. N

\\
National
College

Ireland

Improving AWS EC2 Spot Instance Price
Prediction Accuracy using XGBoost

MSc Cloud Computing
Research Project

Ankit Dutta
Student 1D: x20185502

School of Computing
National College of Ireland

Supervisor: Mr Vikas Sahni

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Ankit Dutta
Student ID: x20185502
Programme: MSc Cloud Computing
Year: 2022
Module: Research Project
Supervisor: Mr Vikas Sahni
Submission Due Date: 15/08/2022
Project Title: Improving AWS EC2 Spot Instance Price Prediction Accuracy
using XGBoost
Word Count: 5148
Page Count: [3]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ankit Dutta

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Improving AWS EC2 Spot Instance Price Prediction
Accuracy using XGBoost

Ankit Dutta
x20185502

Abstract

Amazon Web Services offers one of the cheapest types of computing instances
as spot instances which can be upto 90% cheaper that on-demand instances. This
is especially beneficial to resource constrained projects. This allows users to test
and develop using spot instances and finally deploying the service on on-demand
or reserved instances. This allows for huge cost savings, thus making AWS spot
instance price prediction with reduced error a necessity. In this evaluation 5 AWS
regions were considered; namely, ‘ap-south-1’, ‘eu-west-1’, ‘us-east-1’, ‘us-west-1’,
and ‘us-west-2’. The metrics used for comparison were Mean Square Error (MSE),
Coefficient of Determination (r2_score), Mean Absolute Error (MAE), and Mean
Absolute Percentage Error (MAPE). After comparing these metrics for both the
XGBoost and Random Forest models, it was observed that out of 20 total metrics,
XGBoost had either comparable or better performance in 15 of them. The highest
r2_score (0.6315) was achieved for the XGBoost model in the ‘ap-south-1’ region.

1 Introduction

According to the Gartner Cloud Computing report of 2022, about 69% of businesses
worldwide have accelerated cloud adoption over the past 12 months.E] Furthermore, there
is expected growth in Cloud IT infrastructure from 41% to 63% in the next year and
half. This is brought about by organisations recognising the value of cloud computing,
as 60% of IT decision makers stand by their word that shifting to cloud has benefited
their organisation’s revenue and have made it more sustainable in the past year. In the
past two years, cloud has grown at a much faster rate due to more and more people
working from home. This has affected all domains of cloud, i.e. Infrastructure-as-a-
Service (laaS), Platform-as-a-service (PaaS) and Software-as-a-service (SaaS). Thus, it
becomes important to provision cloud services from any domain at the cheapest possible
price while maintaining Service Level Agreements (SLAs). To address this issue, the focus
on compute facilities of the cloud. There are multiple offerings of the same by different
providers, with Amazon Web Services (AWS) being the most popular. The compute
service of AWS is called, Amazon Elastic Compute Cloud (EC2). This allows users to
lease cloud compute services. Users can also choose what type of compute service they
require, whether it is be a single core requirement or a workstation configuration. There
also several different pricing models on-demand, reserved and spot. Spot Instances (SI)
are the cheapest but have a downside that if the spot price is more than the bid price

'https://wuw.gartner.com/en/information-technology/insights/cloud-strategy

https://www.gartner.com/en/information-technology/insights/cloud-strategy

then the user stands to lose that instance. Even though SIs have such a downside, it is
still on of the most widely used pricing models for reserving EC2 instances as it is about
90% cheaper than on-demand pricing.

SI price prediction has been done using various statistical and machine learning meth-
ods in previous scholarly works, with each trying to prove that it is a more accurate or
efficient method. The aim of this research is to improve upon existing SI price prediction
models. The main contribution of the research work is that of implement Extreme Gradi-
ent Boosting (XGBoost) for predicting SI prices in different AWS regions and observing
whether this approach yields better results than existing scholarly work. To execute this,
the project makes use of SI prices which is available directly from AWS.

The latest work with regards to time-series forecasting and AWS SI price forecasting
using statistical and machine learning models has been done in Section [2 The methodo-
logy and design specification of the project has been discussed in Section [3]and Section [4]
Finally, the implementation and evaluation of this research project has been done in
Section [§ and Section [

2 Related Work

There have been several research publications that have studied the prediction of AWS
SI pricing using various statistical and machine learning methods. Furthermore, in this
review, previous works in the field of prediction and forecasting have been done so as to
provide better alternatives to the already present methods of AWS SI price forecasting.
It helps in evaluating more relevant metrics instead of metrics justly like accuracy, e.t.c.

2.1 Statistical Algorithms

The work presented by (Lucas-Simarro et al.; |2015)) introduces a cloud broker which
provides the best cloud provider for a given time period by developing a statistical model
for it, and analysing dynamic pricing data of the respective cloud providers. The focus of
this paper is on the scheduler (The cloud manager, The Virtual Machines (VM) manager,
and the cloud scheduler, comprise the three modules of the broker), which is modelled
using the historical pricing data of the cloud providers. This model can then use the data
to provide the next hour forecasting price data and provide the best cloud provider option
for that hour. This scheduler was designed keeping in mind the objective of keeping client
investment to the minimum. The client can limit the transfer of active resources between
the providers. Furthermore, the implementation can be done in both dynamic and static
settings. The static scenario comes into play when future hardware requirements are
known. In case of dynamic scenario, the broker switches to the cheapest provider. This
implementation has seen that the performance of the statistical model is better when
using several different types of instances.

2.2 Machine Learning Algorithms

Several different types of machine learning algorithms have been used for forecasting
purposes and in specific forecasting AWS SI pricing.

Work done by (Lariviere and Van den Poel; [2005) evaluates the evaluation capability
model customer retention and profitability which uses Random Forests (RF) and Regres-
sion. It is compared and contrasted against other similar machine learning approaches

and linear regression. It successfully identified different important features that have
helped with predictions. Further evidence from different publications (Criminisi et al.;
2010), (Antipov and Pokryshevskaya; [2012), (Booth et al.; 2014) provide evidence for
better performance than other models (machine learning or statistical), and also better
stability while dealing with seasonality (Khaidem et al.; 2016). Work by (Khandelwal
et al; 2017)) is one of the latest regarding predicting AWS Spot Price prediction. It
successfully establishes RFF as the most accurate method for forecasting SI prices. The
most predominant method was to perform one-day ahead forecasting. Mean Absolute
percentage Error (MAPE) < 10% for 66%-92% of the regions, Mean Consequential Per-
centage Error (MCPE) < 15% for 35%-81% of the regions. In the case of one-week ahead
predictions, MAPE < 15% for 71%-96% of the regions.

Work done by (Oliveira and Torgo; 2015) recognises Bagged Decision Trees (BDT's)
as being on the up-and-up, and is specifically aimed at diversity generation of features.
From further work that was analysed, (Mendes-Moreira et al.; [2012) mention the three
stages to ensemble learning; generation stage, pruning stage and the integration stage.
(Yu et al.; 2015)) provides evidence that Bagged Decision Trees have lower computational
complexity and improve the prediction accuracy. Finally, work by (Nur et al.; 2011)) sees
BDTs being used in real life scenarios, which establishes BDT as a suitable option for
ensemble based prediction.

Bagged Neural Networks (BNNs) was the first implementation, of bagging Neural
Networks which helped reduce variation in prediction accuracy, and the reduction of load
forecasting error (Khwaja et al.; 2015)). Two studies were analysed, which had used BNNs
for forecasting. The first one (Ghani; [2005)), provides insurance prices to online sellers by
predicting auction prices. The second one predicts electrical load. This method outper-
forms statistical approaches like autoregressive-moving-average (ARMA), and machine
learning based approaches like bagged regression trees, single artificial neural-network
(ANN), Support Vector Machines (SVM), similar day-based wavelet neural network (SI-
WNN). Of the above mentioned machine learning methods, RF have the least variation
in prediction accuracy and lowest forecasting error. This is followed by BDT, and then
BNN. Extending this study scope, to using just Neural Networks (NNs) for predicting SI
prices is done in the study by (Wallace et al.; 2013), the average relative estimation does
not surpass 4% and the number of outliers (i.e., those whose relative prediction error is
greater than 10%) is not greater than 5% for the overall amount of the prediction res-
ults, the experimental modeling results on the Amazon EC2 spot instances showed high
correlation accuracy of the proposed approach. This demonstrates that neural networks
are effective at making predictions and are valuable to users who are placing bids on spot
instance services. (Singh and Dutta; [2015) have suggested Gradient Descent Algorithm,
an unique algorithm in the study to forecast spot instance pricing. The accuracy of the
proposed algorithm has been carefully evaluated for both short-term (one-day forecast-
ing) and long-term (one-week forecasting) predicting periods. The findings demonstrate
that the suggested model can estimate spot prices up to five days in advance with a
maximum error rate of 20% and one day in advance with an error rate of 9.4%.

Similar to the previous studies of predicting spot prices, the work by (Lancon et al.;
2019) uses long short-term memory (LSTM) NNs for the same. The study shows that the
proposed LSTM model reduces MAPE by 95% on comparing it to the baseline ARIMA
forecast. An advancement to this is the work by (Kong et al.; |2021), it used Gated
Recurrent Units (GRU) for AWS SI price forecasting. On comparison to other approaches,
it achieves a root mean square error (RMSE) of 1.58e-3.

Finally, to justify the use of Extreme Gradient Boosting (XGBoost), the study by
(Zamani Joharestani et al.f 2019)) is evaluated. This study evaluates PM 2.5 concen-
tration levels using Tehran’s air pollution data provided by the National Department of
Environment and Municipality of Tehran city. It is already established that RFF is the
best method for forecasting time-series data based on earlier scholarly work documented
in this section. This particular study extrapolates the above mentioned dataset using
both RFF and XGBoost models. The results show that XGBoost helps eliminate un-
important features and also outperforms RFF, while achieving a mean-squared error of
0.81, MAE = 9.98, and RMSE of 13.58.

In Table [I} the relative performance of machine learning algorithms based on the
related works.

Table 1: Relative Performance of Machine Learning Models.

Algorithm Relative Performance
Bagged Neural Networks v

Bagged Decision Trees v

RFF v

XGBoost (Proposed Method) v'v'v/

3 Methodology

One of the most important things to do is to establish an appropriate methodology. This
section is aimed at describing all the steps from data collection to the final results. It
starts from data collection and processing to feature extraction and modelling as the
main point of study is effectiveness of the XGBoost algorithm on the AWS SI price
history dataset. The flow of processes is represented in Figure [The first step being
data collection, the main attempt is to retrieve the AWS SI price history dataset. The
price history dataset is available directly from ﬂ More specifically in this project, the
‘describe-spot-price-history” module of the AWS Command Line Interface (CLI) is used
along with AWS ‘boto3] The required data can be directly accessed from the AWS SDK
with the appropriate AWS profile credentials applied in the folder directory of the local
machine. Once the AWS profile is set up, the required data can be filtered on the basis
of a few filters which are:

e availability-zone: The availability zone for which SI history prices are desires.

e instance-type: The type of deployed instance for which the price is desired. In
this criteria, the types represent different computational abilities.

e product-description: This basically represents the operating software of the host
instance, different host OS’s have licensing costs.

e spot-price: The spot price for desired instance in USD($).

Zhttps://docs.amazonaws.cn/en_us/AWSEC2/latest/UserGuide/using-spot-instances-history.
html

Shttps://docs.aws.amazon.com/cli/latest/reference/ec2/describe-spot-price-history.
html

https://docs.amazonaws.cn/en_us/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.amazonaws.cn/en_us/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-spot-price-history.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-spot-price-history.html

e timestamp: The time for which the spot price is valid. It follows the UTC format.

The spot price data that can be retrieved from AWS, is only for 90 days from the day
of retrieval. Since the largest possible dataset is desired for a more accurate and reliable
machine learning model, 90 days worth of SI price data is retrieved. The specific filters

used for this research project are:

e ‘md.large’

¢ ‘Linux/UNIX (Amazon VPC)’
e ‘us-east-1’
AWS

AWS SDK bota3

AWS 5l Price Dataset

Pre-processing of
dataset and general
data statistics

augmented Dickey
Fuller test

Stationary Data? YESA){ Mo Forecasting

Ho

Encode Test based
features

v

XGBoost (RFF)
Training, Fitting and ‘ Training, Fitting and ‘
Predicting L Predicting

l ,,

Evaluation Metrics

Evaluation Metrics
MSE MSE
rZ_score ‘ r2_score ‘
MAE MAE
MAPE MAPE

Figure 1: Flowchart explaining the Methodology of this project.

After retrieving the time-series pricing history data for AWS SI, it is important to
analyse the data. In specific, it is important to analyse whether the time-series data is
stationary or not. This is due to the fact that if the data is stationary, it has no significant
dependence on time. This would then fail to prove the objective of the project. Once

this has been established, it is then time to forecast AWS SI prices using the XGBoost
algorithm.

To begin explaining the implementation of XGBoost, it is important to learn about
Boosting. Boosting is a sequential strategy that functions like an ensemble method.
A group of weak learners are combined, and the prediction accuracy increases. The
model results are weighted depending on the results of the preceding instant ‘t-1’ at any
instant ‘t’. Accurately predicted outcomes get a lower weight than incorrectly categorized
ones, which have a larger weight. Keep in mind that a poor learner is one that is just
marginally superior than random guessing.Building a weak model, drawing conclusions
about the relative relevance of different features, and then utilizing those observations
to create a new, stronger model in an effort to minimize the misclassification error of
the prior model, is the fundamental notion underlying boosting algorithms.To move onto
XGBoost, one needs to be familiar with XGBoost’s tree ensemble base learners. They're a
collection of classification and regression trees (CART) make up the tree ensemble model.
Trees are produced one after the other, and future iterations make an effort to lower the
misclassification rate.

Before making the model using the XGBoost Algorithm, the dataset has to be pro-
cessed for a proper model and a validation test set, for this the dataset is split into
training and validation set. The dataset is split into a 70%-30% ratio, with 70% being
the training set and the 30% being a test (validation set). Once this is done, the model
can be successfully built. For this research project, the XGBoost algorithm, is the point
of focus, with comparisons being made using models built using RFF, linear regressions
and ARIMA models (models used in prior literature). After building the model with the
necessary parameters, it needs to be evaluated. Certain evaluation metrics are used for
this:

e Mean Squared Error:
D

Z(% — i)’
i=1
Where z; is actual value and y; is predicted value (Bickel and Doksum; 2015).

e Coefficient of Determination (R? Score):

_ RSS
TSS

Where RSS is sum of squares of residuals and TSS is total sum of squares (Draper
and Smith; 1998).

R?=1

e Mean Absolute Error (MAE):
1z
MAE = T; |A, — F)|

Where A, is actual value and F; is forecasted value (Willmott and Matsuura; 2005)).
e Mean Absolute Percentage Error (MAPE):

T
MAPE = — E 100
T t=1 ‘ t

A

Where A; is actual value and F} is forecasted value (Hyndman and Koehler; 2006).

6

These metrics have been used for evaluations in prior work referred to in this literature.
Furthermore, we can expand the testing to different regions and instance types. Which
helps in measuring the performance of the model in different real-life scenarios.

4 Design Specification

Machine learning is employed in this work to create the classification model. These models
are able to generate predictions based on the dataset and learn from it. Additionally,
supervised learning is the foundation of the classification model in this instance. Both
input and output variables are employed in this machine learning approach, and the
mapping function is used in the algorithm to map the input variables to the output
variable. This data learning method is beneficial because it enables easy data classification
and separation so that data may be filtered or separated as new data is received. As a
result, data are used to develop an algorithm, which is then used to forecast future data.
This idea forms the basis of every machine-learning categorization model. The three key
ideas that underpin all of the findings are listed below. They are XGBoost, RFF, and
ARIMA. XGBoost and RFF based learning is examined to provide a basic overview of
the key concepts they include.

4.1 Boosting Trees (RFF)

Decision trees are algorithms that group instances according to the values of their features.
A decision tree’s nodes represent features in instances that are waiting to be categorized.
To divide the training data, a feature is chosen, and that feature becomes the root
node. Following a similar process, the tree begins to branch out and create sub-trees
until the same class subsets are established. Diagonal portioning is one of decision trees’
drawbacks. However, (Fu et al.; 2012)) offered suggestions for additional properties that
may be combined with operators like conjunction, negation, and dis-junction to create
multivariate trees.

The most used algorithm for creating decision trees is C4.5 (Quinlan et al.f [1996). It
selects which characteristic may be the separating feature based on the Information Gain.
It creates a classification tree and takes symbolic and numeric inputs. In order to create
subsets of the same class, it divides recursively. The sole drawback is that it performs
badly when certain areas have low point densities and is allergic to diagonal partitioning.
However, multivariate trees have recently been created to address the aforementioned
issue (Brodley and Utgoft; |1995).

Numerous classification trees make up a random-forest classifier (Breiman;2001)). The
k'h classification tree is a classifier that is indicated by an input vector that is unlabeled
and an output vector that is created randomly by choosing random features from the
training data for each node. The same distribution approach was used to construct a
randomly generated vector of various categorization trees in the forest that are unrelated
to one another. Each tree provides a forecast or vote for unlabeled data, so labeling is
completed. Many other algorithms, like the J48 method and others, are available for
usage.

4.2 XGBoost

The core of XGBoost is based on tree algorithms. The characteristic features or columns
of the dataset are taken into consideration by the tree methods, and these features then
serve as the internal or conditional node. The tree now divides into branches or edges in
response to the state at the root node. The leaf node is the branch’s end that does not
create any more edges, and splitting is often done to arrive at a conclusion.

Additionally, XGBoost classifies the data in accordance with decision-tree techniques
after applying them to a known dataset. Gradient-boosted trees serving as the main
approach in XGBoost are based on supervised learning. In essence, supervised learning
is a method where target values (s;) are predicted using the input data, often the training
data (p;) with several features.

Based on training data (p;), the mathematical algorithm (also known as the model)
generates predictions (s;). A linear model, for instance, bases its prediction on a collec-
tion of weighted input characteristics, such as §; = > jejpijﬁ. It is necessary to learn the
parameters from the data. Typically, @ is used to denote the parameters, and the number
of parameters might vary depending on the dataset. Whether it be regression, classific-
ation, ranking, or another kind of problem, the predict value s; aids in categorizing the
issue at hand. The primary goal is to identify the suitable parameters from the training
dataset. The performance of the model is originally described by an objective function.
It must be noted that each model might vary based on the chosen parameter. Consider
a dataset in which the characteristics ”"length” and ”height” are present. Because of
this, a variety of models may be created from the same information, depending on the
parameters.

The objective function has two parts: a training loss and a regularization.

obj(0) = TL(0) + R(0) (1)

The training loss is the first portion of the goal function. R stands for the regular-
ization term, while TL stands for training loss. Simply said, the TL is a measurement
of the model’s predictive power. Regularization helps to prevent issues like over-stacking
or over-fitting of data, which may result in a less accurate model, and keeps the model’s
complexity within desirable bounds. All of the trees created from the dataset are simply
added together by XGBoost, who then optimizes the outcome. The model of tree en-
sembles is followed by Random Forest as well. As a result, it can be claimed that the
boosted trees and random forest are similar in terms of their algorithmic structure but
distinct in terms of it is trained. Both random trees and boosted trees should be com-
patible with a tree ensemble prediction service. This is supervised learning’s key benefit.
Optimizing the objective function is the simplest technique to achieve the primary goal
of learning about the trees.

The issue here is how the trees are configured in respect of the input parameters.
The trees’ structure and the corresponding leaf scores must be determined in order to
establish these parameters (generally represented by a function f;). The simultaneous
training of all the trees is not an easy process. At each stage, XGBoost adds a tree while
attempting to optimize the learnt tree (training). The decision of which tree to add at
each stage is one that occurs, and the solution is to add the tree that achieves the goal
of maximizing our objective function. The new objective function normally includes up

‘https://xgboost.readthedocs.io/en/stable/tutorials/model . html

https://xgboost.readthedocs.io/en/stable/tutorials/model.html

to the second order and takes the shape of an expansion as stated by Taylor’s theorem
(let’s assume at step t).

obj ") = Z?:l[mift(pi) + %Ciff(pi)] + R(f:) (2)

In the Equation 2, the inputs are m; & ¢;. For the new tree that wishes to join the
model, the outcome reflects the intended optimization. In order to handle loss functions
like logistic regression, XGBoost does it in this manner. To continue, regularization is
crucial in determining the complexity of the tree R(f). Tree f(p) may be more precisely
defined as,

fi(P) = wy(py, weR" g : R* — {1,2,3,4,...L} (3)

In the equation above, function ¢ assigns leaves to the relevant data points, and w
represents a vector of leaf scores (same score for data points utilizing the same leaf). The
number of leaves is given by L. Furthermore, the complexity in XGBOOST is given by,

L
R(f)zaL+%@Zw§ (4)

The new optimized objective function at step ¢, or the t* tree, may be obtained by
inserting the regularization equation into Equation 1. The resulting model is a represent-
ation of the newly revised tree model and an evaluation of the quality of the tree structure
q(p). Since it is impossible to concurrently compute all tree possibilities, the tree struc-
ture is determined by computing the regularization, leaf scores, and goal function at each
level. As a leaf is divided into a left leaf and a right leaf, the gain is computed at each
level. The gain is then calculated at the present leaf using the regularization obtained at
any subsequent leaves that may be feasible. That branch is cut off if the benefit is less
than the extra regularization value (concept also called pruning). This is how XGBoost
classifies data and delves deeply into trees; as a result, accuracy and other parameters
are computed.

5 Implementation

This project is based on ‘Python’ and ‘Jupyter’ notebooks which is executed on ‘VSCode’.
It makes use of the ‘Sci-kit Learn’ library for the machine learning tasks, ‘pandas’
and ‘numpy’ libraries for data manipulation, and the ‘datetime’ library to change the
timestamp into a datetime object. In Table [2| the libraries and software used in the
project are detailed.

Table 2: Software packages configuration details.

Software/Library Version
VSCode 1.70.0
Python 3.10.5
Scikit-Learn 1.0.2
Pandas 1.4.3
Numpy 1.21.5

This project is split into two main parts. The first one being focused on dataset
evaluation, and the second one being focused on model creation and model performance
on dataset. For this purpose two Jupyter Notebooks have been created, ‘data_eval.ipynb’
and 'model_perf.ipynb’ respectively.

‘data_eval.ipynb’ is firstly tasked with importing the dataset from AWS. This can
be seen in Figure [2|

AvailabilityZone InstanceType ProductDescription SpotPrice Timestamp
us-east-le md.large Linux/UNIX 0.041800 2022-08-07 17:42:09+00:00
us-east-1c m4 large Linux/UNIX 0.041600 2022-08-07 17:33:32+00:00
us-east-1d m4.large Linux/UNIX 0.036500 2022-08-07 17:24:33+00:00
us-east-1b m4.large Linux/UNIX 0.037900 2022-08-07 15:23:33+00:00
us-east-1a m4.large Linux/UNIX 0.034800 2022-08-07 06:41:33+00:00

1364 us-east-1a md.large Linux/UNIX 0.038500 2022-05-10 19:13:23+00:00
1365 us-east-1b m4.large Linw/UNIX 0.038100 2022-05-10 16:52:42+00:00
1366 us-east-le m4.large Linux/UNIX 0.044200 2022-05-10 13:53:36+00:00
1367 us-east-1c m4.large Linux/UNIX 0.042500 2022-05-10 13:27:09+00:00
1368 us-east-1d m4.large Linux/UNIX 0.038200 2022-05-10 04:23:35+00:00

1369 rows x 5 columns

Figure 2: Dataset imported as a DataFrame in the Jupyter Notebook

It then performs analysis on the data by specifying the ‘AvailabilityZone’ and ‘In-
stanceType’. The shortlisted data is shown in Figure

AvailabilityZone InstanceType ProductDescription SpotPrice Timestamp
us-east-1c m4.large Linux/UNIX 0.041600 2022-08-07 17:33:32+00:00
us-east-1c m4.large Linux/UNIX 0.041700 2022-08-07 05:58:04+00:00
us-east-1c m4.large Linux/UNIX 0.041800 2022-08-06 21:46:51+00:00
us-east-1c m4.large Linux/UNIX 0.041800 2022-08-06 17:30:30+00:00
us-east-1c m4.large Linux/UNIX 0.041900 2022-08-06 01:42:38+00:00

1342 us-east-1c m4.large Linux/UNIX 0.042100 2022-05-12 14:51:53+00:00
1346 us-east-1c m4.large Linux/UNIX 0.042200 2022-05-12 02:30:23+00:00
1352 us-east-1c m4.large Linux/UNIX 0.042300 2022-05-11 14:25:23+00:00
1360 us-east-1c m4.large Linux/UNIX 0.042400 2022-05-11 07:22:22+00:00
1367 us-east-1c m4.large Linux/UNIX 0.042500 2022-05-10 13:27:09+00:00

272 rows x 5 columns

Figure 3: Filtered Dataset on the basis of ‘AvailibiltyZone’ and ‘InstanceType’

The dataset is further manipulated by indexing on the basis of hour. One issue with
this is the AWS SI price is only updated once there is a change, so there are a lot of
columns which have ‘NaN’. This is mitigated by using the forward fill method. The final
data can be seen in Figure [

10

Timestamp

2022-05-10 13:00:00+00:00
2022-05-10 14:00:00+00:00
2022-05-10 15:00:00+00:00
2022-05-10 16:00:00+00:00
2022-05-10 17:00:00+00:00

2022-08-07 13:00:00+00:00
2022-08-07 14:00:00+00:00
2022-08-07 15:00:00+00:00
2022-08-07 16:00:00+00:00
2022-08-07 17:00:00+00:00

141 rows x 1 columns

SpotPrice

Figure 4: Dataset with ‘NaN’ replaced using forward fill.

This final version of the manipulated dataset is then plotted thus representing the
hourly price plot for 90 days of data. Some of its statistical data like rolling mean, rolling
standard deviation have been plotted as well. These can be seen in Figures [f] and [6]

0.0575

0.0550

0.0525

0.0500

0.0475

0.0450

0.0425

0.0400

2022-06-01 2022.06-15 2022-07-01

2022.07-15 2022-08-01

Figure 5: Hourly plots for AWS SI data.

Finally, the stationarity of data is tested because if the data is stationary then there
is no point in forecasting future prices.

In the ‘model_perf.ipynb’ notebook, the only task is that of model performance.
Based on prior related works reviewed in this project, It has been established that RFF
and XGBoost are one of the best methods for forecasting time-series data. Since, it is to
be proven that XGBoost is a better method then it has to be head-to-head with RFF. For
a detailed evaluation. The AWS SI pricing data is collected from five different regions:

e ap-south-1.

11

Rolling Mean & Standard Deviation

—— Original
—— Rolling Mean
—— Rolling Std

0.05

004

003

002

001

0.00

2022.05.15 2022-06-01 2022.06-15 2022.07-01 2022.07-15 2022.08-01

Figure 6: Rolling Mean and Rolling Standard Deviation of data.

eu-west-1.

us-east-1.

us-west-1.

us-west-2.

The AWS SI price data collected from these regions is used for creating RFF and
XGBoost models. Finally, once these models have been made, a few evaluation metrics
are also calculated for the same for comparison purposes:

Mean Squared Error.

Coefficient of Determination.

Mean Absolute Error.

Mean Absolute Percentage Error.

These metrics are then evaluated to establish which method of forecasting is less likely
to produce errors.

6 Evaluation

The first part of the evaluation is to prove that the AWS SI pricing data is not stationary.
To check for stationarity, the ‘adfuller()’ function is implemented. This function is an
augmented Dickey-Fuller test (ADF), used in statistics and economics, examines the
possibility that a unit root exists in a time series sample. Depending on the test version
being utilized, the alternative theory may vary, but it is often stationarity or trend-
stationarity. It is a supplement to the Dickey-Fuller test (Dickey and Fuller; [1979) for a
more extensive and intricate collection of time series models. The test’s ADF statistic is
a negative value. The work by Mushtaq| (2011) shows that the greater the rejection of
the unit root hypothesis is, at least at some degree of confidence, the higher the negative

12

Table 3: Evaluation metrics of the ADF test.

Metric Value
Test Statistic -1.806237
p-value 0.377370
#Lags Used 5.000000
Number of Observations Used 84.000000
Critical Value (1%) -3.510712
Critical Value (5%) -2.896616
Critical Value (10%) -2.585482

value it is. The hourly Spot Price is passed onto the ‘adfuller()’” function, which then
provides data statistics seen in Table [3]

Since the ‘Test Statistic’ metric’s value is greater than the critical values, the null
hypothesis is accepted and the data is considered non-stationary. This means that the
AWS SI pricing data is not stationary and can be used for forecasting. The next step
is to evaluate the XGBoost model against the RFF model. For this purpose, models for
both are created for the ‘m4.xlarge’ type instance for five AWS regions; ‘ap-south-1’, ‘eu-
west-1, ‘us-east-1", ‘us-west-1’, and ‘us-west-2’. The model performance of each region
is discussed in the subsections below.

6.1 ap-south-1

The RFF model and XGBoost model performance statistics for the ‘ap-south-1" region
are given in Table

Table 4: Evaluation Metrics for RFF and XGBoost Model for ’ap-south-1" region

Evaluation Metrics RFF XGBoost
MSE 1.8722 x 10™° 1.6322 x 10~°
r2_score 0.6289 0.6315

MAE 0.0031 0.0027
MAPE 0.0345 0.0308

From Table 4} it is inferred that the XGBoost model has better MAE and MAPE,
and equivalent (within margin of error) r2_score than the RFF model.

6.2 ecu-west-1

The RFF model and XGBoost model performance statistics for the ‘eu-west-1" region are
given in Table [5

From Table [0} it is inferred that the XGBoost model has better r2_score, MAE and
MAPE, and equivalent (within margin of error) MSE than the RFF model.

6.3 us-east-1

The RFF model and XGBoost model performance statistics for the ‘us-east-1’ region are
given in Table [6]

13

Table 5: Evaluation Metrics for RFF and XGBoost Model for ’eu-west-1" region

Evaluation Metrics RFF XGBoost
MSE 8.2157 x 107 8.0334 x 107°
r2_score -0.3155 -0.0344

MAE 0.0019 0.0017
MAPE 0.0288 0.0258

Table 6: Evaluation Metrics for RFF and XGBoost Model for 'us-east-1’ region

Evaluation Metrics RFF XGBoost
MSE 5.7867 x 10> 5.0131 x 10~°
r2_score 0.0518 -0.0028

MAE 0.0044 0.0044
MAPE 0.0469 0.0477

From Table @; it is inferred that the XGBoost model has equivalent (within margin
of error) MAE and MAPE than the RFF model.

6.4 us-west-1

The RFF model and XGBoost model performance statistics for the ‘us-west-1’ region are
given in Table [7]

Table 7: Evaluation Metrics for RFF and XGBoost Model for 'us-west-1" region

Evaluation Metrics RFF XGBoost
MSE 8.2157 x 107 8.2769 x 107°
r2_score -0.3155 0.0891

MAE 0.0019 0.0019
MAPE 0.0288 0.0284

From Table[7} it is inferred that the XGBoost model has a better r2_score and MAPE,
and equivalent (within margin of error) MSE and MAE than the RFF model.

6.5 us-west-2

The RFF model and XGBoost model performance statistics for the ‘us-west-2’ region are
given in Table [§

From Table [§} it is inferred that the XGBoost model has equivalent (within margin
of error) MAE and MAPE than the RFF model.

6.6 Discussion

From subsections [6.1} [6.2] 6.4, and it is seen that out of 20 error measuring
statistics, 15 of them are either equivalent (7) or better (8) for XGBoost. This shows

that the XGBoost model outperforms RFF. The XGBoost model generates a feature
importance graph. In all five cases represented in subsections [6.1] 6.3] 6.4 and [6.5]

14

Table 8: Evaluation Metrics for RFF and XGBoost Model for 'us-west-2’ region

Evaluation Metrics RFF XGBoost
MSE 2.053 x 10~* 2.0105 x 10~*
r2_score -1.4931 -1.6524

MAE 0.0114 0.0115
MAPE 0.1223 0.1230

the F-score of the ‘day’ parameter is always the highest. In Table[d] the combined report
for the evaluation metrics of both RFF and XGBOOST models is observed.

Table 9: Combined report for the evaluation metrics of both RFF and XGBOOST models.

Regions
‘ap-south-1’ ‘eu-west-1’ ‘us-east-1’ ‘us-west-1’ ‘us-west-2’
RFF XGBoost RFF XGBoost RFF XGBoost RFF XGBoost RFF XGBoost
MSE 1.8722 x 1077 [1.6322 x 1077 [8.2157 x 107° | 8.0334 x 1070 | 5.7867 x 107° | 5.0131 x 1077 [8.2157 x 107° | 8.2769 x 1070 | 2.053 x 10~ 7] 2.0105 x 10T
r2_score 0.6289 0.6315 -0.3155 -0.0344 0.0518 -0.0028 -0.3155 0.0891 -1.4931 -1.6524
MAE 0.0031 0.0027 0.0019 0.0017 0.0044 0.0044 0.0019 0.0019 0.0114 0.0115
MAPE 0.0345 0.0308 0.0288 0.0258 0.0469 0.0477 0.0288 0.0284 0.1223 0.1230

Evaluation
Metrics

Based on evidence from [Zamani Joharestani et al. (2019), it has been successfully
corroborated that XGBoost has a better performance on time-series data than RFF.
Two major observations that has been made are, that the performance of the models
suffered due to small datasets. This could be easily rectified by gathering AWS SI prices
for more than the 90 days provided by AWS. Also, for all regions except ‘ap-south-1’
have very low (and in some cases negative) which means that a very small percentage of
inputs can explain the observed variation. The highest r2_score (0.6315) was achieved for
the XGBoost model in the ‘ap-south-1" region.

7 Conclusion and Future Work

The main objective of this project was to establish XGBoost as a superior model for
forecasting AWS SI price data. In Section [0 it has been clearly established that XGBoost
is a better model that RFF which in turn has outperformed other ensemble and statistical
models. Thus the research question for this project has been successfully answered. The
main findings of the project are that the AWS SI price dataset is not stationary thus
making is suitable for price forecasting. Furthermore, upon modeling this data using
XGBoost and RFF it was observed that for most evaluation metrics the XGBoost model
outperformed its RFF counterpart. This model also generated a feature importance
graph, which on all the five different scenarios of evaluation showed that the ‘day’ feature
has the highest importance. This shows that AWS SI prices doesn’t fluctuate much
everyday, and that the price changes value gradually.

One major limitation of this project is the inability to use in mission critical applica-
tions as the r2_scores on all the regions except ‘ap-south-1’ has very low values (in some
cases negative) which means that a very small percentage of inputs can explain the ob-
served variation. This research project benifits any user planning on using AWS SI for
their projects / system implementation. This significantly reduces costs as SI instances
are upto 90% cheaper than on-demand instancesﬂ Services that offer Distributed data-
bases benefit greatly from SIs. Distributed databases that have the ability to save data

Shttps://aws.amazon.com/ec2/spot/pricing/

15

https://aws.amazon.com/ec2/spot/pricing/

even after instance reboots may be supported by Spot Instances without any problems.
Examples include Mongo, Elasticsearch, and Cassandra, all of which are fairly adept at
picking up where they left off after an interruption. In addition to this machine learning
also is a good domain to use SI instances in as they’re cheaper than on-demand instances.
Machine learning models, if interrupted during creation due to loss of SI can just restart
the process again. Since, most machine learning applications are in the education domain
and not mission critical, SIs should be preferred.

Any future work in this domain should aim at studying the computational complexity
of machine learning models v/s gains in SI price predicting. Recent works have seen
minimal increments in error reduction while forecasting AWS SI price data. Hence, such
a study which would provide an idea as to whether a slight reduction in forecasting error
is worth the added computational complexity.

References

Antipov, E. A. and Pokryshevskaya, E. B. (2012). Mass appraisal of residential apart-
ments: An application of random forest for valuation and a cart-based approach for
model diagnostics, Ezpert Systems with Applications 39(2): 1772-1778.

URL: https://www.sciencedirect.com/science/article/pii/S095741741101189/

Bickel, P. J. and Doksum, K. A. (2015). Mathematical statistics: basic ideas and selected
topics, volumes I-1I package, Chapman and Hall/CRC.

Booth, A., Gerding, E. and McGroarty, F. (2014). Automated trading with performance

weighted random forests and seasonality, Expert Systems with Applications 41(8): 3651
3661.

Breiman, L. (2001). Random forests, Machine learning 45(1): 5-32.

Brodley, C. E. and Utgoff, P. E. (1995). Multivariate decision trees, Machine learning
19(1): 45-77.

Criminisi, A., Shotton, J., Robertson, D. and Konukoglu, E. (2010). Regression forests
for efficient anatomy detection and localization in ct studies, International MICCAI
workshop on medical computer vision, Springer, pp. 106—117.

Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimators for autore-
gressive time series with a unit root, Journal of the American statistical association
74(366a): 427-431.

Draper, N. R. and Smith, H. (1998). Applied regression analysis, Vol. 326, John Wiley &
Sons.

Fu, Z., Papatriantafilou, M. and Tsigas, P. (2012). Mitigating distributed denial of service
attacks in multiparty applications in the presence of clock drifts, IEEFE transactions on
Dependable and Secure Computing 9(3): 401-413.

Ghani, R. (2005). Price prediction and insurance for online auctions, Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery in data
mining, pp. 411-418.

16

Hyndman, R. J. and Koehler, A. B. (2006). Another look at measures of forecast accuracy,
International journal of forecasting 22(4): 679-688.

Khaidem, L., Saha, S. and Dey, S. R. (2016). Predicting the direction of stock market
prices using random forest, arXiv preprint arXiv:1605.000083 .

Khandelwal, V., Chaturvedi, A. K. and Gupta, C. P. (2017). Amazon ec2 spot price
prediction using regression random forests, IEFEE Transactions on Cloud Computing
8(1): 59-72.

Khwaja, A., Naeem, M., Anpalagan, A., Venetsanopoulos, A. and Venkatesh, B. (2015).
Improved short-term load forecasting using bagged neural networks, FElectric Power
Systems Research 125: 109-115.

Kong, D., Liu, S. and Pan, L. (2021). Amazon spot instance price prediction with gru
network, 2021 IEEE 2/th international conference on computer supported cooperative
work in design (CSCWD), IEEE, pp. 31-36.

Lancon, J., Kunwar, Y., Stroud, D., McGee, M. and Slater, R. (2019). Aws ec2 instance
spot price forecasting using Istm networks, SMU Data Science Review 2(2): 8.

Lariviere, B. and Van den Poel, D. (2005). Predicting customer retention and profitab-
ility by using random forests and regression forests techniques, Fzpert Systems with
Applications 29(2): 472-484.

URL: https://www.sciencedirect.com/science/article/pii/S0957417405000965

Lucas-Simarro, J. L., Moreno-Vozmediano, R., Montero, R. S. and Llorente, I. M. (2015).
Cost optimization of virtual infrastructures in dynamic multi-cloud scenarios, Concur-
rency and Computation: Practice and Ezperience 27(9): 2260-2277.

Mendes-Moreira, J., Soares, C., Jorge, A. M. and Sousa, J. F. D. (2012). Ensemble
approaches for regression: A survey, Acm computing surveys (csur) 45(1): 1-40.

Mushtaq, R. (2011). Augmented dickey fuller test.

Nur, N., Jahncke, J., Herzog, M. P., Howar, J., Hyrenbach, K. D., Zamon, J. E., Ain-
ley, D. G., Wiens, J. A., Morgan, K., Ballance, L. T. et al. (2011). Where the wild
things are: predicting hotspots of seabird aggregations in the california current system,
Ecological Applications 21(6): 2241-2257.

Oliveira, M. and Torgo, L. (2015). Ensembles for time series forecasting, Asian Conference
on Machine Learning, PMLR, pp. 360-370.

Quinlan, J. R. et al. (1996). Bagging, boosting, and c4. 5, Aaai/laai, vol. 1, pp. 725-730.

Singh, V. K. and Dutta, K. (2015). Dynamic price prediction for amazon spot instances,
2015 48th Hawaii International Conference on System Sciences, IEEE, pp. 1513-1520.

Wallace, R. M., Turchenko, V., Sheikhalishahi, M., Turchenko, I., Shults, V., Vazquez-
Poletti, J. L. and Grandinetti, L. (2013). Applications of neural-based spot market
prediction for cloud computing, 2013 IEEE 7th international conference on intelligent
data acquisition and advanced computing systems (IDAACS), Vol. 2, IEEE, pp. 710
716.

17

Willmott, C. J. and Matsuura, K. (2005). Advantages of the mean absolute error (mae)

over the root mean square error (rmse) in assessing average model performance, Climate
research 30(1): 79-82.

Yu, L., Wang, Z. and Tang, L. (2015). A decomposition-ensemble model with data-

characteristic-driven reconstruction for crude oil price forecasting, Applied Energy
156: 251-267.

Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B. and Talebiesfandarani, S. (2019).

Pm2. 5 prediction based on random forest, xgboost, and deep learning using multi-
source remote sensing data, Atmosphere 10(7): 373.

18

	Introduction
	Related Work
	Statistical Algorithms
	Machine Learning Algorithms

	Methodology
	Design Specification
	Boosting Trees (RFF)
	XGBoost

	Implementation
	Evaluation
	ap-south-1
	eu-west-1
	us-east-1
	us-west-1
	us-west-2
	Discussion

	Conclusion and Future Work

