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Efficiency of Machine Learning Cloud-Based Services
vs Traditional Methods in Stock Prices Prediction

Siarhei Staravoitau
x18162070

Abstract

One of the challenges while running ML jobs is IT compute resource usage
optimisation. Scaling of computing resources and distributed calculations are in
the mainstream of cloud computing development to optimize business IT resources
and costs. This research evaluates the efficiency of cloud-based platforms, tools
and features (PySpark scalability and distributed Tesnsorflow MirroredStrategy,
TPUStrategy and Elephas RDD model training) over cloud-based platforms while
performing Data Analytics task like LSTM Stock Price Prediction using senti-
ment analysis based on Twitter microblog messages. The RMSE (as well as MAE,
MAPE, etc.) accuracy and model training time are used as benchmarks for the
evaluation of cloud computing environment parameters. Changing model train-
ing hyperparameters (number of neurons, number of epochs, batch size) is used to
change research tests’ workload using Pandas and PySpark code implementation in
Google Colab Pro+ GPU and TPU, AWS EMR, AWS Lambda and Local PC with
GPU environments. Best RMSE accuracy and model training times were demon-
strated by both PySpark-based and Pandas-based code executed using GPU in
non-distributed model training mode. Distributed model training improves model
training time, but model accuracy is getting reduced. Using the AWS EMR and
AWS Lambda experiments along with the Google Colab-based Keras Tuner tool
with Random search hyperparameters optimization didn’t produce the expected
RMSE accuracy and model training times.

1 Introduction

The development speed of cloud-based compute resources paced out the growth of ma-
chine learning requirements and creates a challenge how to select correct compute re-
sources and optimize model training times and accuracy in fine-tuning model hyper-
parameters. The purpose of this research is to contribute to establishing to what extent
Cloud-based Machine Learning Service is more efficient and if it could replace the on-prem
approach while performing stock price prediction. Research Question:

To what extent Machine Learning Cloud-Based Services can enhance the effi-
ciency of stock price prediction and replace it to support investors and stock
market traders?

The contribution of this project: establish and compare which cloud computing solu-
tion, including PySpark framework and distributed model training, is more efficient when
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performing Data Analytics task like TensorFlow Sequential time series stock price predic-
tion by measuring average execution time and accuracy (RMSE, MAE, MAPE, MDAPE)
with different hyperparameters (batch size, epochs and number of neurons). The research
is testing the efficiency of using Cloud Computing platforms (Google Colab Pro+ with
GPU and TPU, Jupyter Lab), tools and features like PySpark scalability and TensorFlow
distributed model training when performing LSTM Stock price prediction. The accuracy
and model processing time of performing ML tasks are benchmarks for the evaluation
of changing cloud computing environment parameters. Changing model training hyper-
parameters is used to change test workload for evaluation of defined Cloud Computing
environments. And, of course, this research has a practical interest to measure perform-
ance with meaningful accuracy results and model training time that could be useful for
real-life business use cases when defining tools and strategies for ML IT infrastructure
and indicate which cloud-based tools could be used and which ones should be avoided
from using in ML Cloud infrastructure. The project runs a set of experiments in Google
Colab Pro + (both GPU and TPU enabled), AWS EMR, AWS Lambda and local PC
having a grid test search strategy to establish which infrastructure configuration, model
training approach and data set processing from selected for testing are more efficient
when performing Machine Learning for Stock Prices prediction with sentiment analysis.
The project’s limitations are hardware and software compatibility, and college access
compute resources infrastructure deploying. Research structure: review the state of the
art of Machine Learning cloud-based solutions, platforms and frameworks which could be
used for Stock price predictions, ML algorithms for using stock price prediction and sen-
timent analysis. The methodology part describes an approach for collecting experiment
data, performing testing and results evaluation. The Evaluation section contains RMSE
and model training tine test results from distributed and non-distributed model training
solutions having fine-tuned models trained with different hyperparameters: batch size,
number of epochs and number of neurons. Best RMSE accuracy and model training time
is delivered by GPU-based solutions. RMSE of 1.99 and model training time of 167.73 s
executed on PySpark solution in Google Colab Pro+ with 700 neurons, 100 epochs and
32 batch size. Distributed model training improves PySpark model training time and
TPU optimized solution, but RMSE accuracy could be a trade-off for using distributed
training. The conclusion part summarizes the research results and future work.

2 Related Work

2.1 Machine Learning Services and Platforms

The biggest challenge in the implementation of Machine Learning (ML) in a business
process is to select the right ML framework and find a balance between on-prem and
cloud implementation along with finding scalability and distributed calculations effective
balance. Model training is the largest element of ML consuming IT resources, so it is
necessary to find a trade off between compute elements and actual model training hyper-
parameters. Scaling up options could be generic GPU and Tensor Processing Unit (TPU)
provided by Google and Azure FPGA [1, 2, 3]. ML model training efficiency could be
evaluated by calculating RMSE as accuracy measure (as well as MAE, MAPE, MDAPE)
[4] and model training time. User experience, ML infrastructure implementation and its
complexity contribute to user ability deliver practical result. Depending on task and scale
of business, it could be used on-prem, cloud-based and hybrid solutions, implemented on
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a specialized ML services platforms or bespoke designed. Simplest to use with great user
experience are Jupyter Lab based [5] solutions like Google Colab (GPU and TPU) [6].
AWS EMR [7] has an advantage of having Jupyter Lab Notebooks combined with Spark
framework. Also, one of the options could be using of AWS Lambda[8] due to its instant
availability and robustness. It is important to keep in mind data science legal and ethical
norms[9], data privacy and protection of sensitive data[10, 11, 12], hacker attack risks
to prevent model corruption[13], unauthorized access to the hosted model and data[9].
Python and Jupyter Notebooks are very popular among ML researchers due to their
simplicity and convenience. The Table 1 summarizes platforms and services used in the
research.

Table 1: Cloud-based Platforms and Services for ML

Google Colab Pro Cloud-based Jupyter notebooks platform, allowing execute arbit-
rary python code in a web browser. Colab Pro + costs 50 Euro
per month. Fast and expensive. GPU and TPU processing. But,
Google could ban users from GPU access due to the fair use
policy.[6]

AWS Lambda On-demand cloud computing function-as-a-service. Runs code
triggered by an event. Advantage: cheap to use, availability
and robustness. Drawback: processing time 15 minutes, no GPU
processing.[8]

AWS EMR EMR is a cloud big data platform for running large-scale distrib-
uted data processing jobs, interactive SQL queries, and machine
learning (ML). Advantages: work with big data, provisioning the
required number of cluster nodes. Drawbacks - cost factor, PyS-
park kernel is not compatible with Pandas.[7]

To improve model training time it distributed model and data training could be
used, where workload is split and shared among multiple worker nodes. Distributed
data training assumes splitting data set in chunks and send it to worker nodes for
training(Figure 1). Distributed model training segments model into different parts and
runs them concurrently on different workers, which need to synchronize on shared para-
meter server(Figure 2)[14, 15]. Tensorflow offers following strategies for distributed
model training: MirroredStrategy, TPUStrategy, MultiWorkerMirroredStrategy, Central-
StorageStrategy, ParameterServerStrategy, Default Strategy and OneDeviceStrategy [16].
MirroredStrategy and TPUStrategy are most relevant for this research as they could be
configured and tested both on Google Colab and Local PC including model training
on a single PC with CPU and GPU devices in a same time. TPUStrategy allows to
test Google’s TPU distributed model training on Google Colab . MultiWorkerMirrored-
Strategy and ParameterServerStrategy could be used for multiworker distributed model
training [16]. Spark Elephas Resilient Distributed Data[17] model training also could
be used for multiworker distributed model training. It allows to spin up a number of
ML workers and train the Keras model in asynchronous mode.[17] and configured to run
training jobs both on a cluster, server-less solution or set of virtual hosts on a local High
performance PC. The trade off when using distributed training could be model accuracy.
Tensorflow, Apache Hadoop, Apache Spark frameworks functionality allows to perform
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distributed both data and model calculations using various topology [3, 2, 1]. Scaling
compute operations with big a data could be done on AWS EMR virtual clusters allowing
to process of large data sets using PySpark SQL.

Among distributed data-parallel model training could be highlighted Horovod [15] on
Figure 1. Also, Figure 2 demonstrates ML Distributed parameter server options model
training approach. TensorFlow distributed model training is using similar approach [1].

Figure 1: ML Distributed parallel data training approach

Figure 2: ML Distributed parameter server options

2.2 Machine Learning Techniques for Stock Prices Prediction

Due to stock market volatility caused by world politics and other influencing factors,
it is a very challenging task to perform accurate stock price predictions.[18] The Deep
Learning ML approach and Recurrent Neural Networks are very popular for predicting
time series data using long-and-short-term memory LSTM networks[19]. LSTM networks
are correcting long-term series data by applying stochastic gradient descent using Adam,
Adamax, Nadam, AMSGrad, etc. optimizations. LSTM model consists of the following
components: (a) an input gate, (b) a self-recurrent connection neuron, (c) forget gate
proposed by Ger et al. [20], and (d) an output gate. This model structure allows ad-
dressing an issue of vanishing gradient. Nelson et al. [21] in their research confirmed
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that forecasting (LSTM) delivers better results in comparison with other techniques as
the LSTM model gives fewer risks. For time series forecasting could be used TensorFlow
Sequential model [22]. It provides user-friendly instruments to configure model layers.
To optimize model training time and accuracy could be used fine-tune hyperparameters
like the number of epochs, batch size, and number of neurons.[23] Abbasimehr et al. em-
phasize that selection of a correct number of neurons helps to prevent model overfitting
[23]. As accuracy measures could be used RMSE (as well as MAE, MAPE, and MPADE)
[24]. Also, one of the efficiency measures is model training time. A number of neurons
are defined by multiplying the number of features and lag. Also, for model optimizing
could be used Keras Tuner simplifies the hyperparameter search.[25]

2.3 Sentiment Analysis Techniques for Stock Prices Prediction

The research project uses a sentiment analysis of Twitter micro-blog messages related
to selected stock security. It calculates polarity index for each day using the Vader
framework[26] and added as an engineered feature into the daily stock prices data set for
further processing[27]. Table 2 combines a research idea to use Sequential LSTM model,
sentiment analysis, hypeparameters fine-tuning and model training on distributed and
scalable solutions.

Table 2: Proposal for conducting Research

Approach ML Frame-
work

Sentiment
Analysis

Distribute
model
Training

LSTM Hy-
perparameters
fine-tuning on
distributed
model and
data training

LSTM [19, 21, 20, 22, 27] ✓

LSTM Hyperparameters tun-
ing [23, 26]

✓

Vader Framework Sentiment
Analysis [26]

✓ ✓

Distributed model training
[17, 28, 1, 29]

✓ ✓ ✓

Proposal ✓ ✓ ✓ ✓

2.4 Conclusion

The main idea of this paper is to establish the most efficient cloud-based solution deliv-
ering the best accuracy and model training time while performing Stock Price prediction
task implemented on selected cloud-based platforms. This involves the design, imple-
mentation, code execution in a cloud scalable environment, having ML model training
and processing data in MirroredStrategy, TPUStrategy distributed and Elephas resilient
distributed mode and comparing the model training time and RMSE accuracy of a Se-
quential Time Series model for stock price prediction having as one of the features a
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daily sentiments polarity indexes based on Twitter microblog messages. Considered im-
plementation solutions are based on Google Colab Pro + Jupyter notebooks (GPU and
TPU), AWS EMR, AWS Lambda frameworks and local High-Performance PC solutions
using GPU. Data processing considerations are using Pandas and Spark SQL. For stock
price prediction are used LSTM time series TensorFlow Sequential Model is adopted in
all test implementations, including Keras Tuner and Elephas framework. The efficiency
of each experiment is evaluated based on average values of model accuracy RMSE (as
well as MAE, MAPE, MDAPE) and model training time. The novelty of this paper is
finding the most efficient cloud-based solution delivering the best accuracy and model
training time and possible trade-off based on a comparison of execution results from
distributed and non-distributed GPU, CPU and TPU-based solutions running on Spark-
based and Pandas-based solutions including fine-tuning of hyperparameters. Questions
to be answered:

1. Which platform is delivering the lowest RMSE and model training time when using
Pandas-based code or PySpark-based code in MirroredStrategy and TPUStrategy
distributed and non-distributed model training mode?

2. How accurate and fast and Elephas RDD distributed model training?

3. How accurate and fast is Keras Tuner model training?

3 Methodology

3.1 Data set preparation and features engineering

The project uses the data mining technique to do in-depth enquiries into stock prices
and Twitter[30] data to deliver a meaningful set of data for predicting future trends.
Workflow for ML Stock prices prediction contains the following stages:

1. Data collection

2. Cleaning, calculate daily polarity indexes, preparing a data set for training

3. Export combined data set into CSV file.

ETL Jupyter Notebook creates aggregated data set combining stock price data from Ya-
hoo Finance[31] with calculated daily average polarity index of tweet messages for the
period between 24-July-2017 - 21-July-2022 GOOG ticker and #GOOG hash tag. Twit-
ter micro-blog English language tweets are retrieved using Twarc2 and Twitter academic
developer account credentials. Daily polarity indexes are calculated using Vader frame-
work. Both stock prices and daily average polarity indexes are aggregated in Pandas
data frame and exported into a CSV file to AWS S3 bucket s3://mscloudetop-etl/. All
data retrieval and data set preparation done on a Google Colab using Python3, Pandas,
Numpy, and Vader libraries. Figure 4 outlines schema of loaded combined data set into
both Pandas and PySpark data frame.
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3.2 Tests execution and processing results

Tests are executed three times and from received figures calculated average values and
standard deviation values and documented into report tables. For evaluation of test
execution efficiency model training time is used. As accuracy benchmark is used RMSE
(where n - number of observations; y - predicted values; x - actual values):

RMSE =

√√√√(
1

n
)

n∑
i=1

(yi − xi)2

When review model training time results, only selected results with lowest RMSE
values in order to eliminate bad test results. For test cases processed in AWS EMR,
AWS Lambda and Google Colab TPU a fixed number of neurons to 350 was set in order
to mitigate costs and function crashes.

4 Design Specification

Main requirement of this research is to compare ML model training time and accuracy in
implementation variants on Figure 3. Project code is split in two main parts: ETL part
and Model training and prediction. ETL Part performs data preparation for the Model
training and prediction.

Figure 3: ML Execution Flows
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1. AWS Lambda design on Figure 3 slide 1 outlines execution flow based on ETL
Jupyter notebook, hyperparameters and results Jupyter notebook, AWS S3, AWS
Lambda and AWS CloudWatch setup performing data collection, features engin-
eering by ETLNotebook.ipynb, LSTM model training and forecasting using AWS
Lambda. AWS Lambda function is invoked by AWS S3 bucket trigger when new
CSV file is saved into AWS S3 bucket mscloudetop-etl. Hyperparameters config-
uration is managed via hyperparameters.ipynb saving file hyperparameters.csv with
updated hyperparameters to the AWS S3 bucket mscloudetop-etl. User can up-
date number of epochs, batch size, sequence length. AWS Lambda Execution
results could be accessed either by running a script in Jupyter Notebook ETL-
Notebook.ipynb to read results.csv file from msccloudetop-results bucket, accessing
Cloudwatch logs or downloading file directly from the this bucket.

2. AWS EMR design on Figure 3 slide 2 outlines execution flow for tests based on
AWS EMR Jupyter notebook. ETL Jupyter notebook ETLNotebook.ipynb saves
combined data set stock price.csv in mscloudetop-etl. There are two separate Jupy-
ter Notebooks of ML scripts using PySpark and Pandas data frame. EMR cluster is
based on c5.24xlarge instance. Prediction results are saved in msccloudetop-results
bucket.

3. Google Colab Pro + on Figure 3 slide 3 outlines an execution flow based on Google
Colab Jupyter Pro+ notebook, with GPU/TPU and extended memory setup per-
forming data collection by running ETL Jupyter notebook ETLNotebook.ipynb.
Combined data set file is saved into AWS S3 bucket mscloudetop-etl. ML model
training hyperparameters and actual model training script is executed by ML Model
training and prediction Jupyter Notebook. Results are delivered to the end user in
a same notebook and saved into CSV file in the msccloudetop-results bucket. This
platform is used for both Pandas-based and PySpark-based Jupyter Notebooks.
Tests here are executed using both GPU and TPU options, distributed and non-
distributed mode. Keras Tuner tests are executed using Google Colab Pro + GPU
as well.

4. Spark Elephas on Figure 3 slide 4 outlines tests based on Google Colab Pro+ Jupy-
ter notebook, with GPU and extended memory. ETL Notebook ETLNotebook.ipynb
performs data set preparation. Number of workers are configured at PySpark ap-
plication level. Elephas framework performs distributed model training and delivers
results to the end user into CSV file in msccloudetop-results AWS S3 bucket and in
Jupyter notebook.

5 Implementation

Project code design and implementation are done using Jupyter notebooks. There are
two main parts:

• ETL Jupyter Notebook. ETL Jupyter Notebook ETLNotebook.ipynb is based on
Python 3. Jupyter Notebook logic performs tweets messages retrieval for specified
security symbol, tweets hashtag and analysis period using Twarc2 client from Twit-
ter, cleans text data set using Regex and prepares data set for polarity indexes cal-
culation using nltk framework Vader lexicon. For research purposes, it was tweets
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are acquired using Twitter academic account. Stock prices are retrieved by using
Yahoo Finance API.

The test period is set to 5 years from 24/07/2017 until the date 21/07/2022. It could
be taken a larger test period from the initial company IPO, but due to the significant
price increase, it could bring data anomalies causing a negative effect on training and
prediction values. Yahoo Finance historical data are normally accurate and does not
require additional cleaning and validation, but at the same time, the preparation
of tweet messages requires cleaning to have only words in the data set. Calculated
polarity indexes are merged with stock prices data are saved to AWS S3 for the next
stage of the ML process. For model training was selected following features: High,
Low, Open, Close, Volume, compound, Adj Close. The target for model training
is Close (Figure 4). Stock prices data and polarity indexes are saved to AWS
S3 bucket s3://mscloudetop-etl/tweets/ , s3://mscloudetop-etl/tweets/merged/ and
final dataset file stock price.csv saved to s3://mscloudetop-etl/.

Figure 4 outlines schema of loaded combined data set into data frame.

Figure 4: Data set schema.

• ML Job Jupyter Notebooks perform data import file from the previous stage from
stock price.csv in s3://mscloudetop-etl/ AWS S3 bucket. Data visualization is done
using matplotlib and seaborn. Performance measuring and data scaling are done
using sklearn. Data handling and processing are done by using either Pandas Data
frame or Spark Data frame and data set split 80% for training and 20% validating
the model. For stock price forecasting used the TensorFlow Keras Sequential LSTM
model with optimizer Adam and loss mse. The trained model and predicted price,
accuracy and error results are saved into the AWS S3 bucket. Some implementation
code ideas were used from [32]. Following variants of Jupyter Notebooks are created:

1. Jupyter Notebook Pandas-based-Colab.ipynb model training and prediction

2. Jupyter Notebook PySpark-based-Colab.ipynb model training and prediction

3. Jupyter Notebook EMR-Pandas-based-Colab.ipynb model training and predic-
tion

4. Jupyter Notebook EMR-PySpark-based-Colab.ipynb model training and pre-
diction

5. Jupyter Notebook Elephas.ipynb distributed model training.

6. Jupyter Notebook Keras-Tuner-Colab.ipynb model training and prediction

Model training hyperparameter settings:
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1. Model training on Google Colab Pro+ and local High Power PC for all hyperpara-
meter combinations including number of neurons (210, 350, 700), batch size (8, 16,
32, 64, 128) and number of epochs (30, 50, 100)

2. Model training with fixed number of neurons (350), and changing number of epoch
(30, 50, 100) and batch size (8, 16, 32, 64, 128) on AWS EMR and AWS Lambda
implementations due to cost factor and limitations.

3. Keras Tuner model training on Google Colab and local High Power PC with fixed
number of neurons (350) and pre-defined range of batch size in Keras model Ran-
domSearch parameters (from 8 to 512).

4. Elephas RDD model training on Google Colab Pro with fixed number of neurons
(350), changing number of workers (1, 2, 3), batch size (8, 16, 32, 64, 128) and
number of epochs (30, 50, 100)

It is used following model code for all tests illustrated on Figure 5. Dense parameter is
left unchanged.

Figure 5: LSTM model code

Train and test data are split with ratio 80:20 and scaled with MinMaxScaler from
sklearn. Model optimizer is Adam. Model with layers 700 neurons is illustrated on
Figure 6

Figure 6: Model Map with 700 neurons

All tests are executed three times and average figures and standard deviation are
calculated for model training time, script execution time, RMSE, MAE, MAPE, MDAPE,
change per cent. Implementation environments:

• Google Colab Pro + with GPU and extended memory

• AWS EMR one instance based on c5.24xlarge.

• AWS Lambda

• Mac Book Pro M1 MAX 14”, 32 GB RAM, 24 GPU cores, 1 GB HD
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6 Evaluation

6.1 Experiment 1. Accuracy Testing Results

6.1.1 Google Colab GPU and Local PC Test Results

Top 6 results executed using GPU with lowest RMSE values are aggregated in Table 3.
The best average RMSE value of 1.99 (standard deviation 0.01) is received on PySpark-
based Colab implementation with 100 epochs, 700 neurons, and batch size 32. Test with
700 neurons and batch size combination 100 and 32 vs 50 and 16 are producing the lowest
RMSE values. Increasing the number of neurons, and epochs and decreasing batch size
is increasing model training time. Among the top performers, there are two tests using
TesnsorFlow MirroredStrategy distributed model training both executed on Colab and
Local PC with RMSE of 2.05. Five out of six tests with the best results are obtained
using PySpark. Model average training time is 167.7 seconds (STDEV 8.432). Very close
accuracy results were demonstrated by Pandas-based Local PC (700 neurons, 100 epochs,
batch size 32) with RMSE 2.03. Also, RMSE of 2.01 is observed on a PySpark Local
PC (700 neurons, 50 epochs, batch size 16) (Table 3). Table 4 aggregates Top 6 test run
results executed using using distributed MirroredStartegy. Distributed model training
lowest RMSE of 2.05 (Stdev 0.57) with model training time shows PySpark-based code
Colab Pro+ GPU (350 neurons, 50 epochs, 16 batch). The same accuracy demonstrates
Pandas-based code executed on Local PC (350 neurons, 100 epochs, 32 batch) with 156.11
s model training time. Tests show that both Pandas-based and PySpark code deliver very
close RMSE values, but using distributed model training produces less accurate RMSE.

Table 3: Top 6 Test Run Results (using GPU) RMSE measures for GOOG Alphabet Inc.
Price Prediction as of 22.07.2022

Experiment Name PySpark
Colab

PySpark
LocalPC

PySpark
LocalPC

PySpark
Colab

Pandas
LocalPC

PySpark
Colab

DataFrame PySpark PySpark PySpark PySpark Pandas PySpark

Strategy No No No Yes Yes No

Number of Epochs 100 50 100 50 100 100

Number of Neurons 700 700 700 350 350 350

Batch Size 32 16 32 16 32 32

Predicted Price 115.14 115.63 114.65 114.96 114.56 114.89

Price Today 115.04 115.04 115.04 115.04 115.04 115.04

Change Percent 0.09 0.51 -0.35 -0.07 -0.42 -0.13

MAE 1.43 1.49 1.42 1.47 1.42 1.48

MAPE 1.1 1.15 1.09 1.12 1.08 1.13

MDAPE 0.82 0.86 0.77 0.8 0.74 0.81

RMSE 1.99 2.01 2.03 2.05 2.05 2.06

STDEV RMSE 0.01 0.02 0.1 0.57 0.05 0.09

Model Training time 167.73 212.69 244.53 53.77 156.11 64.83
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Table 4: Top 6 RMSE Test Run Results (using distributed MirroredStartegy) for GOOG
Alphabet Inc. Price Prediction as of 22.07.2022

Experiment Name PySpark
Colab

Pandas
Local
PC

PySpark
Local
PC

PySpark
Local
PC

Pandas
Local
PC

Pandas
Local
PC

DataFrame PySpark Pandas PySpark PySpark Pandas Pandas

Number of Epochs 50 100 50 30 50 100

Number of Neurons 350 350 700 350 700 700

Batch Size 16 32 16 8 16 32

Predicted Price 114.96 114.56 115.35 115.34 114.71 114.65

Price Today 115.04 115.04 115.04 115.04 115.04 115.04

Change Percent -0.07 -0.42 0.27 0.26 -0.29 -0.34

MAE 1.47 1.42 1.54 1.57 1.53 1.52

MAPE 1.12 1.08 1.18 1.2 1.16 1.16

MDAPE 0.8 0.74 0.93 0.92 0.81 0.81

RMSE 2.05 2.05 2.07 2.09 2.12 2.13

STDEV RMSE 0.57 0.05 0.05 0.06 0.23 0.28

Model Training time 53.77 156.11 223.94 134.2 244.1 278.74

6.1.2 Google Colab TPU Testing Results

Tables 5 and 6 aggregate top 6 test executions with fixed number neurons 350 having low-
est RMSE results for Pandas-based and Pyspark-based code implementation processed
both with distributed TensorFlow TPUStrategy enabled and without distributed train-
ing. Best RMSE of 2.35 (Stdev 0.5) and model training time of 225 seconds result for
distributed model training shows Pandas-based code (100 epochs, batch 32). For non-
distributed model training best RMSE of 2.16 (Stdev 0.07) and model training time of
962.38 shows Pandas-based code (100 epochs, batch 32) as well. Distributed TPUS-
trategy model training shows better model training times over the non-distributed run,
but RMSE accuracy in distributed training run declines.
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Table 5: Top 6 Test Run Results in Google Colab TPU Distributed Distributed TPUS-
trategy Model training for GOOG Alphabet Inc. Price Prediction as of 22.07.2022, 350
Neurons

Experiment Pandas
Colab

Pandas
Colab

Pandas
Colab

PySpark
Colab

PySpark
Colab

Pandas
Colab

Epochs 100 100 30 50 50 100

Batch size 32 8 16 8 16 64

Change Percent 0.65 0.12 0.69 -1.15 0.81 -0.19

MAE 1.86 1.81 1.99 1.98 2.17 2.04

MAPE 1.42 1.36 1.53 1.5 1.64 1.56

MDAPE 1.21 1.09 1.26 1.18 1.44 1.22

RMSE 2.35 2.4 2.54 2.57 2.67 2.67

STDEV RMSE 0.5 0.61 0.14 0.47 0.51 0.13

Model Training time, s 225.03 524.74 94.98 262.46 162.6 149.62

Table 6: Top 6 Test Run Results in Google Colab TPU Not Distributed Model training
for GOOG Alphabet Inc. Price Prediction as of 22.07.2022, 350 Neurons

Experiment Pandas
Colab

PySpark
Colab

Pandas
Colab

Pandas
Colab

PySpark
Colab

PySpark
Colab

Epochs 100 100 50 30 100 100

Batch Size 32 32 16 8 8 16

Change Per cent 0.16 -0.52 -0.79 0.37 -0.11 1.1

MAE 1.63 1.57 1.78 1.9 1.9 1.96

MAPE 1.24 1.19 1.35 1.44 1.44 1.49

MDAPE 0.98 0.84 1.05 1.21 1.17 1.31

RSME 2.16 2.19 2.37 2.41 2.46 2.46

STDEV RSME 0.07 0.25 0.39 0.23 0.81 0.6

Model Training Time, s 962.38 948 632.59 808.13 1778.9 1333.67

6.1.3 AWS EMR Testing Results

From tests executed on AWS EMR cluster with 350 neurons, the lowest average RMSE
of 2.18 was received on Pandas-based code batch size 8 and 100 epochs. PySpark-based
code showed an average RMSE of 2.19 on batch size 16 and the number of epochs 100.
Model training time for batch size 8 is 834.19 seconds and for batch size 16 is 504.48
seconds.(Table 7). Testing on AWS EMR is time consuming and expensive.
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Table 7: GOOG Alphabet Inc. Price Prediction Test Run Results as of 21.07.2022(AWS
EMR, 350 Neurons, Batch Size 8 and 16; 100 Epochs)

Experiment Name Pandas EMR PySpark EMR

Batch Size 8 16

Number of Neurons 350 350

Number of Epochs 100 100

MAE 1.63 1.63

RMSE 2.18 2.19

RMSE STDEV 0.17 0.18

Model training time, s 834.18 504.48

6.1.4 AWS Lambda Testing Results

AWS Lambda test execution results are aggregated in Table 8. All tests were executed
with a fixed number of neurons 350. The lowest RMSE value of 2.5 is produced by test
runs with batch sizes 8, and 30 epochs. Test execution time is 818.7 seconds, which is
very close to the AWS Lambda execution time limit. Test runs with 50 epochs, batch
size 8; 100 epochs and batch size 8, 16 and 32 failed to complete due to execution time
limits. AWS Lambda is not suitable for intensive ML processing jobs. It could have some
ML potential if it would be based on GPU processing.

Table 8: GOOG Alphabet Inc price prediction test run results as of 22.07.2022 (AWS
Lambda, 350 Neurons)

Number of
Epochs

30 30 30 30 30 50 50 50 50 100 100

Batch Size 8 16 32 64 128 16 32 64 128 64 128

MAE 1.88 2.04 2.52 2.91 3.43 2.37 2.53 2.46 3.2 2.12 2.73

RMSE 2.5 2.64 3.27 3.73 4.34 2.89 3.14 3.21 4.06 2.77 3.49

RMSE
STDEV

0.44 0.57 0.21 0.14 0.36 0.86 0.39 0.11 0.36 0.13 0.18

Time, s 818.7 443.97 315.62 242.4 201.81 736.59 526.25 393.19 317.15 798.63 631.67

6.2 Experiment 2. Model Training Time Testing Results

All test results are demonstrating a consistent trend to increase model training times
with an increased number of epochs and decrease model training time with increasing
batch size. Among tests demonstrated the lowest RMSE values (700 neurons, batch size
32 and number of epochs 30) executed 167.73 seconds in Google Colab vs 244.53 seconds
in MacBook Pro. Decreasing the number of batches from 32 to 16 on MacBook Pro
demonstrates an increase in processing time from 244.53 to 401.27 seconds or 39%. When
comparing Pandas-based vs PySpark-based code in the Google Colab Pro+ environment,
it appears that Pandas-based code is training model faster. Example of test executions
with fixed number of neurons of 350 is on Figure 7. But, in the AWS EMR environment
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with a fixed number of neurons of 350, test run results on Figure 8 demonstrate that both
Pandas-based and PySpark-based code execution times are very close per batch size and
per epochs run. That could be explained that both tests are executed on non-GPU-based
instances.

Figure 7: Model Training Time (in seconds) Pandas code vs PySpark code executed in
Google Colab Pro + GPU , 350 neurons

Figure 8: Model training time (seconds) comparison for EMR implementation, 350 neur-
ons

Table 3 aggregates model training time for the top 6 test runs with the lowest RMSE
values. The fastest model training time of 64.83 s demonstrates PySpark-based code ex-
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ecuted on Google Colab using GPU (350 neurons, 100 epochs, batch size 32). Having the
same hyperparameter settings, PySpark Local PC model training time is 120.41 s, i.e.,
Google Colab is 46.16% faster. Tables 9 and 10 demonstrate very interesting results for
tests executed with TensorFlow MirroredStrategy in Google Colab Pro+ GPU and com-
pared with non-distributed model training times. It takes a longer model training time
for Pandas-based code when using distribute training mode, but TensorFlow Mirrored-
Strategy reduces model training time for PySpark-based code, which could be explained
by scaling of Spark Application.

Table 9: Distributed vs Non-distributed Pandas-based Code Model Training Time in
Google Colab Pro+ GPU

Neurons Epochs Batch No
Strategy
Time, s

Mirrored
Strategy
Time, s

difference %

350 30 8 48.26 73.36 -25.1 -52.01

350 30 16 28.29 46.54 -18.25 -64.51

350 30 32 18.49 32.94 -14.45 -78.15

350 30 64 12.74 23.82 -11.08 -86.97

350 30 128 9.78 19.49 -9.71 -99.28

350 50 8 79.28 119.18 -39.9 -50.33

350 50 16 44.77 70.45 -25.68 -57.36

350 50 32 29.28 44.02 -14.74 -50.34

350 50 64 19.53 30.02 -10.49 -53.71

350 50 128 14.68 25.7 -11.02 -75.07

350 50 128 118.78 214.28 -95.5 -80.4

350 100 8 114.88 124.52 -9.64 -8.39

350 100 16 68.79 82.02 -13.23 -19.23

350 100 32 40.31 53.82 -13.51 -33.52

350 100 64 26.29 44.01 -17.72 -67.4

700 30 8 138.44 160.99 -22.55 -16.29

700 30 16 76.78 90.75 -13.97 -18.19

700 30 32 38.69 57.71 -19.02 -49.16

700 30 64 33.12 41.46 -8.34 -25.18

700 30 128 25.63 33.94 -8.31 -32.42

700 50 8 228.63 262.54 -33.91 -14.83

700 50 16 126.74 147.9 -21.16 -16.7

700 50 32 67.3 91.16 -23.86 -35.45

700 50 64 53.52 65.12 -11.6 -21.67

700 50 128 40.7 51.55 -10.85 -26.66

700 100 8 454.46 518.36 -63.9 -14.06

700 100 16 157.29 287.27 -129.98 -82.64

700 100 32 96.31 176 -79.69 -82.74

700 100 64 66.94 123.06 -56.12 -83.84

700 100 128 52.21 95.36 -43.15 -82.65
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Table 10: Distributed vs Non-distributed PySpark-based Code Model Training Time in
Google Colab Pro+ GPU

Neurons Epochs Batch No
Strategy
Time, s

Mirrored
Strategy
Time, s

difference %

350 30 8 62.61 61.21 1.4 2.24

350 30 16 40.34 35.33 5.01 12.42

350 30 32 29.22 25.28 3.94 13.48

350 30 64 22.91 18.66 4.25 18.55

350 30 128 20.24 15.55 4.69 23.17

350 50 8 96.72 92.55 4.17 4.31

350 50 16 58.79 53.77 5.02 8.54

350 50 32 39.87 37.64 2.23 5.59

350 50 64 29.46 26.13 3.33 11.3

350 50 128 24.56 20.78 3.78 15.39

350 100 8 175.33 183 -7.67 -4.37

350 100 16 100.66 99.29 1.37 1.36

350 100 32 64.83 64.45 0.38 0.59

350 100 64 42.04 42.22 -0.18 -0.43

350 100 128 34.81 33.49 1.32 3.79

700 30 8 154.48 92.87 61.61 39.88

700 30 16 89.56 60.46 29.1 32.49

700 30 32 57.68 39.97 17.71 30.7

700 30 64 43.71 29.72 13.99 32.01

700 30 128 36.31 24.72 11.59 31.92

700 50 8 251.68 151.05 100.63 39.98

700 50 16 141.59 94.38 47.21 33.34

700 50 32 88.81 61.56 27.25 30.68

700 50 64 64.43 45 19.43 30.16

700 50 128 51.13 37.54 13.59 26.58

700 100 8 488.75 293.71 195.04 39.91

700 100 16 268.93 182.61 86.32 32.1

700 100 32 167.73 116.33 51.4 30.64

700 100 64 124.97 83 41.97 33.58

700 100 128 87.38 65.46 21.92 25.09

6.3 Experiment 3. Elephas framework Multi Worker Testing

Elephas framework GOOG Alphabet Inc testing results with a fixed number of neurons
350, batch size 8, 16, 32, 64, 128 and number of workers 1, 2 and 3. All tests are executed
using Google Colab Pro + with GPU and extended memory. One worker test executions
with top 5 RMSE values are aggregated in Table 14. The most precise results are shown
for one worker (350 neurons, batch size 8, 50 epochs) with RMSE 2.05 (STDEV 0.09) and
model training time 55.25 seconds. The predicted price change per cent is 0.4%, which
is very close to the actual price.
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Table 11: Elephas framework GOOG Alphabet Inc price prediction test run results as of
21.07.2022(350 neurons, one worker)

Number Of Workers 1 1 1 1 1

Batch Size 8 16 16 32 64

Number of Epochs 50 30 100 100 100

Predicted Price Change % 0.4 0.07 -0.09 0.25 0.31

MAE 1.48 1.75 1.67 1.91 2.08

RMSE 2.05 2.34 2.22 2.48 2.61

RMSE STDEV 0.09 0.12 0.19 0.32 0.56

Model Training time, s 55.25 27.7 66.42 45.75 31.73

Two workers test executions with the top 5 RMSE values are aggregated in Table
12. The most precise results are shown for one worker (350 neurons, batch size 8, 50
epochs) with RMSE 3.06 (STDEV 1.01) and a model training time of 49.83 seconds. The
predicted price change per cent is 0.68%.

Table 12: Elephas framework GOOG Alphabet Inc price prediction test run results as of
21.07.2022(350 neurons, two workers)

Number Of Workers 2 2 2 2 2

Batch Size 8 16 32 32 64

Number of Epochs 50 30 50 100 50

Change Percent 0.68 -1.33 -0.6 -2.05 0.78

MDAPE 1.74 1.33 2.32 2.51 2.28

RMSE 3.06 2.95 4.08 4.2 4.36

RMSE STDEV 1.01 0.63 1.24 1.4 1.22

Model Training time, s 49.83 24.71 26.89 44.8 22.93

Three workers test executions with the top 5 RMSE values are aggregated in Table
13. The most precise results are shown for one worker (350 neurons, batch size 32, 50
epochs) with RMSE 6.78 (STDEV 1.27) and a model training time of 49.83 seconds. The
predicted price change per cent is -0.58%. Test combination with 100 epochs and three
workers produced an error message during model training.
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Table 13: Elephas framework GOOG Alphabet Inc price prediction test run results as of
21.07.2022(350 neurons, three workers)

Number Of Workers 3 3 3 3 3

Batch Size 8 16 32 32 64

Number of Epochs 30 30 30 50 50

Change Percent -4.23 2.83 -1.23 -0.58 -0.25

MAE 7.07 8.11 8.32 5.88 6.14

RMSE 7.6 8.76 9.31 6.78 7.13

RMSE STDEV 6.35 5.74 2.3 1.27 2.81

Model Training time, s 33.44 23.81 19.95 26.34 22.93

Best accuracy results are received from one worker configuration. With an increas-
ing number of workers distributed model training declining accuracy. Overall Elephas
Framework is not mature yet for performing distributed model training.

6.4 Experiment 4. Keras Tuner Testing

Keras Tuner test results with the lowest RMSE of 3.06 (STDEV 0.33) are obtained on
batch sizes 8, 100 epochs and 350 neurons per trial (Table 14). Keras tuner tests RMSE
accuracy varies between 3.06 and 6.91. Also, test execution results in Table 14 show a
maximum model training time of 4878.33 seconds (batch size 8, 100 epochs per trial),
which indicates that it could not be used for critical data forecasting.

Table 14: GOOG Alphabet Inc price prediction test run results as of 22.07.2022 (Keras
Tuner)

Experiment Name Keras Tuner
Local PC

Keras Tuner
Local PC

Keras Tuner
Local PC

Batch Size 8 8 8

Number of Neurons 350 350 350

Number of Epochs 30 50 100

MAE 2.52 2.49 2.5

RMSE 3.33 3.16 3.06

RMSE STDEV 0.49 0.56 0.33

Model Training time, s 1372.5 2283.55 4878.33

6.5 Discussion

1. Prediction accuracy and Running time best performers.

Test results demonstrated that the best RMSE accuracy results are shown by
PySpark-based code implementation both on Google Colab and Local PC. Best
average RMSE value of 1.993 (standard deviation 0.006) is received on PySpark-
based Colab implementation (100 epochs, 700 neurons, batch size 32). Overall best
performance and accuracy tests are received on Google Colab Pro+ GPU and Local
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PC platforms using GPU. This could be explained that TensorFlow GPU librar-
ies are more efficient than the ones used with CPU or TPU. The lowest RMSE
values are received on tests with hyperparameters having 350 or 700 neurons, 100
epochs and batch sizes 16 or 32. Tests executed with a batch size of 64 or 128,
30 epochs didn’t show acceptable stable results. Google Colab TPU testing with
distributed TPUStrategy model training shows better model training times over
the non-distributed run, but RMSE accuracy in distributed training tests declines.
Lower RMSE accuracy results are on a TPU-based test without using model train-
ing TPUStrategy but still didn’t produce close accuracy similar to tests using GPU.
Very interesting results are observed when comparing Pandas-based vs PySpark-
based code executed in both distributed MirroredStartegy and non-distributed in
Google ColabPro+ GPU. In distributed mode Pandas-based code mode training
takes more time than in non-distributed mode, while PySpark-based code executes
faster in distributed mode. Also, there is a big gap in model training time: Pandas-
based test results (350 neurons, 100 epochs, batch size 32) 962.38 s vs 72.09 s
in Colab GPU and 129.15 s in MacBook Pro with GPU. A similar timing differ-
ence appears in PySpark tests as well. AWS EMR model training time for the
same hyperparameters (350 neurons, 100 epochs, batch size 32) is 313 seconds for
Pandas-based code and 311 seconds for PySpark-based code. AWS Lambda tests
show both performance and accuracy poor results and shouldn’t be considered for
intensive ML calculations, unless, AWS will introduce GPU processing and lift a 15
min processing time limit. AWS EMR tests demonstrate average accuracy and long
processing time in comparison to GPU optimised environments. In some Elephas
tests (one worker) it was noted RMSE 2.05 (Table 11), but it wasn’t consistent.

2. Spark vs Pandas
PySpark vs Pandas test results shows that there are no clear accuracy differences
between PySpark or Pandas-based solutions. PySpark-based solution on GPU-
based platforms tests model training time is longer than Pandas-based (Figure 7).
But AWS EMR tests show, that there is not much difference between PySpark and
Pandas-based code executions.
Also, considering relatively small data sets, it shouldn’t be a real difference between
using Pandas Data frame and PySpark SQL application. It would increase perform-
ance on multi-million rows and a large number of column data sets to perform ETL
data manipulation and preparation for model training. PySpark-based code is using
Spark Application and Spark Context session to scale data processing and model
training, which will help on big data sets. At the same time, PySpark SQL has a dif-
ferent syntax and limited functionality for the manipulation of data in comparison
with Pandas.

3. Keras Tuner
Keras Tuner tests show that this framework is not mature yet considering accur-
acy and model training time. It is a good tool for getting indicative results and
experimental testing.

4. Elephas
Elephas RDD model training demonstrated relatively good results only with one
worker. With an increasing number of workers model accuracy is critically dropping
and not acceptable for use. Distributed Sequential model training with multiple
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workers is not well developed yet and should not be used with two or more workers.

5. Limitations
Building Docker image for AWS Lambda required to have Intel-based PC, as Tensor-
Flow officially is not supporting ARM-based solutions.
During experiments due to access issues, it was not possible to configure the AWS
EMR cluster to work from AWS SageMaker Studio. The same relates to AWS
Fargate-based tests on college access.
Google Colab Pro+ monthly subscription is quite high (50 Euro per month) and
Google could ban GPU access due to fair policy usage.

6. Improvements
To improve research it could be done by adding following elements:

• Spark MLLib LSTM model training to perform end-to-end processing data,
model training and predicting in Spark and compare performance and accuracy
with TensorFlow using the same LSTM layers and hyperparameters.

• A relatively small dataset using 5 years period of time is not big enough to
test the PySpark SQL framework.

• Include AWS SageMaker and Google GCP platforms for testing.

7 Conclusion and Future Work

This research paper investigates, tests and compares frameworks and technologies and
contributes to Research Question:

To what extent Machine Learning Cloud-Based Services can enhance the effi-
ciency of stock price prediction and replace it to support investors and stock
market traders?

Research work objectives are:

1. Research which platform is delivering the lowest RMSE and model training time
when using Pandas-based code or PySpark-based code in distributed and non-
distributed model training mode?

2. Research how accurate and fast Elephas RDD model training is.

3. Research how accurate and fast is Keras Tuner model training?

For delivering answers to these questions it was reviewed options to design, implement
and execute ML solutions using Pandas-based code and PySpark-based code in both dis-
tributed and non-distributed model training mode, Keras Tuner and Elephas RDD to
train a Time Series Sequential LSTM model on Google Colab, AWS EMR, AWS Lambda
and Local PC. Jupyter Lab Notebooks are used on a programming basis.
ETL Jupyter Notebook has decoupled from the model the training part and completes
end-to-end data retrieval, preparation, feature engineering and delivering the combined
data set for the model training part of the project.
For completion of model training testing, it was prepared Jupyter Lab notebooks and
deployed into Google Colab, AWS EMR, Jupyter Lab on local PC and AWS Lambda
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docker image. Test results are aggregated into results.csv file and delivered for analysis
and report.
The lowest RMSE values and model training time was observed on PySpark-based code
executed on Google Colab GPU and Local PC with GPU. But Pandas-based code deliv-
ers similar RMSE accuracy as well. The fastest model training time belongs to Google
Colab GPU. Distributed model training mode using MirroredStrategy works faster with
PySpark-based code and slower with Pandas-based code. Tensorflow TPUStrategy dis-
tributed testing using Google Colab Pro+ TPU significantly improves model training
time but delivers lower accuracy. Overall, test results show that on the GPU-based plat-
form Pandas-based code training time is faster, with nearly similar to PySpark-based
code accuracy. An increasing number of epochs, number of neurons and decreasing batch
size consistently increase model training time on both PySpark and Pandas solutions.
Elephas distributed model training shows its efficiency and accuracy only on one worker
configuration. It was implemented and tested only on the Google Colab Pro+ GPU en-
vironment. Local PC installation didn’t succeed due to hardware limitations. Overall,
the Elephas framework, especially in multi-worker mode is not mature enough for reliable
model training.
Keras Tuner didn’t deliver the best accuracy results and could be used only in the initial
stages of ML model testing.
AWS Lambda usage for ML model training is limited due to its processing time limit. It
is not fit to execute Tensorflow as fast as GPU solutions.
AWS EMR solution didn’t deliver the best accuracy and model training time results. Too
expensive to use.
Research summary. The main idea of this research is to establish the most efficient
cloud-based solution delivering the best accuracy and model training time while perform-
ing Stock Price prediction task implemented on selected cloud-based platforms. During
conducting research it was achieved following:

• Tested and proved the efficiency of Cloud-based GPU and TPU-distributed model
training IT cloud infrastructure when performing ML LSTM Stock price prediction.
Best accuracy and performance results are demonstrated by Google Colab Pro+
GPU solution with TensorFlow non-distributed model training.

• Tested and measured performance and accuracy of TensorFlow MirroredStrategy,
TPUStrategy and Elephas RDD distributed model training when performing ML
LSTM Stock price prediction. Proved the efficiency of using TPUStrategy distrib-
uted ML model training

• Tested and measured performance and accuracy of Cloud-based AWS EMR, AWS
Lambda solutions. As per test results, these setups should be avoided when doing
intensive ML model training computations.

• Tested and measured the performance and accuracy of model training using Google
Colab Pro+ and Keras Tuner. As per the results, this tool needs more research and
testing experiments and could not be recommended as reliable yet.

• Tested and measured PySpark vs Pandas data frame performance and accuracy.
Both frameworks are delivering similar accuracy, but show different model training
times. Proved that PySpark framework works faster with TensorFlow Mirrored-
Strategy distributed ML model training.
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Future work. As the PySpark-based solution showed good results on GPU-based plat-
forms, it would be a good consideration to do the next step and implement the project
using AWS Glue Spark-based server-less solutions for ETL job and keep data set in Spark
from end-to-end processing. Potentially it is possible to improve the speed and quality
of ML model training by experimenting with Spark ML library MLLib in a server-less
GPU-based solution. Also, considering the Keras Tuner framework, results could be
improved by using more hyperparameter search strategies. Distributed model training
show interesting results. The next step would be enhancing research by using multi-GPU
instances for distributed multi-worker model training.
Future work summary:

• Add experiments to measure and compare model training time and accuracy us-
ing Horovod and Tensorflow MultiworkerMirroredStrategy and MirroredStrategy
multiple GPU distributed model training.

• Get a bigger dataset and scale ML model training with Spark ML Lib for use with
PySpark.

• To simplify the test execution process, a harness workflow tool could be developed
for automating the model training hyperparameter iterations by providing either
hyperparameters range or particular values.
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