
Building An Automated Ecosystem On AWS
Implementing Robust Security Measures

Using DCVS

MSc Research Project

Cloud Computing

Ganesh Patil
Student ID: x20193009

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ganesh Patil

Student ID: X20193009

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 15/08/2021

Project Title: Building An Automated Ecosystem On AWS Implementing
Robust Security Measures Using DCVS

Word Count: 5500

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ganesh Patil.

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Building An Automated Ecosystem On AWS
Implementing Robust Security Measures Using DCVS

Ganesh Patil
x20193009

Abstract

Development and Operations or DevOps is an approach that tries to create a
working relationship between developer and the operations teams to deliver quickly
and to automate the continuous delivery of new applications, shorten the SDLC
or software development lifecycle to create high quality software. In the similar
fashion, incorporating the security practices into the Devops methodology is called
as DevSecOps. Software developed using this process guarantee the privacy, safety,
and resilience of applications. DevSecOps is not a new concept, but it’s adoption
has been very late in the industry. In this research paper we will try to build an
architecture which will be able to integrate security inside the DevOps methodology
using the AWS Cloud. Integrating security in this context means using open-source
vulnerability scanner into the architecture and making the whole system of static
and dynamic scanning automated.

1 Introduction

Cloud Computing is a discipline which is a popular for enhancing efficiency and growing
capacity of the existing infrastructure and it relies on the principle of how the application
is being created, developed and run on the cloud environment. Cloud-Native applications
has a major contribution in building the applications that are scalable and developed in
modern environment.In order to build these loosely coupled systems technologies such as
containers, microservices, orchestrations tools are taken help of to make the architecture
more resilient, flexible and scalable Garces et al. (2020)

As we progressing with the technology, Cloud-native seems to have established itself
as the defacto norm for the business now a days. With these modern practices comes the
threat of being vulnerable to attacks and being exposed to external attacks which can be
disastrous especially when these are critical applications and peoples life depends on it
for day to day use, such as banking applications.

What this essentially means that, while developing the applications, sufficient care
should be taken such that the application which is developed should follow all the
DevSecOPs principles. Akbar et al. (2022) state that DevSecOps is nothing but the
integration of Development, Security and Operation which essentially translates to de-
veloping the applications using Devops methodology and while integrating the security
methods. DevSecOps is a software development method where security is integrated
into application development process to assure application confidentiality, integrity, and
availability.

1



Regardless of the fact that security has has grown to be businesses’ top issue when
it comes to digital transformations, But the new paradigm such as DevSecOps has not
be able to be implemented by operations team because of the technical challenges and
cultural hurdles. According to the Tomas et al. (2019) DevSecOps aims to bring together
the previously established IT Team silos of the operations, security and app development
team .

Applications developed by using microservices based architecture may help businesses’
archive continuous delivery of software as a part of their methodology, but they have also
made it more susceptible to abrasive cyber-attacks like the well known Log4j exploit.
This could be avoided by introducing the application level security which can run side
by side of the app development process.

Figure 1: Basic Architecture

1.1 Motivation

In today’s era combining multiple microservices to form one big application is generally
the way in which the software industry works. This kind of architecture is loosely coupled
and provides much more flexibility in developing as well as deploying the applications on
cloud(Suram et al.; 2018). Such kind of architecture is helpful in troubleshooting the
issue and finding bugs in the application, which is not the case if considered monolithic
architecture. Especially when we are trying to follow the greenfield approach this kind
of methodology helps a lot in making the whole DevOps process simpler.

With the increase in adoption of this modular approach and making the developer
and operations team work together is not enough. Subashini and Kavitha (2011) suggests
rather than just focusing on the delivering the capabilities, building it quickly and de-
livering the needs is just making the applications more and more susceptible to exploits,
because quicker delivery means less time to conduct all tests and thus less testing of the
application will result in making it prone to attacks.

Even if the issue of getting enough time to conduct tests in fixed, but there still
remains the issue of types of tests that can be performed as in most of the companies the
only type of testing is done is static. They use tool such as sonarqube to conduct the
static testing, making it vulnerable to dynamic and runtime vulnerabilities.

2



Also, everytime the developer makes a commit, there is dependency on security team
to see if the code is complaint and not exposed or any sensitive information is not being
leaked out. The main goal of the DevOps mythology was to automate the repetitive and
manual task and considering the dependencies if the security team’s head is by chance
not available and the substitute engineer is also not available to perform the checks and
changes made in repository. This situation will create a bottleneck and hamper the
delivery estimation leading to revenue loss.

Considering all these facts, I tried to automate the manual and repetitive tasks of
scanning the repository for not only static vulnerabilities, but also checking for the dy-
namic and runtime ones. Thus emphasizing on the DevSecOps principles.

1.2 Research Question

Can the reliability of cloud-native applications be improved by automating the static and
dynamic vulnerability scanning using a novel Docker Container Vulnerability Scanner
(DCVS) by leveraging it on AWS platform?

DCVS is an amalgamation of open-source security vulnerability scanners which are
integrated with the AWS platform which is able to detect the static and dynamic vulner-
ability scanning. Static vulnerabilities are those anomalies which scan the code before
the application is deployed. it usually check the source code and byte codes and scans for
any suspicious code smell or security weakness which could be found. While the dynamic
vulnerabilities are those type of anomalies which are detected after the application is
already deployed. According to DuPaul (2015) what it basically does is, it scans for the
application inside out and it simulates a kind of attack on the application and tries to
manipulate it in the running state.

1.3 Structure Of The Paper

The research paper has the following sections. Section 2 conveys about the related work
done in the past regarding this topic. Section3 tells us about the procedure followed
to obtain the required output for this research. Section 4 gives a brief overview of the
architecture used to achieve the results. Section 5 provides the description about steps
taken to implement this project. Section 6 and Section 7 explains the results obtained and
tells us about the futher improvements that can be made in the research respectively.

3



2 Related Work

DevSecOps has been gaining traction in the last few years and there is no denying that
it has gained a lot of popularity. It has become necessary to integrate good security
practices into the traditional DevOps practices to be ahead of the competition in the
world.

2.1 Background of Microservices

It used to be a laborious procedure for software developers to offer instructions on how
to execute the program along with a list of prerequisites when they had to send apps
to another team or deploy them over the cloud. This lead to the creation of idea called
container. A container is somewhat similar to a virtual machine but but typically just on
the OS level. The OS level virtualization is what it uses to isolate it’s resources houses
a fully virtualized guest OS running on the host OS. Many big tech companies such as
Google and Amazon are using docker as a platform as a service for running containers
according to Brady et al. (2020). With the help of this technology the software developer
can package all the code, dependencies and configuration files together into one single
package known as container.

2.2 Types of Vulnerabilities

The taxonomy below discusses the vulnerabilities or the security flaws which which are
usually encountered by the containers before or during deployment. Aside from the afore-
mentioned flaws, security vulnerabilities the security vulnerabilities can be categorized
into two type and those are static and dynamic.

• Static: Static analysis is the type of analysis in which the the evaluation of the code
takes place before hand and is scanned for any vulnerabilities such as infinite loops,
memory leaks or code smells and there are some predefined actions to take against
such vulnerabilities. The Common Vulnerabilities and Exposures is a database
which stores the latest records of such flaws and any static vulnerability scanner
will scan for exposures or any other security flaw and compare it with the CVE
database before the container is being deployed.

• Dynamic: This sort of scanner is based on the principle that it would start it’s vul-
nerability assessment after the application is installed. The application is scanned
and monitored for the consumed resources and it monitors the ports which it is
using. The CVE database also contains the list of such vulnerabilities and usually
applications performing the dynamic scanning scans the apps first and then checks
the run-time usage and also detects if the app is facing a DDOS attack or any such
type of attacks.

2.3 Existing Methodologies

Lopes et al. (2020) have proposed the method of container hardening which essentially
means that if the attack surface of the container which is running the application is
reduced then the it will prevent it from being vulnerable to attacks. For this a sec-comp

4



profile needs to be created to know what kind of image is used and according to this a
different profile will be created.

Yang et al. (2021) in there paper have stated that if the if there are two containers
sharing the same abstract resource by using the OS-level virtualization, then the attacker
can easily gain the access of the shared kernel using the abstract resources. The proposed
a very unique and innovate way of approach and i.e we should control the or confine the
abstract resources which are being used by the containers. Once we control the resources
the attacker will get very less opportunity to attack.

Tunde-Onadele et al. (2019) provided a brief study about the container vulnerability
exploit detection which provides a detailed overview of the static and the dynamic vul-
nerabilities. It has also stated that the use of unsupervised machine learning technique
can be used to detect any vulnerabilities in the system.

In the paper written by R.G.K.P.Kulathunga (2020) it provides a new approach in
the system of intrusion detection. It stated that if the memory usage of the model should
be decreased and so as to limit the usage of resources so that if in case an external DDoS
attack takes place then we will able to control the mitigate the attack sooner.

Sarkale et al. (2017) propose in the research paper that a privileged based application
control system should be used. In the paper they have made a detailed overview of the
latest methods available for the analysis of the security model and they have found that
privileged based access control is the best out all the current approaches.

Sultan et al. (2019) in their paper have given a detailed summary on the security of
the container and have also proposed various ways to increase the proposed security of
the container.The first approach is related to container hardening, second one being to
role based access control, third being the limiting the resources and last one being the
reducing the surface of attack for the container.

Abhishek and Rajeswara Rao (2021) This is the base paper of the research and it
considers the the factor of static analysis and it is done using the third party vulnerability
scanners which scan for the static vulnerabilities and notifies the user.

5



2.4 Comparative analysis of previous methodologies

Reference Title Proposed
Approach

Advantages Limitations

Abhishek
and

Rajeswara Rao
(2021)

Abhishek
et al.

Framework
to Secure
Docker
Containers

Use Son-
arqube for
detecting
static vulner-
abilities

Bugs and vulnerabil-
ities which are static
in nature are detec-
ted before pushing
app to staging envir-
onment

Doesn’t consider
dynamic

vulnerability
scanning. Also,

malware and Trojan
scanning not
included.

Garg and
Garg
(2019)

Somya et
al.

Automated
Cloud In-
frastructure,
Continuous
Integration
and Continu-
ous Delivery
using Docker
with Robust
Container
Security

The ap-
proach
provides
an brief
overview of
automation
of the secur-
ity practices

Docker best prac-
tices are provided
with detailed over-
view

Do not support CPU
and memory bound
workloads.

Brady
et al.
(2020)
Kelly et

al.

Docker Con-
tainer Secur-
ity in Cloud
Computing

Scanned the
container im-
ages with an-
tivirus for re-
moving mali-
cious code.

Virus scans are
effective against
docker container

false positive cases
might be there some-
times

Javed and
Toor
(2021)
Omar et

al.

Understanding
the Quality
of Container
Security
Vulnerability
Detection
Tools

Detection hit
ratio is an ap-
proach which
is used for
the scanning
of the docker
containers

OS as well as Non-
OS vulnerabilities
are identified

Doesn’t consider
run-time vulnerabil-
ities.

Table 2.2: Literature Review Summary.

6



3 Methodology

This sections provides a detailed methodology that has been followed to achieve this
research. The flow followed by the prcoess will be explained in 3.1 and 3.2 will provide a
brief overview of the services and tools used during this research.

The research adds value to the existing methods of testing the applications for security
vulnerabilities by automating the process and also not just testing for static vulnerabil-
ities, but also scanning them for dynamic and runtime vulnerabilities. To get the task
done without worrying about buying expensive tools licenses and dealing with it’s com-
patibility, this research has used open-source tools to conduct these experiments.

To achieve the expected results for this research, the application code will to be
pulled from the repository everytime a commit is made by the user, which later on will
go through a pipeline of rigorous checks. The pipeline consists of DCVS or Docker
Container Vulnerability Scanner which is an amalgamation of various open-source tools
puzzled in together. All the open source tools used are mentioned in 3.2 which would
be contributing in making the application more secure. The code will be scanned for
not only static, but also dynamic and runtime vulnerabilities. When the initial static
scanning is done an image is created which is then pushed to repository and then further
dynamic and runtime scanning is done. If the build is successful then the container is
sent to Amazon EKS staging environment and later to production. If the build fails at
any stage then a lambda function is invoked which in turn geenrates a cloud watch event
and notifies the user about the result and the log files are stored into Amazon S3 bucket.
The beauty of this process is it is all automated and lead very less manual interference
making it avoiding bottlenecks in the process.

3.1 Process flow of research

To perform the research we have utilized the platform of Amazon WebServices and with
the help of some third party open source tools an architecture is build to scale according
the users needs. This architecture is named as DCVS or Docker Container Vulnerability
Service which will enable in automating the security testing of the cloud-native applica-
tion. A simple HTML web-app will be scanned for secrets and static vulnerabilities and
later converted into image and stored in an repository which further will be converted
into a container for deployment into the staging environment where dynamic and runtime
scans will be performed to evaluate for sending it into production environment.

In the architecture the static scanning will be done by the SonarQube, Dynamic
scanning will be done by the OWASP ZAP . More details about the tools used are
explained in the 3.2 section.

The following figure 2 shows the process flow of the research.

7



Figure 2: Process Flow Of The Research

3.2 Tools and Technologies Used In Research

To perform this research and implement the proposed architecture a public cloud cloud
called AWS or Amazon Web Service has been used. The resources used as clubbed with
open source tools to take care of security testing of applications and technologies based
on open source tools have been used to provision the instances and spin up the clusters.
To keep it simple a sample HTML application will be used as an example to demonstrate
the research.

Following tools and services have been used to conduct the research:

• CodeBuild: It is a totally autonomous continuous integration service which can
compile the code and generate software packages that can be deployed easily into
the cloud. CodeBuild takes care of all the provisioning, managing and scaling of
servers for you.

• CodeCommit: Codecommit is a fully managed version control service that is
similar to GitHub and is able to host private repositories such as those present in
Git. One of the best feature it has is that it can scale very easily and is secure.

• CodeDeploy: It is an AWS service which takes care of software deployment for
you. It is fully automated and can be managed easily. Using CodeDeploy, the de-
ployments can be automated to various compute services such as EC2 and Fargate.

• CodePipeline: CodePipeline is a continuous delivery tool which can help de-
velopers to automate release cycles for quicker and dependable software and in-
frastructure changes. Every-time a change is made in the code by the user it
automatically builds, tests deploys parts of the release workflow.

8



• Lambda: It is a service which allows users to run code without the need to manage
servers of provision them. We can pay for the only time we used the compute
resources and don’t need to pay any extra costs.

• S3: It is a online storage which can be accessed with the help of internet and the
data stored in it can be retrieved at any point of time with the help of internet.

• ECR: ECR or also known as Amazon Elastic Container Registry is a highly scal-
able and secure container registry which developers can rely upon to store private
repositories which can be accessed only by IAM permissions.

• Cloudwatch Logs and Events: The Cloudwatch events provides a very accurate
and real-time stream of the events happening in the system which describes the
updates that took place in the AWS services. While the AWS Cloudwatch Logs
closely monitors, stores and retrieves the log files from various sources such as EC2
instance, Route53 etc.

• IAM: Allows you to securely control authorization to AWS services and resources.
IAM enables you to create and handle AWS users and groups, as well as utilize
permissions to grant and deny them access to AWS resources.

• SNS: Simple Notification Service is a service which provides services of messaging
either from application to application or application to person.

• Clair:Clair is a open source tool used by ECR to scan for the repositories. It scans
for the OS type vulnerabilities.

• OWASP ZAP: It is responsible for providing dynamic application security as it
assists in automatically detecting the security flaws in the web-apps while building
and testing them.

3.3 Assessment Carried Out In This Research

In total three experiments would be conducted to evaluate the results obtained from the
vulnerability scans. We will also check if for conditions such as if the pipeline invokes
when the commit is made and ensure that changes made in the repository are reflected
in the production environment and at the end we will check if the user receives updates
via email about the success of the build.

The three experiments will be based on the fact where will expose the architecture
with a clean application image, an image with medium vulnerabilities and the last image
would be of highest number of vulnerabilities. Based on these three cases we will build
up an analysis on how the architecture reacts and perform results.

The observations are showcased in the 6 where a detailed analysis of the results are
evaluated and discussed.

4 Design Specification

The preferred configuration used for crafting the research project is mentioned below.
Section 4.1 describes about the tools and the operating system used while 4.2 provides
an overview of the architecture which was proposed earlier. Section 4.3 describes about
the architecture of DCVS

9



4.1 Proposed Specification Of The System

Below are the proposed specifications used for the system. As the account we created was
a free tier account and the project requirement was not very computing intensive. Hence
it was tried to use the configuration mostly in free tier only with minimum requirements.
The Platform used was AWS cloud and an in-house code editor called Cloud9 and for
configuring the resources remotely through CLI AWS version 2 was used which is the
latest.

Configuration Used

Instance AWS Config=t2.micro

Operating System Windows Version = 10

Orchestration tool AWS CLI Version = 2.7.19

Container engine ECR Version = 1.61.3

Table 2: Preferred configuration for the architecture.

4.2 Proposed Architecture Of The System

To access the infrastructure of the AWS through command line interface we must use the
AWS CLI client. To conduct the study kubectl verison 1.21 has been installed and the
installation of kubeadm package is done. In total we would be pushing the repository
from a code repository to container service All the services used in this system as scalable
and highly available, So managing the traffic and scaling the infrastructure won’t be a
problem.

The build stage consist of four stages, each stage has been divided into four stages
with each responsible for a certain task. If at any point the task fails the lambda func-
tion is invoked which updates the security hub with the details and post the detailed
reports of the vulnerabilities in the S3 bucket. The system is constantly monitored by
the Cloudwatch events and an event is triggered every time an critical update is present.

The nodes are integrated with tools to sense anomalies in the system and the pipeline
is designed in such a way that if the number of vulnerabilities get across the specified
limit, it would fail the build and notify the user. Every time a commit is made to the
repository the cycle starts and it follows the process from the start. The figure 3 provides
an high level overview of the proposed system.

10



Figure 3: Architecture Diagram of DCVS

4.3 Proposed Architecture of DCVS

While conducting the research on this topic, an attempt is tried to design a system which
would be automated and can perform security testing on the cloud native applications
without getting stuck for any dependencies on other team. The DCVS has been designed
in such a way that each code is first packaged as an image tested for it’s vulnerabilities
and later sent into production to run inside a container. It not only takes care of the
security before running the container, but also after it is being deployed into production.
These tools have been used in the DCVS, Hence there is no need to worry about any tool
being deprecated or any vulnerability not being able to be detected.

The architecture shown in 3 provides a high level overview of proposed system. This
proposed architecture is based on the fact of automation and it follows the security prin-
ciples of not only scanning for static vulnerabilities, but also scan for the dynamic. As
stated in the proposal, the static vulnerabilities are been taken care of by the sonarqube
engine and in combination with clair it will scan for the OS and non-OS type vulnerabil-
ities. For handling the vulnerabilities such as dyanmic ones we have OWASP ZAP which
has the latest database of CVE(Common Vulnerabilities and Exposures) which will work
as agent to remove these types of vulnerabilities Considering all these factors we can say
that this is an overall review of the vulnerabilities which can be thought of affecting the
lifecycle of the microservice.

The security of the DCVS is protected by the IAM roles which restricts to access to
certain resources and people only S3 bucket policies have also be configured to manage
efficient use of resources in pipeline. Using AWS architecture helps in not only encrypting

11



the data in pipeline, but also provides SSL grade transport security. A parameter store
helps in storing the sensitive info such as passwords and tokens.

5 Implementation

The general implementation of the whole architecture has been discussed in 5.1. The
detailed steps are provided as as below:

5.1 Implementation of DCVS

Figure 4: Flow diagram of DCVS

• When the CodeCommmit repo is updated by the developer,an event is generated
of Cloudwatch which will notify the codepipeline for further orchestration of the
resources.

12



• As the pipeline starts the CodeBuild starts scanning for static vulnerabilities using
the tool called Sonarqube which scans for vulnerability such as code smells,unreachable
code etc. Sonarqube is the tool which is responsible for performing the static scan-
ning.If the scanner encounters any security vulnerability as mentioned earlier then
the lambda function is invoked and build gets failed and the report is generated
which gets uploaded to the S3 bucket.

• This event is tracked by the AWS Config which notices that vulnerabilities are
found and it will notify AWS Cloudwatch to generate an event which will send an
Alarm notification to user via email and post the remaining details to security hub.

• If no vulnerabilities are found then the CodeBuild moves to the next stage. Now
as the code seems to be free of SCA/SAST vulnerabilities, so now CodeBuild gen-
erates an image so that it can be further pushed to ECR for scanning for the OS
vulnerabilities by using Clair. CodeBuild is based on the approach which believes
customization, so by default it doesn’t have it’s own tool and it depends on user
what type of tool to integrate with.

– Clair scans the code and if any vulnerabilities are found then a Lambda func-
tion is invoked which notifies the security hub. The security hub helps to find
all the security evaluations at one place. The results of the scans are uploaded
to an S3 bucket.

– If the scanner doesn’t find any vulnerabilities then the image is further sent
for Dynamic scanning.

• As soon as the image is ready and sent by CodeBuild it is sent to the staging
environment.

• When the staging environment is successfully set up then DAST scanning begins
with the help of OWASP ZAP. The ZAP spider scans for the whole application first
and then draws a map. This monitors the ports being and if there is any memory
leaks. If the scans find any vulnerability then same procedure with uploading the
results to S3 by Lambda function occurs.

• At the end if no vulnerabilities are found, then a email gets triggered which is
delivered by the help of SNS for the approval to deploy the application to production
environment to the user. Once the user approves that the application is good to
go. The manual approval stage passes and the application is successfully deployed
into the production.

• The user is notified of the critical events with the help of SNS using the email notifs
such as failed builds or unexpected errors.

6 Evaluation

The evaluation section will consider three cases which has assessed the application based
on the factor of severity of the vulnerabilities. The severity of vulnerabilities essentially
means that the application will be tested by introducing vulnerabilities inside the applic-
ation to look if the architecture is successfully able to detect the vulnerability and the

13



build fails accordingly. The architecture is able to detect for the static and dynamic type
vulnerabilities. Hence, we will try to introduce vulnerabilities which are of three types
i.e Critical,Medium, Low.

6.1 Experiment 1

The first experiment is assessing the critical type of vulnerabilities in the application. To
exploit this vulnerability a critical loops exit has been commented out. This essentially
means that resource on which it is provisioned will be stuck in infinite loop and won’t be
able to come out it. This is a bad place to be in, If such type of mistake happens in the
production environment.

Figure 5: Critical vulnerability introduced

The result of introduction of the vulnerability can be seen in the image 6. Also the
pipeline has failed can be seen in the image 7.

6.2 Experiment 2

The second experiments involves assessing the vulnerabilities which comes under the range
of being not too vulnerable but enough to expose the application and thus comes under
the category of medium vulnerable. In this experiment the EC2 has been configured
with an extra security group which is exposed to the outside requests and has access to
all the application which is not an ideal case. The filtering should be done by security
group to isolate the resources and hence these have been categorized as medium severity
vulnerabilities. In the image 10 we can observe the pipeline failed because of the same
reason.

6.3 Experiment 3

Third experiment is based on the low severity vulnerabilities which is often related to not
so critical but important vulnerabilities. These kind of vulnerabilities might not affect the
application working or affecting the resource usage directly, but might be needed to be
considered sometime. Hence, the application can be easily deployed onto the environment.
In experiment 3, the vulnerabilities of IAM and Cloudformation have been detected as
can be seen in image 11 and as they might not cause problem while the application is
running the environment the application is successfully deployed. The image of successful
deployment is shown in 12

14



6.4 Discussion

After conducting the three experiments by introducing the vulnerabilities in the system,
the architecture was able to detect the categorize the type of vulnerability and provide
a go or no-go to the pipeline for deployment. It was observed that the system can
successfully identify the static and dynamic vulnerabilities thus making it much more
secure and reliable.

Image 6 shows the critical vulnerabilities found out in the application. These vulner-
abilities reflect the behaviour of the system and have been accurately captured by the
architecture. Once the vulnerabilities have been detected the lambda function gets in-
voked which informs the security hub about the details and to send reports to S3 bucket
as well as security hub. Further the cloudwatch is monitoring in the background gets
to know about the security flaws and thus stops the execution of the pipeline. As the
pipeline stops the SNS triggers an email which notifies the user about the status of the
pipeline 8.

Figure 6: Experiment 1 Summary of Critical Vulnerabilities

15



Figure 7: Experiment 1 Pipeline failed as the critical vulnerability is detected

Figure 8: Experiment 1 SNS notification received by the user

In the experiment two, the vulnerabilities are captured and can be seen in the dash-
board of securityhub 9. As intended in experiment 2, the security flaws have been detected
successfully and it can be seen that these flaws have resulted in the pipeline to fail. A
similar event of SNS is generated as explained above and the user receives an email about
the failed pipeline as shown in the image 8.

16



Figure 9: Experiment 2 Medium severity vulnerability detected

Figure 10: Experiment 2 Build failed because of detection of medium severity vulnerab-
ility

Experiment three was able to detect all the minor security flaws which was expected
to happen and can be seen in the image 11. As these security vulnerabilities take the

17



very least priority and might not hamper the performance of the application or the make
it vulnerable to other attacks such as in experiment 1 and 2. Hence, the application is
deployed successfully and can be seen in image 12.

Figure 11: Experiment 3 Vulnerabilities with low severity

18



Figure 12: Experiment 3 Successful deployment of application for low vulnerabilities

7 Conclusion and Future Work

A manual and repetitive process can be automated with the help of technology and
applying this context to DevOps while integrating security in it, this research paper tries
to automate the manual task and abiding by the DevSecOps principles has achieved
the desired result of detecting the static and dynamic vulnerabilities. Considering the
traditional practices, adding the dynamic scanning tool and automating the system is
the goal. The research paper originally based on the IEEE paper which talked about
eliminating the vulnerabilities using the static scanning using sonarqube as the tool, has
managed to reach the goal of dynamic scanning. In near future, I would like to include
the malware and Trojan scanner to be integrated to be integrated with this system
architecture as it would ensure complete obliteration of all the vulnerabilities.

19



References

Abhishek, M. K. and Rajeswara Rao, D. (2021). Framework to secure docker containers,
2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability
(WorldS4), pp. 152–156. Core Rank = not found.
URL: https://doi.org/10.1109/WorldS451998.2021.9514041

Akbar, M. A., Smolander, K., Mahmood, S. and Alsanad, A. (2022). Toward successful
devsecops in software development organizations: A decision-making framework, In-
formation and Software Technology 147: 106894.
URL: https://www.sciencedirect.com/science/article/pii/S0950584922000568

Brady, K., Moon, S., Nguyen, T. and Coffman, J. (2020). Docker container security in
cloud computing, 2020 10th Annual Computing and Communication Workshop and
Conference (CCWC), pp. 0975–0980. Core Rank = not found.
URL: https://doi.org/10.1109/CCWC47524.2020.9031195

DuPaul, N. (2015). Static testing vs. dynamic testing.
URL: https://www.veracode.com/blog/secure-development/static-testing-vs-dynamic-
testing

Garces, L., Martinez-Fernandez, S., Graciano Neto, V. V. and Nakagawa, E. Y. (2020).
Architectural solutions for self-adaptive systems, Computer 53(12): 47–59. JCR Impact
Factor: 4.419.
URL: https://doi.org/10.1109/MC.2020.3017574

Garg, S. and Garg, S. (2019). Automated cloud infrastructure, continuous integration and
continuous delivery using docker with robust container security, 2019 IEEE Conference
on Multimedia Information Processing and Retrieval (MIPR), IEEE, New York, NY,
USA, pp. 467–470. Core Rank = not found.
URL: https://doi.org/10.1109/MIPR.2019.00094

Javed, O. and Toor, S. (2021). Understanding the quality of container security vulner-
ability detection tools.
URL: https://doi.org/10.48550/arXiv.2101.03844

Lopes, N., Martins, R., Correia, M. E., Serrano, S. and Nunes, F. (2020). Container
hardening through automated seccomp profiling, Proceedings of the 2020 6th Interna-
tional Workshop on Container Technologies and Container Clouds, WOC’20, Associ-
ation for Computing Machinery, New York, NY, USA, pp. 31–36. Core Rank = not
found.
URL: https://doi.org/10.1145/3429885.3429966

R.G.K.P.Kulathunga (2020). Dynamic security model for container orchestration plat-
form, PhD thesis.
URL: https://dl.ucsc.cmb.ac.lk/jspui/handle/123456789/4533

Sarkale, V. V., Rad, P. and Lee, W. (2017). Secure cloud container: Runtime behavior
monitoring using most privileged container (mpc), 2017 IEEE 4th International Con-
ference on Cyber Security and Cloud Computing (CSCloud), IEEE, pp. 351–356. Core
Rank = not found.
URL: https://doi.org/10.1109/CSCloud.2017.68

20



Subashini, S. and Kavitha, V. (2011). A survey on security issues in service delivery
models of cloud computing, Journal of Network and Computer Applications 34(1): 1–
11.
URL: https://www.sciencedirect.com/science/article/pii/S1084804510001281

Sultan, S., Ahmad, I. and Dimitriou, T. (2019). Container security: Issues, challenges,
and the road ahead, IEEE Access 7: 52976–52996. JCR Impact Factor:4.48.
URL: https://doi.org/10.1109/ACCESS.2019.2911732

Suram, S., MacCarty, N. A. and Bryden, K. M. (2018). Engineering design analysis util-
izing a cloud platform, Advances in Engineering Software 115: 374–385. JCR Impact
Factor: 3.884.
URL: https://www.sciencedirect.com/science/article/pii/S0965997817303733

Tomas, N., Li, J. and Huang, H. (2019). An empirical study on culture, automation,
measurement, and sharing of devsecops, 2019 International Conference on Cyber Se-
curity and Protection of Digital Services (Cyber Security), pp. 1–8.

Tunde-Onadele, O., He, J., Dai, T. and Gu, X. (2019). A study on container vulnerability
exploit detection, 2019 IEEE International Conference on Cloud Engineering (IC2E),
IEEE, pp. 121–127. Core Rank = not found.
URL: https://doi.org/10.1109/IC2E.2019.00026

Yang, N., Shen, W., Li, J., Yang, Y., Lu, K., Xiao, J., Zhou, T., Qin, C., Yu, W., Ma, J.
and Ren, K. (2021). Demons in the shared kernel: Abstract resource attacks against
os-level virtualization, Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’21, Association for Computing Machinery, New
York, NY, USA, pp. 764–778. Core Rank = A*.
URL: https://doi.org/10.1145/3460120.3484744

21


	Introduction
	Motivation
	Research Question
	Structure Of The Paper

	Related Work
	Background of Microservices
	Types of Vulnerabilities
	Existing Methodologies
	Comparative analysis of previous methodologies

	Methodology
	Process flow of research
	Tools and Technologies Used In Research
	Assessment Carried Out In This Research

	Design Specification
	Proposed Specification Of The System
	Proposed Architecture Of The System
	Proposed Architecture of DCVS

	Implementation
	Implementation of DCVS

	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusion and Future Work

