~

-f‘i"
\ National
Collegeer

Ireland

DME: Technique for computation offloading
in Mobile Cloud Computing.

MSc Research Project
Master of Science in Cloud Computing

Muhammad Abu Bakar Sani
Student ID: 17112044

School of Computing
National College of Ireland

Supervisor: Shivani Jaswal

National College of Ireland National
Project Submission Sheet College of

School of Computing Il‘eland
Student Name: Muhammad Abu Bakar Sani
Student ID: 17112044
Programme: Master of Science in Cloud Computing
Year: 2022
Module: MSc Research Project
Supervisor: Shivani Jaswal
Submission Due Date: 19/09/2022
Project Title: DME: Technique for computation offloading in Mobile Cloud Com-
puting.
‘Word Count: 5715
Page Count: [19]

I hereby certify that the information contained in this (my submission) is information per-
taining to research I conducted for this project. All information other than my own contribution
will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author’s written
or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature: Muhammad Abu Bakar Sani

Date: 19th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to each project | [J
(including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for your own | [J
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

DME: Technique for computation offloading in Mobile Cloud
Computing.

Muhammad Abu Bakar Sani
17112044

Abstract

Around the world, the advancement and utilization of mobile devices have been increas-
ing tremendously. In spite of the improvement and evolution of these devices, they are still
considered as resource constrained devices because of its portability. The advancement in
mobile device technology results in enabling them to execute complex applications and/or
programs seamlessly but consumers are becoming more demanding and expecting the bat-
tery to last longer along with execution of multiple intensive tasks. Hence, Mobile Cloud
Computing (MCC) plays an important role in order to enhance the capabilities of devices
using offloading methods. In this paper, a novel algorithm has been proposed called Decision
Making Engine (DME) which will be executed on a mobile device to give suggestion whether
to offload task to the cloud or to run it locally on a device. It evaluates various parameters
such as battery information, hardware specifications (Memory usage) and network accessib-
ility before providing any suggestion. Task offloading has ability to free some memory and
to extends battery life which improves the device performance. An android application and
a microservice with Fibonacci series are developed to evaluate the experiment. The exper-
imental results show that the DME works as expected and based on the execution time in
the two environments, the execution time significantly reduces when performing execution
on the cloud than on the local device. Cloud execution also free-up device resources for
other tasks.

1 Introduction

There has been a remarkable increase over the last few years in the usage of mobile devices as
with the advancements in its hardware specifications. The mobile devices include smartphones,
wearable, tablets etc. The applications able to perform complicated tasks are also rising and
getting more complexed. Video Streaming, Live Gaming and Face Recognition are some of
the examples of such applications. These types of applications use various mobile resources
i.e., CPU, memory, battery usage etc at a higher rate. The benefits of mobile devices include
portability, easily accessible and affordable etc. Many of the mobile devices do not last for a day
due to highly intensive use of device’s CPU. In such cases MCC facilitate users by improving the
execution and battery of mobile devices. It integrates network, mobile, and cloud computing.
MCC brings the massive quantity of cloud resources to strengthen the resource constrained
devices. Google Cloud, Amazon Web Services, Microsoft Azure etc are some of the CSPs (Cloud
Service Providers) which provide resources that are straightforward and easy to integrate such
as storage, virtual machines etc. They work on the Pay-As-You-Use model. These resources
can be quickly provisioned and merged to be used by the functions running on the devices.
MCC has been proposed mainly for resource constrained devices to overcome number of
issues. The key concept of MCC is to offload resource intensive tasks from device to the cloud.
The cloud execution of these tasks is better than local [I]. The very important part in offloading
is to make appropriate decision. The decision-making algorithm is used within the application
which will decide during run-time whether to offload task or not [2]. There are number of

decision-making algorithms that have already been developed which are only be able to handle
particular sort of task.

Along with huge benefits, MCC has some of the limitations like low flexibility, high power
consumption, singular offloading selection, huge costs etc [2], [3]. These limitations need to be
considered and tackled before taking up MCC. As mentioned by the authors [I], [4], MCC is
made of two models i.e., task delegation and code offloading. The code offloading is associated
with designing the application which includes to get resource exhaustive tasks and then offload
them to external platforms. The task delegation is, in which device uses cloud services and
announces possible interoperability issues. Offloading is the feature around which this project
revolves. Mobile code offloading and Computational offloading are the two terms that can be
utilized interchangeably. In this, code is usually partitioned and profiled with set goals in mind.
These goals involve decrease in power consumption, improve in performance and scalability.

Despite of the detection of the intensive tasks and involvement of decision algorithm to
determine whether to offload a task or not, a problem is still around to accurately perform
offloading of compute intensive task [4]. It is important to confront this issue as incorrect
profiling and partitioning can damage the mobile device. As authors mentioned [5], partitioning
can either be dynamic or static with the difference between them is their execution timing like
dynamic partitioning occurs during application run-time

Research Question: Can the application makespan for computational intensive task of-
floading applications be improved using a novel decision-making engine based on current context
of mobile device such as Network, Battery and Memory?

In this research project report, an algorithm has been proposed naming Decision-Making
Engine (DME) which works on dynamic partitioning. The proposed algorithm considers various
parameters such as connection status, battery level, battery health, battery status, and available
memory, which further helps in making a decision regarding sending task to the cloud or to the
local server. The DME works on smartphone devices.

The rest of this document is split into various sections and subsections. Section 2 illustrates
the related work in this area, Section 3 introduces the employed methodology, Section 4 shows
the design specification of the project, Section 5 explains the implementation part, Section 6
involves the evaluation of this research and lastly Section 7 concludes this research with future
work.

2 Related Work

Related work as regards to MCC offloading has been discussed in this section. This section is
further split into various subsections for better understanding.

2.1 MCC Architecture

The human lifestyle has been drastically transformed by the mobile devices being as a crucial
element in daily events. For their betterment, mobile features and applications are getting more
complexed and also increasing. ML, Al, deep learning are some of the compute intensive tasks
that are offered by the complex mobile applications to fulfil user needs but at the same time
these applications require high energy and computation power to generate the output. This
problem can be solved by offloading such tasks to powerful computation nodes.

Physical Layer and Application Layer are the two layers by which the architecture of MCC is
made off. As mentioned [6], the most widely accepted architecture of MCC is shown in Figure
LTE, UMTS and GPRS are an expensive connections that mostly the mobile devices use to
establish a connection to the internet [7]. They are costly because of its availability, location
privacy etc. Establishing connection through Wi-Fi is another possibility, but both have their
own pros and cons. As authors mentioned [8], physical layer helps the resource constrained

The red line represents the " . 5
OFFLOADING path (' The mntlnlc operator's core is

WA responsible for bypassing the

mobile clowd traffic as normal
data exchanged with the
intermet

Cloud Service
Provider

}

The user is subscribed with
this CSP which already
contains the user’s Processing
environment, This clowd
processes the offloaded jobs.

Servirlg GW
Smart Phone {Mobile) ;

f

When the user decides to

offload a job, he connects to

her CSP and upload his job as

normal data wraffic such as hitp
ar hitps.

< > g « > Cloud Servi
. Mabile Operator’s Core oud service
E-UTRAN thwrk Internet Provider’s

Network

Figure 1: Cloud Computing with Mobile Terminals Architecture [6].

devices by saving their computation power and energy. Application layer architecture comprises
of decision-making framework and offloading technique. It generally concentrates on decision
framework and code partitioning. This layer has to decide when and where to offload the task.
In this research, application layer has been improved with the help of DME which handles the
computationally intensive tasks based on device resources.

2.2 Detection of android resource usage

In order to decide whether to proceed with offloading or not, service must correctly evaluate
computation power. To calculate the network and CPU consumption on the mobile devices,
authors in this paper [9], have investigated the effectiveness and possibility of developing power-
consumption-based sensors. Various power consumption metering methods have been evaluated
by focusing on the data gathered from the mobile devices. It split into three categories. The
number of tests has also been executed from security viewpoint.

As mentioned [I0], low level measurements are provided by these two tools i.e., FEPMA
(Fine-grained event-driven power meter for android) and Appscope. They both have been tied
specifically to device model and considered as very invasive to kernel. PowerTutor is the tool
mainly utilized for high-level measurements and to control the data of mobile device hardware
into its models to display power consumption [II]. It contains six components: LED, GPS,
CPU, Wi-Fi, audio, and cellular interfaces. Middle level measurement is the second last method
of measurement as described by the authors [9], in which battery level and consumption is
evaluated without establishing the connection to the kernel.

It’s crucial to detect resource usage before applying any new algorithm or feature as it
facilitates product to work properly. Most authors have promoted middle level measurement
for task offloading and security.

2.3 Android Architecture

This research project concentrates on Android OS smartphone, but the logic and investigation
can be utilized in any OS for future studies. Windows, i0S, blackberry, etc are some of the
other OS but according to authors [12], Android platform is classified as more popular and
user-friendly OS. This is an open-source Linux based OS. Authors in Samsung KNOX research

[13], have shown an effective evaluation of important spots in design and implementation of se-
curity in an android environment. Also, the security is really important for this research. Any
developer can upload their application to Android Play Store that’s why it is more prone to
security vulnerabilities [12]. Authors have listed various options to protect the device through
the utilization of MDM solution (mobile device management) [I3]. Hardware implementation
of ARM TrustZone is foundation of trust, and it can perform secure code offloading. Knox
architecture has three modules: SEAndroid, TIMA (Trustzonebased Integrity Measurement
Architecture), and Secure boot. On top of traditional Android OS and extensive VPN frame-
work, this architecture offers additional encryption. This could be beneficial for this research,
as it can assist with securing and deploying of data.

There are multiple approaches for application development as mentioned by authors [12] but
Cross-platform is recognised as the more convenient one because applications can be installed
on several platforms without any change in code. Cross-platform also has some sub-approaches.
Model-Driven Approach (MDA) is the most widespread methodology which has been considered
as in trend. In this methodology low-level problems need not to be dealt because is guided by the
modelling events. It includes three fundamental models: PIM (Platform Independent Model),
PSM (Platform Specific Model) and PIM to PSM model. A good understanding of the working
architecture is very important.

2.4 Context aware code offloading

Over the last few years, due to extremely popular applications and services including IoT the
deployment issue in mobile devices has become much more noticeable. The context of mobile
device is valuable to consider while performing code offloading. The device context includes
available network, battery, memory etc. It’s necessary to have an understanding of offloading
before implementing it. MobiCOP-IoT solution is a code offloading framework in IoT as de-
scribed by the authors [I4]. This framework is expected to also support offloading in android
devices using cloud and/or fog system. Here Figure [2]illustrates an overview of MobiCOP-IoT
workflow. The decision-making algorithm in this solution includes code and network profiler
and is integrated on a client-side. Code profiler utilizes heuristic-based algorithm to calculate
time taken by a given task to be executed. Network profiler checks network every 15 min to
verify strength and bandwidth of a connection. After complete evaluation, a decision will be
made either to execute task on cloud or on local machine or both simultaneously. Benchmarking
has proven that offloading to cloud than mobile device offers better performance without any
further cost.

Authors in these papers [15] and [16] have proposed dynamic approach-based context aware
offloading frameworks. This document [I5] proposes an approximation model which chooses
cloud resources necessary for offloading intensive tasks. It also works with network quality
and cloud computation power because current cloud resources offer uncertain performance. In
[16], authors primarily focused on signal strength and network range to do effective offloading.
Both frameworks finalize their decisions using dynamic partitioning during application runtime.
Results [I5] have proven a decreased execution time of about 6% to 96% and power utilization
of about 60% to 90%. Rest [I6] has also indicated appropriate results by offering better
performance and less power consumption. Both presented really decent results but not robust
enough to various offloading options.

As mentioned by the authors [I7], deep learning in mobile devices is increasing its popularity.
The problem with this approach [I7] is as devices are resource constrained and difficulties could
arise if tasks need to be offloaded and the device does not have enough computation power to
allocate. As mentioned by the authors [18], future work of offloading tasks mainly focusses on
fog computing. For IoT deployments and mobile devices, all standards are counted as legitimate
factors. It also evaluates tech enablers for offloading tasks in wireless technology, which is
essential for accurate task offloading. Second enablers are smart autonomous applications which

A

Input files are
divided into chunks

%-h %
Command to start
remote execution

Local
execution

il
!
(o

[Resut reconed

Fetch
D output files

L

Broadcast result

Figure 2: MobiCOP-IoT offloading diagram [14].

utilise ML and employ context aware services to allow concurrent offloading on various nodes.
Lastly, this paper has also evaluated weaknesses and challenges that are important to offloading.
As mentioned by authors, scalability and resource distribution are the two factors that can
affect implementation. SLA is another stated issue. Other associated challenges could be fault
tolerance, energy utilisation, service & monitoring etc.

Dpartner is a tool presented by authors [19] to support computation offloading. To find
the bits worth for offloading, Dpartner tool analyses code of application, and then creates two
artifacts that needed to be deployed on the device and on the cloud. This tool provides time
improvement of 46 to 97 % and reduction in battery utilization of 27 to 83 %. The 1st realistic
execution of offloading in Android OS is investigated by authors [20] known as Cuckoo. It is
valuable to have a knowledge of present state of a device and framework.

2.5 Communication Protocol

The RESTful API is designed for the communication between components. It has the capability
to cope with various forms of requests and capable to return a number of data formats. For
microservice execution, authors [2I] have compared the performance of RESTful API and
RabbitMQ. Results have shown that RESTful works better for microservices execution with
lowest latency.

In this research, AWS cloud application model is used for the cloud execution. AWS handles
the autoscaling like when there is change in network traffic, it will automatically scale-in or scale-
out to provide better performance to end user. The microservice is deployed at AWS Elastic
Beanstalk. This makes it more secure, and it can be accessed through RESTful API requests.

2.6 Code Offloading Frameworks

This section gives a quick overview of several existing offloading frameworks. These frame-
works usually come with several approaches and methodologies. Authors [22] have stated that

current work on offloading follows three methods categorized as the full migration, granularity
and partition algorithm, and pre-calculated offline partitions and making decision at run-time.
AndroidOff is the offloading framework proposed in this paper [23]. This solution is focused on
cost calculation. It is achieved through a forecast method which works by applying testcases
to specific methods to validate time required by methods to run. Results have shown that
execution time can be reduced up to 8% - 49% and decrease in power consumption could be
up to 12% - 49%.. One downside of this methodology is that in most situations the testcases
used might not produce results suitable for a real-world situation. A joint-scheduling approach
has been proposed by authors [24] for offloading and also for organizing the order of offloading.
This approach relies on network accessibility and uses parallel execution of tasks both on AWS
EC2 instances and locally. The downside of this approach is it lowers the selection of apps
where it can be applied to. Generally, significant results have been attained with decreased
power consumption for applications with prolonged run-times.

Another offloading framework known as MobiCOP has been proposed by authors [25]. It
concentrates on the problem i.e., replicability of existing offloading frameworks and also on re-
ducing the execution time [26]. MobiCOP is made-up of public cloud execution environment,
offloading decision-making engine and a communication handler. The results have indicated
that this framework offers about 25 times and 17 times improved power saving and efficiency re-
spectively. It also decreases execution time by using service application component. MobiCop’s
framework [25] has client library, it includes android service that connects platform compon-
ents and supervises execution of new tasks. To transmit communications via XMPP through
Google’s firebase cloud messaging system, platform communication layer employs asynchronous
data transmissions. Middleware, elastic cloud component, public interface, and android server
environment are the four modules involved in server. The MobiCop architecture, in which
QoS (module of Decision Engine) cares about transfer speed, profiling network-availability and
latency. Code profiler keeps track of previous tasks execution and predicts run-time for upcom-
ing tasks.

In conclusion of related work section, it is derived that, number of concerns are still around
that need to be solved. The frameworks show decent outcomes but are still restricted in their
approach and consequently can lead to minimal application. My proposed framework uses state-
of-the-art method to decide whether to offload a task or to run it locally. This DME resides on
a mobile device and run constantly to provide real-time response.

3 Methodology

The research methods that have been applied while implementing this research are described in
this section. Implementing offloading in this research involves android device and AWS cloud
but before task execution, system calls a DME to check where to execute task either on a
cloud or on a local device. The reason for proposing this algorithm is to work on the existing
frameworks weaknesses. Technologies used in this research are Android studio IDE, Eclipse
IDE, Postman, Java, XML, JSON, Spring Boot and AWS Elastic Beanstalk.

3.1 Dynamic Partitioning

In this research, dynamic partitioning is followed. In this type of partitioning, a decision is
taken during application run-time. This dynamic approach has a lead over static approach as
the mobile device context changes continuous. It has also been utilized in other previous related
works [27]. BroadcastReceiver and IntentFilter are two Java methods that have used to achieve
Dynamic partitioning. By using these methods, application makes a call to ofloading DME to
check where the task can be executed.

3.2 Getting real-time device context

It is important to get real-time stats of a mobile device to make offloading decision flawlessly
as shown in Figure 3l It includes battery, memory, CPU and internet connection details. All
these stats will then be passed to DME to decide where to execute the task. The DME changes
its decision according to the change in device stats. All this happens on real-time basis.

4302

0ffloading Code

72% Good Discharging

Available Memory: 2254520320
Total Memory: 5598478336
Runtime Max Memory: 268435456
Runtime Total Memory: 7276504
Runtime Free Memory: 163104

Connected

processor g 0

BogoMIPS ; 52,00

Features: fp asimd evtstrm aes
pmull shal sha2 crc32

CPVU implementer: 0x41

CPU architectures 3

CPU variants 0x0

CPU part s 0xd03

CPU revisions 4

processor ¢ 1
RAanMTPSQ ° K2 N0

Figure 3: Device real-time statistics.

3.3 Decision-Making Engine (DME)

This engine is executed when button named DME is clicked in the application. The engine
has Network Profiler, Memory Profiler, and Battery Profiler. The Network Profiler is used to
check if the device is connected to the internet such as Wi-Fi or mobile data (3G/4G/5G). The
Memory Profiler is employed to find current available RAM of the mobile device. This module
is required to check if the device has adequate memory to execute task locally. Lastly, the
Battery Profiler is used to examine the device battery level, battery health and also its current
state. All these profilers i.e., Network Profiler, Memory Profiler, and Battery Profiler are the
components that make the DME and are the foundation of the offloading decision process.

3.4 Execution of the task on a device.

The tasks can be executed locally on a device either as suggested by DME or as user preference.
During local execution, user will provide an input and application will perform execution on the
back. Once execution is finished, the application will provide a user an output. During local
execution it is expected that application will consume more resources of a device like battery
and memory.

3.5 Execution of the task on a cloud.

The tasks can also be executed on a cloud either as suggested by DME or as user preference.
Before offloading a task to the cloud, application will counter check if device is still connected
to a network or not. Spring Boot REST application is developed, which performs the same
execution as execution of a task on local application. It is deployed on AWS Elastic Beanstalk.
When user will provide an input, http POST request will be made. The application deployed on
AWS Elastic Beanstalk will accept the input and perform the execution. Upon the completion of
execution, result will be sent back to the app in JSON format. Finally, the required application
will then parse this JSON response and display the results to the user.

3.6 Case Study

In this research, Fibonacci series has been implemented as a case study. The Fibonacci numbers
are commonly denoted by Fn. The Fibonacci sequence is in which each number is the sum of the
two preceding ones. The sequence commonly starts from 0 and 1. This series is implemented
locally on a device for local execution and also on a cloud for cloud execution. Android Studio
IDE is used for the development of mobile application including DME and Eclipse IDE for
developing Fibonacci microservice for cloud execution. Java programming language is common
between both but the microservice is developed with the help of Spring Boot REST framework.
Performance metrics are being monitored and compared i.e., task completion time and battery,
memory, CPU and network utilization. An android profiler is used to capture these metrics
which summarizes the utilization of the resources by the case application.

4 Design Specification

The general architecture of the proposed solution is illustrated in Figure [l It shows how
the task offloading is being performed from local device to the cloud. The proposed solution
uses AWS Elastic Beanstalk for cloud execution which integrates EC2 instance and S3 bucket.
Elastic Beanstalk automatically handles resource provisioning, load balancing, auto scaling,
and monitoring. Firstly, user should have a device which can run proposed application. Then,
the DME will determine whether to execute task locally or offload it to the cloud based on
various conditions. The DME uses the device current context to make decision. The tasks
will be offloaded to the cloud through internet subject to it’s availability i.e., Wi-Fi or cellular
networks (3G/4G/5G).

Offloading P I
— n—
-—* < or B -«
Response o Cellular
. Wi-Fi Network
Android Mobile
Device

Figure 4: System Architecture of proposed solution.

4.1 System Components and Flow

The multiple modules and flow of this proposed solution is shown in Figure Remote task
execution and mobile device are the two main components in this approach. Offloading requests
are made by the application on the mobile device. Once the request has been made, the DME

will use BroadcastReceiver and IntentFilter methods during runtime on real-time bases. In this
proposed solution, the device current context is composed of Network, Memory and Battery
Profiler. They verify if the device has enough resources to execute task locally or not.

}

Local Only

Metwork Profiler
If network is not
available

If network is sfill
available

Task Execufion
Result

Figure 5: Overview of System Components and Flow.

4.2 Context Aware Offloading

The proposed algorithm is illustrated in Figure[6] Based on the device current context, the DME
gives recommendation of where to execute task. There is not any default offloading choice. The
application allows user to select one of the three options i.e., Local Only, Cloud Only and DME.
There is another option named Information, it enables user to see real-time context of their
device. While implementing this algorithm number of methods have been used to get device
current context. If mobile device doesn’t have enough resources and task is ready to offload, the
final check will then be performed by Network Profiler to verify if the network is still available.
Subject to network availability, the OFFLOAD_RECOMMENDATION can be switched from
CLOUD to LOCAL execution.

4.3 Decision-Making Engine (DME)

The DME contains the resource provisioning algorithm as shown in Figure[7]] The DME executes
the algorithm based on the output from the context monitor. The DME is framed in such a way
that when there is no network, task execution is performed locally and if network connection is
available, number of other checks will be performed before initialising the decision whether the
cloud offloading can be performed or not. Here, other checks include verifying other parameters
such as available memory, current battery level, battery status and battery health.

Algorithm 1 DME
: procedure MAKEOFFLOADRECOMMENDATION (context)

1

2

3

4 OFFLOAD RECOMMENDATION « Null

5: networkProfiler + new NetworkProfiler(context)
6 batteryProfiler + new BatteryProfiler(context)

7 memoryProfiler < new MemoryProfiler(context)
&

9

10: if networkProfiler.getNetworkIsConnected() == false then

11: return OF FLOAD_RECOMMENDATION « LOCAL EXECUTE_RECOMMENDATION
12:
13: if networkProfiler.getNetworklsConnected() == true then
14:
15: if memoryProfiler.get Available RAM() == 2100 then
16:
17: if batteryProfiler.getStatus() == Charging AND batteryProfiler.get Level() >= 50
AND batteryProfiler.get Health() >= Good then
18: return OF FLOAD RECOMMENDATION + LOCAL EXECUTE RECOMMENDATION
19:
20: if batteryProfiler.getStatus() == Discharging AND batteryProfiler.getLevel() ==
50 AND batteryProfiler.get Health() >= Good then
21: return OF FLOAD RECOMMENDATION + LOCAL EXECUTE RECOMMENDATION
22:
23: if batteryProfiler.getStatus() == Full AND batteryProfiler.getLevel() == 50 AND
batteryProfiler.get Health() == Good then
24: return OF FLOAD RECOMMENDATION + LOCAL EXECUTE_ RECOMMENDATION
25:
26: if batteryProfiler.getStatus() == Charging AND batteryProfiler.get Level() < 50
AND batteryProfiler.get Health() == Good then
27: return OF FLOAD RECOMMENDATION + LOCAL EXECUTE_RECOMMENDATION
28:
29: else
30: return OF FLOAD _RECOMMENDATION + CLOUD_EXECUTE_RECOMMENDATION
31: else
32: return OF FLOAD _RECOMMENDATION « CLOUD_EXECUTE _RECOMMENDATION
33:
34:
35:

36: return OFFLOAD_RECOMMENDATION

Figure 6: DME Algorithm.

10

DME (Decision
Making Engine)

Mo Metwork
Connecied

True False
Ayvzilzble Memary ==

2100 MBE

BlLevel == 50

Status==Charging |
Dlscharglng” FuII Truz Truz
hJ v
N Execule locally Offload fo cloud
gl recommendation recommendalion

Figure 7: DME.

BStatus==Charging False

BHealth == Good

5 Implementation

5.1 DME (Algorithm)

The resource provisioning algorithm i.e., DME is embedded in the application to consider the
current network, memory and battery status of the device before finalising the offloading de-
cision. The algorithm is activated once the button named DME present in the home screen of
application is clicked. As shown in Algorithm 1, several IF statements will be executed and
if offloading cannot take place because of network, memory or battery of the device, the local
execution of the Fibonacci series will take place.

5.2 Communication Module

This module is accountable for establishing the connection between the server-side and the
client-side for communication. For cloud offloading, the mobile device should be connected to the
network to perform HTTP GET request. The Fibonacci cloud microservice is developed using
Java Spring boot REST framework and deployed in AWS Elastic Beanstalk. The application
uses Volley API for sending and receiving data in JSON format.

5.3 Technologies used

The number of technologies used for the completion of this project are Android studio IDE,
Eclipse IDE, Postman, Java, XML, JSON, Spring Boot, Git and AWS Elastic Beanstalk. For
the development of mobile application including DME and Fibonacci local execution, Android
studio IDE has been used in which Java programming language used for developing backend
features and XML for designing frontend layouts. Git has also been integrated for the version
control in case of any errors. For the cloud execution, the Fibonacci series microservice has

11

been developed in Eclipse IDE using Java Spring boot REST framework. Postman has been
used to test GET requests. The microservice has been deployed in a cloud called AWS Elastic
Beanstalk and responses of GET request are always in JSON format. Volley API has been used
for sending GET requests and parsing responses to display result back to user in an application.

6 Evaluation

The number of experiments has been performed to evaluate this research work. The findings
and how experiments support the objectives of this research work have also been discussed.
The execution of Fibonacci series takes place on a cloud server and on a local device. The
conclusion is drawn based on the utilization of mobile device resources and execution time on
the two environments with different workloads (inputs). Since the time to execute each workload
varies frequently therefore three readings are taken, and their average is considered as the final
result. Android studio profiler has been used in the evaluation process. Number of android
devices with various parameters (battery, network, and memory) have also been used in order
to test context aware DME.

6.1 Experiment 1 / Fibonacci series - Local execution

Local execution has been performed on a device called Galaxy Note 8. While performing this
experiment it had 70% of battery level with good health and 2500 MB of free memory. Each
input is provided three times and then average time is calculated. Figure [§] shows the Local
execution times of each input i.e., 45,47 and 49. 49 has the highest execution time and consumed
more resources of device for a longer period of time.

Local Execution

400 3736

350

305.67
300 292.85

Seconds 250

200

150

100 64.28 71.69
49.3

13.77 14.02 13.63
0 I I |

Inputs

W45 m47 m49

Figure 8: Local execution time of each input.

The average local execution time of each value is shown in Figure[9] The result depicts that
there is dramatic increase in execution time between 47 and 49 than 45 and 47.

Android studio profiler has been used for the analysis of resource utilization of a device while
performing local execution. As illustrated in Figure the local execution of Fibonacci series
occupied 12% of CPU and 107.8 MB of Memory. Network usage was 0 B/s for both sending
and receiving because execution happened locally. The energy utilization varied between light
and medium. In local execution, full load is on a device CPU.

12

Average of Local Execution

350.00

324.04
300.00
250.00
u
©
S
S 200.00
(%]
150.00
100.00
61.76
50.00
13.81
—
0.00 e R
45 47 49
Figure 9: Average time of each input.
.
CPU 12%
s
50
MEMORY 107.8 MB
256 MB
NETWORK == Sending: 0 B/s == Receiving:0 B/s
ENERGY Light

Medium

.
Tifiahuttanatssbottanntd sttt b s A st sttt sttt nhind............
! 20.000 ! 30.000 ! 35.000 ! 40.000

15.000 ! 25.000 !

Figure 10: Android profiler values of local execution.

13

6.2 Experiment 2 / Fibonacci series - Cloud execution

Cloud execution has been performed with the help of AWS Elastic Beanstalk. It automatically
handles resource provisioning, load balancing, auto scaling, and monitoring. In cloud execution
process an android device is only responsible for accepting user input, making an API call, and
displaying the final result. The whole execution process is done up on a cloud. Even for this
experiment, each input is provided three times and then average time is calculated. Figure
shows the Cloud execution times of each input i.e., 45,47 and 49. 49 has the highest execution
time than rest two.

Cloud Execution

45 41.85 41.94 4236

Seconds
N
wuv

16.09

16.08

16.01

10 63

, I
0

6.22

6.25

Inputs

W45 m47 m49

Figure 11: Cloud execution time of each input.

The average cloud execution time of each value is shown in Figure The result depicts
that there is more execution time difference between 47 and 49 than 45 and 47.

Average of Cloud Execution
45.00 42.05
40.00
35.00
30.00

25.00

Seconds

20.00
16.06

15.00
10.00 6.26
0.00
45 47

Figure 12: Average time of each input.

49

Android studio profiler has also been used for the analysis of resource utilization of a device
while performing cloud execution. As illustrated in Figure [13] cloud execution of Fibonacci
series occupied 0% of CPU and 62.2 MB of Memory. Network usage was 2.9 B/s for sending
and 0.9 B/s for receiving because execution happened on a cloud. The energy utilization varied
between none and light. In cloud execution, there is no load on a device CPU.

14

|« Jlllrevcooe{ iG]

CloudActivity
cpu 0%
100 %

50
MEMORY 622 M8
255 M

“s
NETWORK Sending:0 KB/s = Receiving: 0 KB/s
4K

2

ENERGY None
Medium

Figure 13: Android profiler values of cloud execution.

The results indicate that compared to local execution, offloading to cloud server drastically
reduces the execution time and it also leads to performance improvement in mobile device.
Offloading tasks to cloud free-up space in mobile device for tasks that cannot be offloaded.

6.3 Experiment 3 / DME

The evaluation of DME is performed in this section. Number of android devices with different
context parameters have been used in order to determine if proposed context aware DME is
functioning properly or not. Table in Figure [14] shows the DME execution results.

From Figure it can be seen that, proposed DME is working correctly and producing
accurate decisions centred on the changing device context.

6.4 Discussion

The experiment is performed on both components of the application i.e., local and cloud, by
giving three different input values. It can be seen based on the results achieved, that the
execution time of each workload is significantly lower when offloaded to the cloud server than
local execution. Additionally, if the higher hardware specification of EC2 instance will be used,
the time to execute each workload in the cloud could be even more lowered. In this research
project free tier EC2 instance has been used. The execution time is evaluated based on the
computation time taken by the workload to be executed in both local and cloud. The results
also take some time to get displayed on the mobile device, but this research only focuses on
the execution time and not the display time. CPU, memory, battery, and network utilization
have also been assessed, and it’s been proved that cloud execution is faster and take very less
mobile device computation power. Another experiment has been done to test the functionality
of DME and the results in table 1 have proven that it is working as expected. The proposed
DME makes the right offloading decision based on the device current context. While performing
this experiment, number of different devices with various context have been used. The DME
changes its decision on real-time bases as the context of mobile device changes.

The results attained have indicated to be in line with results found from previous related
work and comparison between this proposed approach and other related work has proven that
this approach is better in the sense that it makes decision on real-time bases and considers
memory, battery, and network fully before finalizing the decision. This research paper has
potential to contribute in the field of cloud computing because it is revealing some of the cloud
services that can be employed in mobile application development.

15

Table 1: Offloading DME Test

Context

Expected Decision

Gotten Decision

Battery Level, Status & Health: 60%,

Discharging & Good
Network: Connected
Memory: 2500 MB

Local

Local

-2

Battery Level, Status & Health: 30%,

Charging & Good
Network: Disconnected
Memory: 2200 MB

Local

Local

Battery Level, Status & Health: 50%,

Discharging & Good
Network: Connected
Memory: 1700 MB

Cloud

Cloud

Battery Level, Status & Health: 75%,

Discharging & Warm
Network: Connected
Memory: 2150 MB

Cloud

Cloud

Battery Level, Status & Health: 100%, Full &

Good
Network: Connected
Memory: 2300 MB

Local

Local

Figure 14: Offloading DME Test

16

7 Conclusion and Future Work

In this research, the framework for offloading the compute intensive tasks of an android applic-
ation is developed named DME (Decision Making Engine). In this proposed framework, the
task execution location is decided based on the current context of the device. Tasks can either
be offloaded to the cloud or execute it locally. AWS Elastic Beanstalk including EC2 and S3 is
used as the cloud server. An android application and a microservice with the Fibonacci series
is built to evaluate this experiment. The complex components while developing this project
include, making offloading decision based on the device current context and cloud execution.
The execution time and, CPU, memory, network, and battery utilization of a device are con-
sidered as the parameters to evaluate. The results attained show that offloading task to the
cloud significantly reduces the execution time as compared to the local execution. This also
helps to reduce CPU and memory utilization, and to increase the battery life of the device.
This research project can be a comprehensive progress in task offloading.

The research work of the proposed solution will be further extended to the analysis of cloud
server context and comparison between available computation power of local device and cloud
before concluding offloading decision. More features of network profiler can also be employed
in future work because network plays a vital role in offloading a task. Network parameters such
as signal strength and bandwidth need to be considered for making offloading decision.

References

[1] R. Buyya, S. N. Srirama, G. Casale, R. Calheiros, Y. Simmhan, and Varghese, “A manifesto for
future generation cloud computing: Research directions for the next decade,” ACM Computing
Surveys, vol. 51, no. 5, Nov. 2018, jCR Impact Factor 2021: 10.282. [Online]. Available:
https://doi.org/10.1145/3241737

[2] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Mobile cloud computing:
Challenges and future research directions,” Journal of Network and Computer Applications,
vol. 115, pp. 70-85, Aug. 2018, jCR Impact Factor 2021: 6.281. [Online]. Available:
https://www.sciencedirect.com /science/article/pii/S1084804518301504

[3] K. Akherfi, M. Gerndt, and H. Harroud, “Mobile cloud computing for computation
offloading: Issues and challenges,” Applied Computing and Informatics, vol. 14, no. 1,
pp. 1-16, Jan. 2018, jCR Impact Factor 2021: 6.82. [Online]. Available: |https:
/ /www.sciencedirect.com /science/article/pii/S2210832716300400

[4] B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud computing: A taxonomy,
survey, and future directions,” ACM Comput. Surv., vol. 51, no. 1, jan 2018, jCR Impact Factor
2021: 10.282. [Online]. Available: https://doi.org/10.1145/3152397

[5] F. Gu, J. Niu, and Z. Qi, “Partitioning and offloading in smart mobile devices for mobile
cloud computing,” Network and Computer Applications, vol. 119, pp. 83-96, oct 2018, jCR
Impact Factor 2021: 6.281. [Online]. Available: |https://www.sciencedirect.com/science/article/
pii/S1084804518302170

[6] J. Bou Abdo and J. Demerjian, “Evaluation of mobile cloud architectures,” Pervasive and Mobile
Computing, vol. 39, pp. 284-303, aug 2017, jCR Impact Factor 2021: 3.453. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1574119216304114

[7] B.-G. Chun and S. Thm, “Clonecloud: Elastic execution between mobile device and cloud,” in
the Sixth Conference on Computer Systems, ser. EuroSys '11. New York, NY, USA: Association
for Computing Machinery, Apr. 2011, p. 301-314, CORE2021 Rank: A. [Online]. Available:
https://doi.org/10.1145/1966445.1966473

[8] R. Buyya and A. Qureshi, “Application partitioning algorithms in mobile cloud computing,”
Network and Computer Applications, vol. 48, pp. 99-117, feb 2015, jCR Impact Factor 2021: 6.281.
[Online]. Available: |https://www.sciencedirect.com/science/article/pii/S1084804514002161

17

https://doi.org/10.1145/3241737
https://www.sciencedirect.com/science/article/pii/S1084804518301504
https://www.sciencedirect.com/science/article/pii/S2210832716300400
https://www.sciencedirect.com/science/article/pii/S2210832716300400
https://doi.org/10.1145/3152397
https://www.sciencedirect.com/science/article/pii/S1084804518302170
https://www.sciencedirect.com/science/article/pii/S1084804518302170
https://www.sciencedirect.com/science/article/pii/S1574119216304114
https://doi.org/10.1145/1966445.1966473
https://www.sciencedirect.com/science/article/pii/S1084804514002161

[9]

[10]

[11]

[13]

[14]

[18]

[21]

A. Merlo, M. Migliardi, and P. Fontanelli, “On energy-based profiling of malware in android,” in
2014 International Conference on High Performance Computing Simulation (HPCS), Sep. 2014, pp.
535-542, CORE2021 Rank: B.

K. Kim, D. Shin, Q. Xie, Y. Wang, M. Pedram, and N. Chang, “Fepma: Fine-grained event-driven
power meter for android smartphones based on device driver layer event monitoring,” in 2014 Design,
Automation Test in Europe Conference Exhibition (DATE), Apr. 2014, pp. 1-6, CORE2021 Rank:
B.

L. Zhang, B. Tiwana, R. P. Dick, Z. Qian, Z. M. Mao, Z. Wang, and L. Yang, “Accurate online
power estimation and automatic battery behavior based power model generation for smartphones,”
in 2010 IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System
Synthesis (CODES+ISSS), Apr. 2010, pp. 105-114, CORE2021 Rank: C.

A. Sarkar, A. Goyal, D. Hicks, D. Sarkar, and S. Hazra, “Android application development: A
brief overview of android platforms and evolution of security systems,” in 2019 Third International
conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), Dec. 2019, pp.
73-79, CORE2021 Rank: N/A.

U. Kanonov and A. Wool, “Secure containers in android: The samsung knox case study,” in
Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile Devices,
ser. SPSM "16. New York, NY, USA: Association for Computing Machinery, Oct. 2016, p. 3—-12,
CORE2021 Rank: A*. [Online]. Available: https://doi.org/10.1145/2994459.2994470

J. 1. Benedetto, L. A. Gonzédlez, P. Sanabria, A. Neyem, and J. Navén, “Towards a
practical framework for code offloading in the internet of things,” Future Generation Computer
Systems, vol. 92, pp. 424-437, mar 2019, jCR Impact Factor 2021: 7.187. [Online]. Available:
https://www.sciencedirect.com /science/article/pii/S0167739X18302310

X. Chen, S. Chen, X. Zeng, X. Zheng, Y. Zhang, and C. Rong, “Framework for context-aware
computation offloading in mobile cloud computing,” Journal of Cloud Computing, vol. 6, jan 2017,
jCR Impact Factor 2021: 5.711. [Online]. Available: https://doi.org/10.1186/s13677-016-0071-y

A. Islam, A. Kumar, K. Mohiuddin, S. Yasmin, M. A. Khaleel, and M. R. Hussain, “Efficient
resourceful mobile cloud architecture (mrarsa) for resource demanding applications,” Journal
of Cloud Computing, vol. 9, feb 2020, jCR Impact Factor 2021: 5.711. [Online]. Available:
https://doi.org/10.1186/s13677-020-0155-6

M. Xu, F. Qian, M. Zhu, F. Huang, S. Pushp, and X. Liu, “Deepwear: Adaptive
local offloading for on-wearable deep learning,” IEEE Transactions on Mobile Computing,
vol. 19, no. 2, pp. 314-330, feb 2020, jCR Impact Factor 2021: 5.577. [Online]. Available:
https://ieeexplore.iece.org/document /8618364

M. Aazam, S. Zeadally, and K. A. Harras, “Offloading in fog computing for iot: Review,
enabling technologies, and research opportunities,” Future Generation Computer Systems,
vol. 87, pp. 278-289, oct 2018, jCR Impact Factor 2021: 7.187. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X18301973

Y. Zhang, G. Huang, X. Liu, W. Zhang, H. Mei, and S. Yang, “Refactoring android java code
for on-demand computation offloading,” in Proceedings of the ACM International Conference on
Object Oriented Programming Systems Languages and Applications, ser. OOPSLA '12. New York,
NY, USA: Association for Computing Machinery, Oct. 2012, p. 233-248, CORE2021 Rank: A.
[Online]. Available: https://doi.org/10.1145/2384616.2384634

R. Kemp, N. Palmer, T. Kielmann, and H. Bal, “Cuckoo: A computation offloading framework
for smartphones,” in Mobile Computing, Applications, and Services, M. Gris and G. Yang, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 59-79, CORE2021 Rank: N/A. [Online].
Available: https://link.springer.com/chapter/10.1007/978-3-642-29336-8_4

X. J. Hong, H. Sik Yang, and Y. H. Kim, “Performance analysis of restful api and rabbitmq for
microservice web application,” in International Conference on Information and Communication
Technology Convergence (ICTC), Jun. 2018, pp. 257-259.

18

https://doi.org/10.1145/2994459.2994470
https://www.sciencedirect.com/science/article/pii/S0167739X18302310
https://doi.org/10.1186/s13677-016-0071-y
https://doi.org/10.1186/s13677-020-0155-6
https://ieeexplore.ieee.org/document/8618364
https://www.sciencedirect.com/science/article/pii/S0167739X18301973
https://doi.org/10.1145/2384616.2384634
https://link.springer.com/chapter/10.1007/978-3-642-29336-8_4

[22]

[23]

[25]

[26]

[27]

Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An efficient code partition
algorithm for mobile cloud computing,” in 2012 IEEE 1st International Conference on Cloud
Networking (CLOUDNET), Mar. 2013, pp. 80-86, CORE2021 Rank: B. [Online]. Available:
https:/ /ieeexplore.ieee.org/abstract /document /6483660

X. Chen, J. Chen, B. Liu, Y. Ma, Y. Zhang, and H. Zhong, “Androidoff:offloading
android application based on cost estimation,” Journal of Systems and Software, vol.
158, p. 110418, dec 2019, jCR Impact Factor 2021: 2.829. [Online]. Available: https:
//www .sciencedirect.com/science/article/pii/S016412121930192X

S. E. Mahmoodi, R. N. Uma, and K. P. Subbalakshmi, “Optimal joint scheduling and
cloud offloading for mobile applications,” IEEE Transactions on Cloud Computing, vol. 7,
no. 2, pp. 301-313, apr 2019, jCR Impact Factor 2021: 5.938. [Online]. Available:
https:/ /ieeexplore.ieee.org/document /7463066

J. I. Benedetto, A. Neyem, J. Navon, and G. Valenzuela, “Rethinking the mobile code offloading
paradigm: From concept to practice,” in 2017 IEEE/ACM jth International Conference on Mobile
Software Engineering and Systems (MOBILESoft), Jul. 2017, pp. 63-67, CORE2021 Rank: A.
[Online]. Available: https://ieeexplore.ieee.org/document,/7972719

K. E. Psannis, G. Benedetto, José I.and Valenzuela, P. Sanabria, A. Neyem, J. Nav6n, and
C. Poellabauer, “Mobicop: A scalable and reliable mobile code offloading solution,” Wireless
Communications and Mobile Computing, vol. 2018, jan 2018, jCR Impact Factor 2021: 2.336.
[Online]. Available: https://doi.org/10.1155/2018,/8715294

B. Zhou, A. V. Dastjerdi, R. N. Calheiros, S. N. Srirama, and R. Buyya, “mcloud: A context-aware
offloading framework for heterogeneous mobile cloud,” IEEE Transactions on Services Computing,
vol. 10, no. 5, pp. 797-810, oct 2017, jCR Impact Factor 2021: 8.216. [Online]. Available:
https:/ /ieeexplore.ieee.org/document /7362223

19

https://ieeexplore.ieee.org/abstract/document/6483660
https://www.sciencedirect.com/science/article/pii/S016412121930192X
https://www.sciencedirect.com/science/article/pii/S016412121930192X
https://ieeexplore.ieee.org/document/7463066
https://ieeexplore.ieee.org/document/7972719
https://doi.org/10.1155/2018/8715294
https://ieeexplore.ieee.org/document/7362223

	Introduction
	Related Work
	MCC Architecture
	Detection of android resource usage
	Android Architecture
	Context aware code offloading
	Communication Protocol
	Code Offloading Frameworks

	Methodology
	Dynamic Partitioning
	Getting real-time device context
	Decision-Making Engine (DME)
	Execution of the task on a device.
	Execution of the task on a cloud.
	Case Study

	Design Specification
	System Components and Flow
	Context Aware Offloading
	Decision-Making Engine (DME)

	Implementation
	DME (Algorithm)
	Communication Module
	Technologies used

	Evaluation
	Experiment 1 / Fibonacci series - Local execution
	Experiment 2 / Fibonacci series - Cloud execution
	Experiment 3 / DME
	Discussion

	Conclusion and Future Work

