
Configuration Manual

MSc Research Project

Cloud Computing

Sathish Kumar Krisnamoorthy
Student ID: X20208057

School of Computing

National College of Ireland

Supervisor: Shivani Jaswal

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sathish Kumar Krisnamoorthy

Student ID: X20208057

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Shivani Jaswal

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1407

Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 15th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Sathish Kumar Krisnamoorthy
X20208057

1 Prescript

The prescript is used for generating random coordinates with the specified country bound-
aries and list of peers within 1000 km of proximity. This script is deployed to the AWS
EC2 instance T2.X2Large. We used seven such instances running in parallel to generate
50K random coordinates for India and 5K coordinates for each of China and the USA.

The EC2 template Figure 1 pulls the prescript code from git and instals all the
dependencies with the help of the shell script written in user-data Figure 2. With the
help of EC2 Template Figure 3 the process of instance deployment is automated and
starts running in Figure 4. After SSH to the running instance, it can be seen that
the dependencies are installed and the code is pulled from GitHub Figure 5. Once the
application is started in the EC2 instance, it looks like this: Figure 6. This is the memory
usage of the application, Figure 7.

The code contains various methods to do the following tasks:
1. Join the two datasets with respect to the country’s geolocation. (One dataset is

from Ookla, which contains info about mobile devices and their attributes, and the other
dataset contains the geographical boundary information of all the countries in the world.)

2. Generate random coordinates and peer device information for the specified country,
including its border.

3. Collect them in a CSV file and upload the dataset to the S3 Bucket. The dataset
folders are shown in Figure 8 and the total S3 memory usage metrics are shown in Figure
9.

1



Figure 1: Prescript Template AWS

Figure 2: Prescript Template User Data

2



Figure 3: EC2 Instance Deployed

Figure 4: EC2 Instance Running

3



Figure 5: Prescript SSH Initial State

Figure 6: Prescript Logs after starting the app

4



Figure 7: Prescript Memory Usage

Figure 8: Prescript S3 Folders

5



Figure 9: Prescript S3 Resources

1.1 Setup

The code can be setup in two ways:
1. Just run the AWS-Instance-Template Figure to pull this code from git and install

all the dependencies.
2. Install Python3 from https://www.python.org/downloads/

pip by running curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py
pip install -r requirements.txt

To run the application type
python3 main.py

The country name can be changed to any and simulate the performance of them. Un-
comment the “‘upload dataset to s3 method“‘ and run the main.py file again to upload
the result to the S3 Bucket.

2 Simulator

This code will get the Prescript output as input and crunch those 1 TB datasets to
produce a result in the form of a graph and table. The simulation is performed for data
transfers of 1 GB, 10 GB, 100 GB, and 200 GB in the proposed system and traditional
datacenters located 250, 500, and 1000 kilometres apart. The simulation is done for the
top 3 countries based on their device count. From Figure 19, it is clear that India, USA,
and China are the top 3 (the test attributed refers to how many speed tests are conducted
through Ookla). The Simulator code will crunch the 500 GB pre-processed dataset and
produce the desired result. Figure 12 shows how all the preprocessor output CSV files are
loaded as 1 million records into the memory and passed to generateFinalData method.
The preprocessor output CSV file looks like this Figure 20 and the generateFinalData
method are shown in Figure 10, Figure 11 and Figure 12.

A deep analysis of India’s 50K random points has been conducted. From the box
plot of devices in Figure 14, it is clear that at any given point, eliminating the outliers,

6

https://www.python.org/downloads/


the user can have 450,000 devices. As per the system, each device contributes
256 MB. For any given point, the user could use 115 TB of cache at once.
The Probability Distribution also infers the same Figure 15, it also shows that the
probability of having 100,000 devices is very high at any given point. The propagation
delay of the system with respect to those 50K points and a traditional datacenter located
at 1000 km is shown in Figure 16. The Ookla dataset joining with respect to Indian
boundaries is shown in Figure 17 and in Figure 18, the visualisation of the random
coordinate generator in the preprocessing script is shown.

Figure 10: Simulator Code-1

Figure 11: Simulator Code-2

7



Figure 12: Simulator Code-3

Figure 13: Export to CSV

Figure 14: India Boxplot

8



Figure 15: India Probability Distribution

Figure 16: Propagation Delay Plot India

9



Figure 17: Mobile attributes dataset mapped to India

Figure 18: Visualisation of random point for India

10



Figure 19: Top 5 countries from the dataset

Figure 20: Input to Simulator

2.1 Setup

Install anaconda from the following url https://www.anaconda.com.
Open Jupyter notebook and select the simulator code.
Click on ”kernel” and then ”restart & run all”.

3 WebApp

The Webapp is used to calculate the performance of the proposed system at any given
coordinate and file size. This web also creates a mock data about the peers to the DB
which is running in an EC2 instance Figure 23. The mock data contains peers’ names,
location, device info, device network usage, device memory usage, etc. The rows in the
transactions table are hashed and stored in a column named hash. This hash column is
later used for calculating the merkle root hash by the DAPP.

The website screenshots are given in Figure 21, Figure 22. Once the user gives the
lat, long, and filesize, the flask app will compute the number of devices. Consider that
if it needs ’X’ devices to transfer ’Y’ MB of files then at MySQL ’X’ number of mock
users and ’X’ number of mock devices will be created. The mock data of the userInfo
table is shown in Figure 24 and mock data of deviceInfo is shown in Figure 25. The

11

https://www.anaconda.com


transaction table will also have mock data of how many device resources have been used
by the system Figure 26. The DAPP will run every 1 hour and look for value ”0” in the
”isPicked” column. It will pick all the unpicked transactions and calculate the merkle root
hash with the help of the ”hash” column in the transaction table. Once the Merkle root
is calculated, it is updated in the merkleRoot table Figure 29 and updates the isPicked
column to 1 Figure 27.

Figure 21: WebApp Screenshot-1

Figure 22: WebApp Screenshot-2

12



Figure 23: MySql Connection

Figure 24: UserInfo Table

13



Figure 25: DeviceInfo Table

Figure 26: Transaction Table before DAPP update

14



Figure 27: Transaction Table after DAPP update

Figure 28: MerkleRoot table before DAPP update

15



Figure 29: MerkleRoot table after DAPP update

3.1 Setup

Install Python3 from https://www.python.org/downloads/

Next install pip by running
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

Install requirements
pip install -r requirements.txt

To run the application type
export FLASK APP=application flask run

4 Smart Contract

This is the smart contract code developed in Solidity and deployed using Remix. The
smart contract will store the updated merkle root hash on the Ethereum public blockchain
network. It also retrieves the top (recent) merkle root whenever the challenge method
is called. With this top merkle root value, the SLA transparency is verified by the peers.

The smart contract code is given in Figure 30, and to deploy the smart contract on
the Ethereum ropsten testnet, it must be deployed as an inject-provider metamask Figure
31 and it will cost some test ether from the metamask wallet as shown in Figure 32. Once
the block is added, it will give the transaction id and contract id in metamask Figure 33.
The transactions could also be seen in the Etherscan Figure 34.

16

https://www.python.org/downloads/


Figure 30: Smart Contract Compile

Figure 31: Smart Contract Deploy

17



Figure 32: Metamask Gas Price

Figure 33: Metamask Contract Id

18



Figure 34: Etherscan transaction

4.1 Setup

Open Remix from https://remix.ethereum.org

Install Metamask from https://metamask.io

Get some free test ethers from https://faucet.dimensions.network

Upload the submitted solidity code to remix editor.
Compile the uploaded code.
Deploy it in Inject Web3 and select Ropsten testnet.
This will deploy the code to Ethereum test network.

5 DAPP

The DAPP Figure 35 has a scheduler which runs every 1 hour and checks the MySQL
DB for any new transactions with the help of isPicked column. If the isPicked value
is 0, the rows are picked and the merkle root hash is computed by hashing all the hash
values present in hash column of the transaction table. This merkle root hash is then
updated in Merkle Root table and Ethereum smart contract running in Ropsten test
network Figure 36, Figure 37.

This DAPP also has two rest endpoint for accessing the root merkle value from both
the Blockchain Figure38 and the DB Figure39. This REST end point will be handy for
the peers to verify their SLA.

19

https://remix.ethereum.org
https://metamask.io
https://faucet.dimensions.network


Figure 35: DAPP blockchain upload

Figure 36: Etherscan update

20



Figure 37: Etherscan transaction

Figure 38: Rest call for Blockchain

21



Figure 39: Rest call for DB

5.1 Setup

Install NodeJs from following link https://nodejs.org/en/download/

Open Terminal and cd into the project location, must be inside SLAEnsurer
Run the following command to start the application

npm install
node handler.js

Now to test the DAPP, install postman from the following link: https://www.postman.
com

Make a ”GET” request with the following URLS to see the root hash of both blockchain
and DB.

http://localhost:8080/blockchainChallenge

http://localhost:8080/dbChallenge

22

https://nodejs.org/en/download/
https://www.postman.com
https://www.postman.com
http://localhost:8080/blockchainChallenge
http://localhost:8080/dbChallenge

	Prescript
	Setup

	Simulator
	Setup

	WebApp
	Setup

	Smart Contract
	Setup

	DAPP
	Setup


