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MARLA Architecture On Azure Services

Janit Pathak
20186169

Abstract

In cloud computing, the Function as a Service (FaaS) is significantly changing
the design and architecture of the software services. The serverless computing
provides freedom to user from managing hardware infrastructures which is required
to host the software applications. Along with that, it also provides higher elasticity
and scalablity to the application to provide fine-grained cost model. The Microsoft
Azure is the one of the fastest growing cloud service provider but there is lim-
ited research available on MapReduce application fesiablity on Azure serverless
infrastructure. The MapReduce application is a decentralized big data processing
framework and it has capability of processing huge amount of data parallely. This
paper implements MapReduce application on Microsoft Azure cloud computing ser-
vices. It implemented MapReduce application by using Azure serverless computing
and blob storage and it also provides evaluation of performance of the application
by considering various parameters such has makespan, CPU utilization etc. Finally
it provides the comparative analysis of implemented application with the other
available MapReduce solutions. The research found that MARLA architecture on
AWS has shorter makespan than Azure.

1 Introduction

With the changing time the worth of different commodity keeps getting changed. In the
current century the data is classified as the most precious commodity. In last 2 decades
it is observed a great change led by digital revolution. The use of IT has been increased
in every sector of industry. The increase of digitization results in the increase of the
generation of data. This comes with the challenge of managing huge amount of data.
The MapReduce application is one of the most prominent application for processing big
data. Cloud has made the implementation of different application independent of their
hardware considerations. The services offered by cloud provider such as Platform as a
Service(PaaS), Software as a Service(SaaS) etc. has made it easy to implement solutions
which are scalable and highly available. But it is extremely important to optimize resource
utilization on cloud because it has pay-as-per-usage model.

This project consists of two stages: mapping tasks and reducing tasks. Enormous
data is divided into smaller chunks and processed in parallel with the aid of map and
reduce workers. One of the biggest drawbacks of MapReduce systems is their poor task
scheduling. Hadoop 2.0 enhances resource management for MapReduce tasks by intro-
ducing the cluster resource manager. Although the present Hadoop job scheduler still
needs improvement.

The rate of data production per day has surpassed petabytes in the realm of new inter-
net technologies. Data management, data analytics and data processing have become key
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difficulties and the requisite infrastructure, operating costs, storage and security are the
primary bottlenecks in addressing these issues. Serverless cloud computing may be a vi-
able option for addressing current bottlenecks and providing a cost-effective solution. The
serverless platform uses a pay-per-use pricing model because of which a non-optimized
MapReduce application with poor job scheduling would not only be inefficient, but also
expensive.

In this research paper, the existing MARLA architecture is implemented by using
Microsoft Azure services which is made to increase data locality and deal with latency
issue in the existing MapReduce architecture implementation. Serverless computing ser-
vices in azure is being used for implementation and resultant data is stored on Azure
blob storage. Later, an extensive discussion is made for detailed performance analysis
of implemented architecture and finally a descriptive comparison of MARLA(Mapreduce
on AWS Lambda) architecture on AWS and Azure is carried out.

1.1 Research Question

Is the makespan of MARLA architecture is better in AWS or in Azure?

1.2 Research Objectives and Contributions

• Implementing MARLA architecture on Microsoft Azure Cloud.

• Evaluating its performance matrix

• Comparing its makespan with AWS MARLA architecture.

The contribution consists of:

• Critically analyzing and reviewing the existing research work performed in the
identical area.

• Designing and implementing MARLA architecture on Azure.

• Designing the configuration manual to reproduce the work for public use.

2 Related Work

In this section the research work carried out in the area of optimizing MapReduce ap-
plication is thoroughly examined. Additionally, multiple different architecture and imple-
mentation of MapReduce application on serverless platform is brought into consideration.

The below content is divided into following sections, in section 2.1 multiple works on
improving MapReduce application are discussed. The Section 2.2 discusses an account
of serverless architecture and the matrix of the analysis of available literature work and
in Section 2.3 a discussion on implementation of MapReduce application on serverless
platform is done.
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2.1 Review on improved MapReduce Application

Hadoop MapReduce framework processes big data with high throughput but it has
latency issue for processing short jobs. In the paper Gu et al.Gu et al. (2014) a dis-
cussion is made to reduce turn-around time by implementing critical event messages and
reducing delay between submitting job and scheduling its task. Cleanup task has been
optimized by saving 4 heartbeat intervals required in standard flow. An event notifica-
tion mechanism is implemented which separates critical messages from normal heartbeat
messages. This paper adopted the traditional heartbeat communication mechanism for
events belonging to cluster management that are not performance-sensitive. It also used
an instant messaging communication mechanism for messages belonging to critical events
that are sent to JobTracker immediately so that message synchronization between Job-
Tracker and TaskTracker occurs with less latency. The primary drawback of this approach
is that, it overwhelms JobTracker and if the jobs are lengthy, the optimization doesn’t
yield much of an advantage.

Another bottleneck of the efficient MapReduce application is shuffling phase of the
application. In the paper by Nikitas et al.Nikitas et al. (2021) a distributed task-aware
shuffle-service for serverless analytics is implemented. It includes task-aware, look-ahead
caching on remote storage to enhance I/O operations, stateless workload execution that
provides fault tolerance for data loss or worker node failure and a modular architecture
that makes system integration simple. A realistic and synthetic workload is used to eval-
uate the systems and parameters including completion time, fault tolerance, scalability,
resource efficiency and data skews are included in the evaluation matrix.

2.2 Review on Serverless Architecture

Lee et al.Lee et al. (2018) have examined the throughput and performance of several cloud
service providers while implementing serverless computing offerings for distributed data
processing in parallel. In this paper, services are compared using ten matrices including
CPU performance, performance after memory and disk-intensive functions, performance
after concurrent and sequential invocations, etc. A constant increase in throughput is
exhibited by throughput performance of Google Functions whereas IBM OpenWhisk 1

and Microsoft Azure Functions showed their best behavior at 2000 invocations and 2000
invocations respectively. The paper compared triggers, HTTP, databases, object storage
and concluded that trigger performance is unaffected by trigger invocation.

Saha et al.Saha and Jindal (2018) have focused on improving resource management in
their paper by introducing EMARS (Efficient Management and Allocation of Resources
in Serverless) framework. It has used a workload and memory based predictive model to
improve performance. The major finding of the paper is the improvement of memory. It
is determined that memory allocated to the functions must be handled well in order to
increase performance because the latency decreases and becomes saturated after a certain
quantity of memory. In EMARS, a memory is allotted based on predictive models, logs
are based on various parameters and they are recorded to a configuration file after a
predetermined amount of time.

The main issue with serverless architectural performance is cold start of serverless
functions. To address this issue, public cloud providers like AWS attempt to begin each
function in a warm state. If all containers are already full, a new container is generated.

1url:https://openwhisk.apache.org/

3



In the paper by Gunasekeran et al.Gunasekaran et al. (2020) a presentation of Fifer is
made which reduces container spawning through request batching and queuing and also
reduces service level goal violation leading to more accurate load forecasting by making
use of this model. Estimated execution time calculation and slack estimation for load
balancing by dynamic reactive scaling policy, function scheduling and bin-packing to
maximize resource use are the primary elements of the suggested design.

In the paper by Witte et al.Witte et al. (2020) an architecture which is capable of
processing high computation intrinsic workloads on serverless platform is implemented.
Usage of MPI to process the code in parallel loops is done. The AWS step function is used
to deploy each software component individually using a generic optimization method. It
creates multiple gradient of specific batch size to perform the computation. The batch
queue receives parallel workload additions which AWS batch processes by launching an
EC2 instance as needed. Each gradient’s output is stored in an S3 bucket and AWS
Lambda function is used to combine the results into a single gradient. The S3 bucket
then sends an object to a SQS queue which then initiates the reduction stage. The
fundamental burden of serverless and event-driven compute workflow is demonstrated in
this paper. The biggest difficulty with this strategy is creating code that can be broken
down into a number of distinct modules.

AWS, Azure, and other commercial solutions are widely used but free source altern-
atives can potentially deliver the desired effects. In the paper Djemame et al.Djemame
et al. (2020) have offered information on the viability of adopting Apache OpenWisk as
an open-source option for serverless architecture. The bench-marking and performance
analysis of the Apache OpenWhisk platform is made to utilize a set of test functions and
performance analysis is carried out taking into account various criteria such as efficiency
and effectiveness as cloud-based solutions. The study demonstrates that OpenWhisk
has the ability to outperform a system that uses container-based virtualization and has
equivalent functionality, as well as it can deliver a superior performing solution without
virtualization overheads. The fundamental flaw in this study is that parallel computing
was not taken into account when creating its benchmarks and quality of service and cost
comparison should also have been included to give a more accurate picture of the viability
of the research work.

2.3 Review on Map-reduce application on serverless platform

The Giménez-Alventosa et al. (2019) et al. have provided framework to implement
MARLA (MapReduce on AWS Lambda). The framework is created by using AWS
lambda and AWS S3 bucket. The AWS lambda function performs mapping and reducing
tasks and S3 bucket stores the data and triggers event to start the process. The MARLA
framework has low latency during uploading of larger files. This paper has used other
AWS services such as AWS Elastic Cache to reduce the latency and Approx algorithm is
used to improve task scheduling which reduces the latency of the framework.

The MapReduce applications are scalable, fault-tolerant and capable of processing
large amount of data but the longer execution time required for processing the large
amount of data is a major challenge. Kalavri et al.Kalavri and Vlassov (2013) in their
paper discussed different optimization approaches in MapReduce framework by giving
different optimization technique such as operator pipelining and operator aggregation,
approximated results, indexing and sorting, work sharing, data reuse, skew mitigation
and data co-location. The batch nature of the incoming data is one of the major prob-
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lems with the MapReduce programming model and the study conducted in this paper
provided evaluation of a solution offered by Hive and Pig Latin to get around this restric-
tion by enabling users to create SQL-like scripts. Brief accounts of studies relating to the
MapReduce system are discussed and it is concluded that, in contrast to standard MapRe-
duce programs, these systems are computationally intensive rather than data-dense and
they have in-memory processing to minimize I/O operations.

Sampe et al.Sampé et al. (2018) have suggested new architecture to run MapReduce
jobs on IBM Cloud Functions and PyWren. IBM Cloud Object Storage (IBM COS)
has been employed for data storage and IBM Cloud Functions is used for MapReduce
workloads and function compositions. When an event occurs, a certain function is called
by an IBM function and the function code is fetched from ICOS. This is an event-driven
technique. The system’s API offers a variety of parallel processing techniques including
call async(), map(), map reduce(), wait() and get result(). By serializing the function
code and input data, parallel code is executed. To obtain the necessary data for data
execution, a HEAD request is made via the ICOS bucket. Partitioning is then carried out
in accordance with the configuration file. The partitioned data is then sent to the executor
function which runs the map function and stores the results in ICOS. The research paper
has expanded support for MapReduce jobs and other distributed computing processes
and it is capable of running extremely concurrent operations in the IBM Cloud. With
varying chunk sizes, the speedup for MapReduce execution can reach 135.79x.

2.4 Research Niche

The below table provides summary of the previous studies, it gives an account of meth-
odology, advantages and gap analysis with respect to this research paper.

Table 1: Summary of Literature Review and Research
Niche

Paper Title Methodology Advantages Gap Analysis

Lee et al. (2018) Comparison
matrices to assess
the effectiveness
of serverless com-
puting provided
by various cloud
service providers

compared many
aspects and the
ones that have
no impact on
performance

Processing Big-
Data is not
considered

Saha and Jindal
(2018)

workload-based
and memory-
based predictive
models for
Efficient Man-
agement and
Allocation of
Resources in
Serverless

limit high
memory util-
ization and
predictive model

Container based
approach
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Paper Title Methodology Advantages Gap Analysis

Gunasekaran
et al. (2020)

Adaptive re-
source manage-
ment framework
to efficiently
manage function-
chains on server-
less platforms

Cold start prob-
lem

Limited scalab-
ility because
of centralized
database

Witte et al.
(2020)

Serverless and
event-driven
approach for
data intrinsic
computation

Nested level of
task paralleling

Cost of operation
is high

Djemame et al.
(2020)

Serverless ar-
chitecture using
Apache Open-
Wisk as an
open-source
solution

A better perform-
ance solution sans
virtualization
overheads uses
container-based
virtualization.

Parallel comput-
ing is not in-
cluded

Kalavri and Vlas-
sov (2013)

Mapreduce: Lim-
itations, optimiz-
ations and open
issue

Account of vari-
ous methods
for optimizing
the MapReduce
framework

Just concentrated
on decreasing I/O
operations and
computation-
intensive tasks.

Giménez-
Alventosa et al.
(2019)

MARLA(MapReduce
on AWS Lambda)
architecture

Application
MapReduce was
implemented us-
ing AWS Lambda

Inefficient task
Scheduling

Gu et al. (2014) Hadoop frame-
work improvisa-
tion through task
and job execution
optimization

support job
scheduling im-
provements to
enhance job
performance

Long-term pro-
jects render
a framework
ineffective.

Nikitas et al.
(2021)

Serverless Ana-
lytics distributed
task-aware cach-
ing shuffle service

Data loss or
worker node
failure fault
tolerance

Only the Reduce
stage should
be optimized,
as the Map
stage requires
the greatest
processing.
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Sampé et al.
(2018)

MapReduce Jobs
on PyWren and
IBM Cloud Func-
tion

Framework ex-
ecute massive
parallel tasks and
distributed com-
puting processes

Makespan is high
as compared to
other framework
with AWS ser-
vices

THIS ONE Implementation
of MARLA ar-
chitecture on
Azure

Reduced
makespan

Azure Cloud
service dependent
for improved
performance

3 Methodology

MapReduce application by using Microsoft Azure Services has been implemented in this
paper. Serverless computing services of Azure and Azure Blob storage has been used for
implementing the Map Reduce application. Serverless platform Azure monitor has been
used for monitoring the details related to execution of the application.

3.1 Steps:

There are three key stages in the application

1. Mapper

2. Coordinator

3. Reducer

Azure function and Azure blob storage has been majorly used in the project to im-
plement a complete serverless MapReduce application.

1. The Coordinator function is executed on Azure Function and the data is stored in
Azure Blob storage. The process is event-driven; when new data is added to blob
storage, an event is generated and the coordinator function is used to retrieve the
dataset and divides it into segments based on the amount of new data. The serial
number assigned to the data chunk serves as the key and the data content serves as
the value in a series of key-value pairs that are distributed among mapper functions.

2. The coordinator function is used to invoke mapper function which computes the
desired operation on the data chucks. In this case, the data is arranged in alpha-
betical order. This process gets repeated until all the data gets processed. Reducer
bucket is used by all the mappers to store data and use it intermediately. The
intermediate data is sorted and these data chunks are tagged with the partition key
which is later used by reducer to consolidate the chunks.

3. Following the mapping of all the data chunks, the list of intermediate key-value
pairs is provided to the reducer based on the key of each pair. Each reducer is
used to add up all the samples and provide the dataset with same key number. By
computing the mean value of the total, a new cluster center is created and the final
result is saved in reducer blob storage.

The Figure 1 shows the execution workflow of the mapreduce job.
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Figure 1: Application workflow

3.2 Material and equipment

3.2.1 Azure Services

Azure Active Directory Various Azure services access is required to perform desired
function in this paper. In order to work with the desired Azure services it is needed to
have an user with full access to Azure Functions and Azure Blob Storage.

Azure Blob Storage It can store static and dynamic data with the capability of
scaling according to the requirements2. This paper uses two blob storages in which one
storage is input blob where the dataset gets uploaded and it also triggers the process
by invoking coordinator. The another blob storage is used to store the intermediate and
output from reducer.

Azure Functions It enables users to run code without setting up and maintaining
infrastructure. It offers a pay-as-you-go pricing structure and can scale automatically
based on demand3. For the coordinator, mapper and reducer functions in this paper,
Azure function services are used. The mapper function processes the data and distributes
the data to the reducer function which aggregates the output produced by the mapper
function.

3.3 Programming language

The programming language used in this paper is Python 3.8 to create functions and use
Shell script for creating infrastructure.

3.4 Sample Data

The data used in the MapReduce function is based in the United States (public dataset).
It consists of proper count of the number of people in the comma separated file without
an email ID (CSV). The map function processes the input data and uses a key-value pair
as a reducer to classify the pertinent data from the given data collection. The reducer

2https://azure.microsoft.com/en-us/services/storage/blobs/
3https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
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function uses key-value pairs to process the data and stores the results in an S3 bucket.
Sample Data: https://briandunning.com/sample-data/

4 Design Specification

The presented paper acts as an extension of the research paper presented by Giménez-
AlventosaGiménez-Alventosa et al. (2019)et al. which proposes MARLA architecture
Figure:2 to execute python-based MapReduce jobs on AWS Lambda. The architecture is
created entirely within the AWS cloud structure without the need of any outside compon-
ents. The coordinator, reducers and mappers are the three serverless computing groups
that have employed AWS Lambda functions. Additionally, it also used two AWS S3
buckets to store processed and intermediate data. Even though the MARLA architecture
makes use of AWS cloud serverless services but it is limited to AWS Cloud services, the
performance and feasibility of MARLA architecture on other cloud platforms needs to be
explored.

The prospect of implementing MARLA architecture on other cloud platform will
provide better understanding of its behaviour on other cloud platforms and its cost im-
plications. The presented paper implements the existing MARLA architecture on Azure
cloud platform.

Figure 2: MARLA architecture presented by Giménez-AlventosaGiménez-Alventosa et al.
(2019) et al.to support MapReduce on AWS Lambda

4.1 Modified Architecture:

The presented paper has implemented MARLA architecture on Azure Services to observe
its behaviour. Changes in MARLA architecture has been made to reduce data latency
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issue due to slow storage. The modified architecture has Azure blob storage for input
and output data, azure function for mapper, reducer and coordinator. The figure 3 shows
the modified architecture.

Figure 3: Modified architecture to support MapReduce on Azure

When data is placed in input blob storage, the process is triggered and coordinator
azure functions are called. Depending on the size of the data, the coordinator functions
break it into smaller pieces. The amount of accessible mappers affects the quantity of
data chunks. The coordinator Lambda function re-evaluates the number of chunks so
that it can fit into each mapper in case the RAM at the mappers is insufficient.

To calculate the chunk size, the coordinator function divide total size of data by the
number of mappers.

Total Data Size = Dt

Number of mappers = Nmapper

ChunkSize = Dt/Nmapper (1)

Then the coordinator function evaluates the feasibility of the chunk size by the fol-
lowing conditions:

1. If the chunkSize is smaller than the minimum block size defined by user(MINSIZEOFBLOCK).

Nmapper = int

(
Dt

MINSIZEOFBLOCK

)
+ 1 (2)

2. If the chunkSize is bigger than safe memory size(SafeSIZEofMemory).

Nmapper = int

(
Dt

SafeSIZEofMemory

)
+ 1 (3)
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3. If the chunk size is bigger than the maximum block size then,

Nmapper = int

(
Dt

MAXSIZEOFBLOCK

)
+ 1 (4)

In above recalculations of Nmapper, coordinator function has added one extra mapper
to process the residual data chunk with size as below. This prevents overloading in the
mapper by processing residual data.

residualData = Dt − (Nmapper − 1).chunkSize (5)

Then the coordinator invokes the first mapper with variable such as data chunk size.
The mapper function invoke other mapper function in logarithmic reduction(log2(Nm))
manner until all mappers get invoked. Each mapper then processes the given chunk;
this is the mapping phase. A list of reduced key-value pairs where reduction is carried
out in the following step is the output of the map operation. In-memory storage is used
to keep the intermediary data. Then, separate reduce functions process the mapper-
processed chunks, processing all of the data using the same key in each reduce function.
To accomplish this, reducers download as many mapped chunks as are compatible with
the allocated amount of RAM. Once all of the data chunks have been handled by reducer,
this procedure is repeated using the previously processed chunks and the newly processed
chunks. The output is finally saved in blob storage.

5 Implementation

The presented paper acts as an extension of the MARLA architectureGiménez-Alventosa
et al. (2019), it is a python based MapReduce framework for serverless cloud computing
framework. To implement the MARLA framework of Azure, the following configuration
is performed.

• Creation of an Active Directory user by assigning access to multiple services such
as Azure function and Azure Blob Storage.

• In VPC, creation of CIDR block of 192.168.0.0/16, 192.168.10.0/24 and 192.168.20.0/24
to enable access to the internet using public subnet.

• Creation of the Network Security group which allow incoming and outgoing traffic.

• Creation of an Azure blob storage which is privately connected to VPC.

• The configuration setup of the file according to the execution requirement. Follow-
ing are the parameters which are specified necessarily.

– ClusterName: Name of the cluster

– FunctionsDir: The directory containing the file that defines the Mapper and
Reduce functions.

– FunctionsFile: The name of the file with the Mapper and Reduce functions.

– Region: The Azure region where the Azure functions is be created.

– BucketIn: The bucket for input files. It must exist.
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– BucketOut: The bucket for output files. There is need for different buckets
for input and output to avoid unwanted recursions.

– RoleARN: The ARN of the role under which the Lambda functions is be
executed.

– MapperNodes: The desired number of concurrent mapper functions.

– MinBlockSize: The minimum size, in KB, of text that every mapper processes.

– MaxBlockSize: Maximum size, in KB, of text that every mapper processes.

– KMSKeyARN: The ARN of KMS key used to encript environment variables.
(Optional)

– MapperMemory: The memory of the mapper Lambda functions. The max-
imum text size to process by every Mapper is restricted by this amount of
memory.

– ReducerMemory: The memory of the reduce Lambda functions.

– TimeOut: The elapsed time for a Lambda function to run before terminating
it.

– ReducersNumber: Number of reducers to use

• User function in mapper and reducer code needs to be configured according to the
data input.

The input and output data is stored in the azure blob storage. The MapReduce
application is developed on python 3.8 platform. As soon as the data(CSV file) is inserted
into the blob storage it triggers azure function. The azure function splits the file into
small chunks and coverts it into a uft-8 format.

6 Evaluation

The implemented MapReduce application with azure serverless services reduces the exe-
cution time of MARLA architecture and it is approximately around the Hadoop MapRe-
duce completion time. The graph shows the execution time of different sizes of input file.
The figure 4 shows the duration for execution for different file sizes.

Figure 4: execution time for different file sizes
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6.1 Experiment / Case Study 1

The file size of 2 MB is chosen to evaluate the performance by using parameters such as
memory usage and cost of occurrence. A CSV test file has been created to execute azure
function. After execution it creates a CSV file to display results. Since the execution
of the test case is successful, the results are displayed in the CSV file and the execution
details can be observed in the function insights.

Figure 5: Executing 2 MB file

6.2 Experiment / Case Study 2

The file size of 8 MB is chosen to evaluate the performance by using parameters such as
memory usage and cost of occurrence. A CSV test file has been created to execute azure
function. After execution it creates a CSV file to display results. Since the execution
of the test case is successful, the results are displayed in the CSV file and the execution
details can be observed in the function insights.

Figure 6: Executing 8 MB file

6.3 Discussion

The varying file size from 1MB to 5 MB are executed on the implemented application
in which the overall completion time is 1.6 minutes for all sizes of data. The resultant
latency of 12 ms(in Figure: 7 is due to the cold start problem.
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Figure 7: 12 ms of latency due to cold start

The Azure monitor provide the graphical representation of duration, error count,
throttle time and invocation of the Azure Functions. The graph duration graph shows
the time taken by the coordinator function to start the processing of the data when the
input file is uploaded in the Azure blob storage. The Figure 8 shows the ratio of execution
time required for the processing by different operations such as mapper, coordinator and
reducers. It also shows the number of invocation involved for these operations. The
Figure 9 shows the CPU utilization by the different invocations and the duration of each
request for processing the data.

Figure 8: Function execution time for different operation

Figure 9: CPU utilization and request during the different size of input files

The below table gives an account of execution time required by different platforms
for executing MapReduce in serverless infrastructure. The implemented mapreduce ap-
plication takes almost 5x more time than MARLA application on AWS platform and
additionally it is expensive to operate. The Figure 10 shows the comparison of the exe-
cution time required by MARLA on AWS and Azure for different file sizes. This paper
shows that the Azure MARLA model require 5x more time to complete its execution of
test data and the cost of execution also increases accordingly.
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Figure 10: Execution time comparison of MARLA on Azure and AWS

7 Conclusion and Future Work

The presented paper has implemented MARLA application on Azure. According to the
study carried out in the thesis, performance gaps can be reduced by introducing fine-
grained flexibility in favor of cutting-edge function-as-a-service and backend-as-a-service
technologies. The presented paper has used Azure functions and Azure blob storage
effectively to give optimal performance. The Azure Function has uniform latency behavior
when compared to other platforms which has no impact on the processing duration of
MapReduce operations. To aim this, a deep analysis of CPU utilization and execution
time of Azure functions is performed. A major focus is paid on error rate, invocations,
throttle time and cost of execution. The research has following findings:

• MARLA architecture on AWS has almost 5x better makespan than MARLA on
azure

• The difference between their makespan increases as the file size increases and it
increase significantly after 5MB file size.

Due to restricted resources, the presented paper has used blob storage for storing
intermediate data. For future scope, an analysis can be carried out to make use of cache
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data storage for intermediate data that may enhance the overall turn around time of the
application. Also, the presented paper has implemented the MapReduce application for
small analytic platform which can be expanded for the larger analytical platforms.
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