP address is allocated to this instance to
access it dynamically. The instance is connected using a key pair and floating IP address
through the ssh client. AWS is taken as a central cloud in this project. The dataset is
configured on the AWS RDS service using MYSQL. The hardware specification of the
instance is.

Virtual Machine

vCPU 2
Memory 40GiB
RAM 4 GB

Table 2: Required configuration for the Virtual machine.

4.2 Proposed Architecure Of The System

The suggested architecture is made up of three tire architecture (user-cloudlets-cloud).
Cloudlets are nothing but mini data centres deployed on the edge of a network near the
user. Cloudlet can be said as a communicator between the user and the central cloud.
Some data is scattered on the cloudlet if a user application is built using this architecture.
A user will ask for the data to its nearby cloudlet according to his requirement. As soon
as a data request is received on cloudlet, it will check its storage or cache to see if the
data is available or not. If it finds the data, it will be returned to the user. If it does
not find any data in its data storage, then cloudlet will make a call to the central cloud
and search for the data in it. As soon as the data is found on the central cloud, it is
delivered to the user by cloudlet. It is essential to store frequently accessed data on the
cloudlet to improve the quality of experience for the user by improving the efficiency and
performance of the system. As cloudlets are located nearby the user, the user can readily
retrieve the information with reduced latency if the cloudlet can supply the needed data
without contacting the central cloud. If the caches in the cloudlet are missed, it will take
a longer time to reply and retrieve the data from the central cloud and give it to the
requested user. As a result, depending on how to achieve the cache hit ratio for cloudlet,
the three-tier cloudlet framework can aid in improving user application speed.

Central Cloud Server

Cloud Level

<:I

o

]
1
e 1w

rrrrr VM= for officading HE Temant vms for amcaaing
I o [R o
Cloudlet Level
Openstack Openstack | _....... Openstack]

User Level

,,,,,,,,,,,,,,,,,, » Content Requesting

Content Fetching

Figure 2: Proposed Architecture Of System

10

4.3 Proposed architecture of cloudlet

Cloud utilises a virtual machine or VM-based architecture to perform the offloading oper-
ations. The cloudlet has anticipated an active VM-Synthesis system. With dynamic VM
synthesis, the interaction between the user device and VM is user-driven and on-demand;
Therefore, edge devices can quickly and dynamically start the virtual machines and col-
laborate with cloudlet to fulfil demands. Considering the robustness of the Wide Area
Network (WAN) connection, the VM can be dynamically created and terminated.Using
VM synthesis, the end user module sends a small virtual machine layer to the cloudlet
setup, which already possesses the parent virtual machine from where the overlay was
generated.The architecture overlays the foundation to the launch VM, which continues
execution in the same state as when it was halted.

~ T
Tenants VMs for offloading
OpenStack

Ubuntwu Cloud Data Cache
S Py

Figure 3: Proposed Architecture Of System

5 Implementation

This section explains the implementation of the algorithm of current research. The al-
gorithm will help to improvise the quality of experience (QoE) for a user by boosting
the ratio of cache hit and reducing the latency and time. The algorithm uses k-means
clusterisation of data along with the association rule to accomplish the purpose. The
clusterization will be doThis research used 3 to 6 road traffic data from the (30]). These
datasets are public, so we can use them without any cost. (30) is the site where every type
of dataset is publicly available for education and research. The dataset is downloaded
and configured with AWS RDS service for testing purposes as AWS acts as a central
cloud in the study.ne by analysing the pattern, and the data will be saved on the cloudlet
using the association rule.

11

5.1 Dataset and central database connection

This research is carried out using 3 to 6 road traffic data from the (30). These dataset
are public so we can use it without any cost. (30)) is the site where every type of dataset
is available publically for education and research purpose. In the research, the dataset is
downloaded and configured with AWS RDS service for testing purpose as AWS is acting
as a central cloud.

M5 i s L @ remdv x19200%0 ¥

Amazon RDS X RDS) Databases
Dashboard

Databases © Groupresources Restore from $3 Create database
Databases
Query Editor Q 1 0]
Performance insights
Snapshots DB identifier A Role v Engine v Region & AZ v Size V Status v CPU
Automated backups centercloud Instance ~~ MySQL Community ~ eu-west-1h dot3micro @ Available 1138

Reserved instances 3

Proxies

Subnet groups
Parameter groups
Option groups

Custom engine versions

Events

Event subscriptions

Recommendations o

Certificate update

Feedback Looking for language on? Find it in the new Unified Seﬂingsﬂ ©2022, Amazon Web Services, Inc, or its affiliates. ~ Privacy ~ Terms Cookie preferences

Figure 4: AWS RDS Service

5.2 Algorithm

The algorithm implemented in the research is divided in two parts. First is clusterization
of data is done on the basis of accesing pattern and then this data is stored on cloudlet
using selection rule. For clusterisation technique , k-means clustering algorithm is used
and for selection rule, apriori association rule is used.

12

5.2.1 k-means algorithm

The proposed algorithm start with clusterising of data on the basis of several access
pattern.K-means algorithm is based match for this task. It is defined as follow:

k
arg min E E dist(x, ;).
g'; i=l £ x=S; (e 4;)

where, § is all present clusters
X is d-dimentional vector

.u!.' is mean of one cluster

Figure 5: k-means cluster equation.

The k-means clustering approach uses iterative refinement. When there isn’t any
modification in the task or when the pre-determined iterations value is fulfilled, the K-
means clustering algorithm works in a similar way.As the concept of k-means clustering
implies, a number of clusters must be entered. Hence the Elbow method is used to
calculate the ideal number of cluster to perform k-means algorithm. This algorithm’s
time complexity is O(n?). The pseudocode for algorithm is given below.

Algorithm 1 pseudocode for k-means clustering

procedure cluster(data)
variance = [|;
for k=1ton do
km = kmeans(data,cluster=k)
variance.append (km.variance)
fork=1tondo
plot(k,variance(k|)

return elbow_n

Figure 6: Pseudocode for k-means algorithm

5.2.2 Selection algorithm

After cluster analysis, all clusters are reviewed to assess the group with the most people
and most frequently accessed data. Once the algorithm starts, the highest key data is
get selected. Then, starting with the connected list of data points, a data item with a
high ranking is selected. If there is any memory in the cache, the algorithm selects the
second essential pair in the same way, and so on. This algorithm’s time complexity is
O(n?). The pseudocode for an algorithm is given below.

13

Algorithm 1 psceudocode for selection algorithim

procoedure preparation(data,datapoints)
for each dataobj in data do
p_I = access_requency (dataokj)
p-s— size(dataobj)
p_rating — p_f/p_s
for each dataitem in data.datapointdo
d_f = access_frequency(dataobj)
d_s— size(dataobj)
d_rating = d_f/d_s
sort{dataocbj,datapoints,d_rating)
sort(data,p_rating)
end procedure
procedure selection{data,datapoints,cache_size)
for eachdataob]j in data do

S — S size(dataobj)
for cach dataitem in data.datapointdo
5 = S5 + size(dataitem)
v= 5/ cache_size * mean(datapoints)
i = 1; C_remaining — cache_size

while C_remaining = (0 do
select p(i)
C_remaining — C_remaining + size(p(i))
for j = 1 to length(p(i).d) do
if p(i).d(j) = v do
select p(i).d(j)
C_remaining — C_remaining + size(p(i).d(j))
i+t
If there is memory remaining, select the data item with the highest rating value
until memory full.
end procedure

Figure 7: Pseudocode for selection algorithm

6 Evaluation

6.1 Performance Evaluation

The application went through some experiments to measure its performance. The results
are calculated by comparing experiment cases with a traditional caching algorithm. Each
experiment is performed at least five to six times for better results and efficiency. All the
experiments are carried out on the OpenStack instance.

These experiments are tested on different volumes of a dataset, and the observation
is noted after every experiment. In this experiment, the cache size of the instance is
considered. Records are being cached by taking cache memory into account. The experi-
ment proceeds by considering different cluster values in the K-means algorithm to get an
efficient result and find the ideal number of a cluster for evaluation. Similarly, in associ-
ation rules, multiple support and confidence values are considered for caching the record
and finding the perfect support for evaluation. The cache hit ratio is calculated and
compared between the traditional and proposed algorithms in the first experiment. The
second experiment measures response time for the traditional and proposed algorithm.
In the second experiment, the proposed algorithm is divided into two scenarios. The first
scenario is fetching requested data from the cloudlet server if available. In the second
scenario, the requested data is fetched from the center cloud server as it was unavailable
on the cloudlet server.

14

6.2 Experiment 1

The first experiment is carried out by performing the LRU policy algorithm and proposed
caching algorithm. In this experiment, user input is searched into the memory using these
algorithms, respectively, and their results are observed. This experiment is performed to
calculate the cache hit ratio of algorithms. A cache hit is calculated by using the following
formula:

Number of cache hits
= Cache hit ratio

{Number of cache hits + Number of cache misses)

Figure 8: Cache hit Formula

The observed cache hit ratio for this experiment is given in Table

Cache hit ratio

Traditional Algorithm Proposed Algorithm
10 5

Table 3: Observations after experiment one

6.3 Experiment 2

In this experiment, proposed algorithm is divided into two scenarios. One is when user
requested data is fetch from cloudlet server and other is when user requested data is
fetch from center cloud server.This experiment is carried out to measure response time
of a application with and without cloudlet. The experiment is done various time and the
average response time is observed. Table |4 shows the observed value of this experiment.

Average Response Time(ms)

Data fetched from Data fetched from cen-
cloudlet ter cloud
2500 5300

Table 4: Result comparison after experiment two

15

6.4 Discussion

The result of the experiment varied while performing as those were performed on different
volumes of a dataset.

Traditional and proposed algorithms measure the cache hit ratio in the first exper-
iment. The traditional algorithm uses the LRU(least recent used) policy, which puts
recently used data at the top of the cache list. Whenever new data is requested to access,
the LRU puts it at the top of the cache. Once the cache limit exceeds the least used data
is removed from the list. Here least accessed data will always lie at the bottom of the list;
hence the removal of data starts from the bottom. The proposed algorithm uses k-means
clustering and association rule to cache the data on cloudlet. Using this algorithm most
frequently used data with their associated data is stored on the cloudlet. As a result, the
proposed algorithm performs better than the traditional one and has a greater cache hit
ratio than the traditional one which ultimately results in improved quality of experience
(QoE) for user as he gets a data within less time.

The below figure shows the comparison between cache hit ratio of both algorithms.

Cache-hit Ratio

05

Fe
-1 Ba W\ Ln

[=

e
= N s B = 1]

0.45

Cache-hitratio
F:l F:l F:l 51 F:l F:l F:l 51

&

Proposed Algorithm Traditional Algorithm
Algorithms performed

Figure 9: Cache hit ratio result

The second experiment measures average response time by splitting a proposed al-
gorithm into two scenarios. The first scenario considers fetching requested data from the
cloudlet server where the requested data has already been cached. In the second scen-
ario, the requested data has not been cached on the cloudlet; hence, it will fetch from
the center cloud and present to the user. As a result, the first scenario takes less time
to provide data to a user than the second scenario. The user gets their requested data
more quickly in the first scenario than in the second one, as data is already available on
the cloudlet. Therefore the quality of experience is better in the first scenario than in the
second one. The below graph shows the comparison between the average response time
of both scenarios.

16

Average Response Time
G000

5300

5000

4000

3000

2000

Awg ResponseTime(ms)

1000

With cloudlet Without cloudlet
Scenarios

Figure 10: Average Response Time of proposed algorithm

7 Conclusion and Future Work

In this paper, we proposed cloudlet as a mid-layer in a three-tier architecture system to
improvise the quality of experience in vehicular edge computing. Since the cloudlet is
located on the edge server, it has limited memory to save the data. Hence we used the
cloudlet caching algorithm to reduce the latency and response time of the data access by
the user by achieving hi cache hit ratio.The algorithm firstly used a clustering technique
to recognise the access pattern of a user on a data and then analyse them. After analysis,
the selection rule is applied to the data to store it in cloudlet cache memory. The cache hit
ratio of the proposed algorithm is compared with traditional and found that the proposed
algorithm has a high cache hit ratio. After experimenting with response time evaluation,
it is found that response time is less if the data is stored on the cloudlet than the data
fetched from a central cloud. In conclusion, using the cloudlet caching algorithm, the
wise utilisation of cache memory is achieved and the quality of experience for the user is
improved.

17

References

1]

2]

[10]

[11]

[12]

Y. Hu, M. Patel, D. Sabella, and V. Young, “Mobile edge computing a key technology
towards bg,” 2015.

N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Mobile edge computing: A
survey,” IEEE Internet of Things Journal, vol. 5, pp. 450-465, 02 2018. JCR Impact
Factor: 9.936.

L. Liu, C. Chen, Q. Pei, S. Maharjan, and Y. Zhang, “Vehicular edge computing and
networking: A survey,” Mobile Networks and Applications, 07 2020. JCR Impact
Factor: 3.426.

M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based
cloudlets in mobile computing,” IEEFE Pervasive Computing, vol. 8, pp. 14-23, 10
2009. JCR Impact Factor: 3.175.

F. Zeng, Y. Chen, L. Yao, and J. Wu, “A novel reputation incentive mechanism and
game theory analysis for service caching in software-defined vehicle edge comput-
ing,” Peer-to-Peer Networking and Applications, vol. 14, pp. 467-481, 09 2020. JCR
Impact Factor: 3.06.

U. Shaukat, E. Ahmed, Z. Anwar, and F. Xia, “Cloudlet deployment in local wireless
networks: Motivation, architectures, applications, and open challenges,” Journal of
Network and Computer Applications, vol. 62, pp. 1840, 02 2016. JCR Impact Factor:
7.09.

Z. Pang, L. Sun, Z. Wang, E. Tian, and S. Yang, “A survey of cloudlet based
mobile computing,” 2015 International Conference on Cloud Computing and Big
Data (CCBD), 11 2015. CORE Rank: Not available.

7. Zhang and W. Hao, “A new caching algorithm for boosting edge computing
performance,” p. 0168-0175, 2020 11th IEEE Annual Ubiquitous Computing, Elec-
tronics & Mobile Communication Conference (UEMCON), 10 2020.

S.-Y. Lien, S.-C. Hung, H. Hsu, and D.-J. Deng, “Energy-optimal edge content cache
and dissemination: Designs for practical network deployment,” IEEE Communica-
tions Magazine, vol. 56, pp. 88-93, 05 2018. JCR Impact Factor: 9.619.

Z. Hu, 7. Zheng, T. Wang, L. Song, and X. Li, “Roadside unit caching: Auction-
based storage allocation for multiple content providers,” IEEE Transactions on
Wireless Communications, vol. 16, pp. 6321-6334, 10 2017. JCR Impact Factor:
10.76.

M. Rahim, S. Ali, A. N. Alvi, M. A. Javed, M. Imran, M. A. Azad, and D. Chen,
“An intelligent content caching protocol for connected vehicles,” Transactions on
Emerging Telecommunications Technologies, vol. 32, 02 2021. JCR Impact Factor:
2.638.

R. Ding, T. Wang, L. Song, Z. Han, and J. Wu, “Roadside-unit caching in vehicular
ad hoc networks for efficient popular content delivery,” p. 1207-1212, IEEE Xplore,
03 2015. CORE Rank: B.

18

[13]

[17]

[18]

[19]

[20]

[25]

Y. Wang, [.-R. Chen, and D.-C. Wang, “A survey of mobile cloud computing applic-
ations: Perspectives and challenges,” Wireless Personal Communications, vol. 80,
pp. 1607-1623, 10 2014. JCR Impact Factor: 1.95.

M. Satyanarayanan, “The emergence of edge computing,” Computer, vol. 50, pp. 30—
39, 01 2017. JCR Impact Factor: 2.683.

Y. Zhao, W. Zhang, L. Zhou, and W. Cao, “A survey on caching in mobile edge
computing,” Wireless Communications and Mobile Computing, vol. 2021, pp. 1-21,
11 2021. JCR Impact Factor: 2.96.

L. Li, G. Zhao, and R. S. Blum, “A survey of caching techniques in cellular networks:
Research issues and challenges in content placement and delivery strategies,” IFEE
Commumnications Surveys Tutorials, vol. 20, p. 1710-1732, 2018. JCR Impact Factor:
25.249.

D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and A. Ntoulas, “Pocketweb:
instant web browsing for mobile devices,” ACM SIGARCH Computer Architecture
News, vol. 40, pp. 1-12, 04 2012. JCR Impact Factor: Not available.

J. Pitkow and P. Pirolli, “Mining longest repeated subsequences to predict world
wide web surfing,” www.usenix.org, 1999. CORE Rank: Not available.

J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan, “Data staging on
untrusted surrogates,” FAST’03, USENIX Association, 03 2003. CORE Rank: A.

. Akyildiz and W. Wang, “The predictive user mobility profile framework for wireless
multimedia networks,” IEEE/ACM Transactions on Networking, vol. 12, pp. 1021
1035, 12 2004. JCR Impact Factor: 3.56.

A. J. Nicholson and B. D. Noble, “Breadcrumbs: Forecasting mobile connectivity,”
in Proceedings of the 14th ACM International Conference on Mobile Computing and
Networking, MobiCom ’08, (New York, NY, USA), p. 46-57, Association for Com-
puting Machinery, 2008. CORE Rank: A+.

E. Koukoumidis, D. Lymberopoulos, K. Strauss, J. Liu, and D. Burger, “Pocket
cloudlets,” ACM SIGPLAN Notices, vol. 46, pp. 171-184, 03 2011. JCR Impact
Factor: 3.25.

Z. Yang, B. Y. Zhao, Y. Xing, S. Ding, F. Xiao, and Y. Dai, “Amazingstore: Avail-
able, low-cost online storage service using cloudlets,” in Proceedings of the 9th In-
ternational Conference on Peer-to-Peer Systems, IPTPS’10, (USA), p. 2, USENIX
Association, 2010. CORE Rank: Not available.

S. Ando and A. Nakao, “In-network cache simulations based on a youtube traffic
analysis at the edge network,” in Proceedings of The Ninth International Conference
on Future Internet Technologies, CF1 '14, (New York, NY, USA), Association for
Computing Machinery, 2014. CORE Rank: Not available.

S. Guan, R. E. De Grande, and A. Boukerche, “A cloudlet-based task-centric of-
floading to enable energy-efficient mobile applications,” p. 564-569, IEEE Xplore,
07 2017. CORE Rank: B.

19

[26] Oracle, “Mysql :: Mysql 8.0 reference manual :: 1.3.1 what is mysql?,” 2019.

[27] A. W. Services, “What is amazon relational database service (amazon rds)? - amazon
relational database service,” 2019.

(28] scikit learn, “scikit-learn: machine learning in python,” 2019.
[29] S. Raschka, “mlxtend: Machine learning library extensions,” 2014.

[30] G. of Ireland, “Traffic volumes from scats traffic management system jan-jun 2021
dcc - data.gov.ie.”

20

	Introduction
	Motivation
	Research Question
	Structure Of The Paper

	Related Work
	Vehicular edge computing
	State-of-the-art Cloudlet
	Data Caching Technique
	Caching Techniques in Cloudlets

	Comparison of algorithm analysis

	Methodology
	Flow chart of research method
	Tools and Technologies Used In Research
	Assessment Carried Out In This Research

	Design Specification
	Proposed Specification Of The System
	Proposed Architecure Of The System
	Proposed architecture of cloudlet

	Implementation
	Dataset and central database connection
	Algorithm
	k-means algorithm
	Selection algorithm

	Evaluation
	Performance Evaluation
	Experiment 1
	Experiment 2
	Discussion

	Conclusion and Future Work

