
Configuration Manual

MSc Research Project

Cloud Computing

Ryan Bannon
Student ID: 14488478

School of Computing

National College of Ireland

Supervisor: Horacio Gonzalez-Velez

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ryan Bannon

Student ID: 14488478

Programme: Cloud Computing

Year: 2022

Module: MSc Research Project

Supervisor: Horacio Gonzalez-Velez

Submission Due Date: 15/08/2022

Project Title: Configuration Manual

Word Count: 1052

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Ryan Bannon

Date: 14th August 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ryan Bannon
14488478

1 Introduction

This document provides detailed instructions for setting up and running the research
experiments for this project on t2.large AWS EC2 instances. It also highlights the ne-
cessary software and platforms used. The conducted research experiments tested the
solutions ability to improve latency of cold starts, with primary focus on Apache Open-
Whisk. Table 1 lists the integral tools and platforms used in this research. Table 2 lists
the software libraries and packages used.

Table 1: Tools and Platforms

Type Tool/Platform

Virtual Machines Amazon Web Services (AWS) EC2

Operating System Linux Ubuntu Server 18.04 LTS (HVM)

Serverless Platform Apache OpenWhisk 1.0.0 (open-source)

Container Technology Docker 20.10.17 CE

Machine Learning Google Colab & Keras Tensorflow 2.8.0

Performance/Load Testing Java (openjdk-11) & Apache JMeter 5.4.3

Programming Language Python 3.10.4

Table 2: Software pre-requisites

Bash wsk (openwhisk cli v1), docker-compose 1.21.2, docker-ce-cli, python-pip,
containerd, make, curl, npm, ca-certificates, gnupg, lsb-release, zip

Python pandas, numpy, matplotlib

2 Experiments

A total of 4 main experiments were conducted to validate the hypothesis put forward by
this research paper. Phase 1 experiments simulated the Azure Functions data throughput
of 2 separate days against Apache OpenWhisk. Phase 2 experiments also simulated the

1

Azure Functions data of the same days, however, only a window 6 hours was selected. In
the background a process consumes the machine learning predictions and heats function
containers accordingly. Table 3 breaks this explanation down further.

Table 3: Experiment Breakdowns

Phase Server Description

Phase 1
Server 1 Azure Function execution data on 04/02/2021 simulated through

Apache OpenWhisk (alias: experiment 1)
Server 2 Azure Function execution data on 12/02/2021 simulated through

Apache OpenWhisk (alias: experiment 2)

Phase 2
Server 1 Azure Function execution data on 04/02/2021 between 12:00 &

18:00 simulated through custom modules with Regression pre-
dictions applied (alias: experiment 1 2)

Server 2 Azure Function execution data on 12/02/2021 between 12:00 &
18:00 simulated through custom modules with GRU predictions
applied (alias: experiment 2 2)

2.1 Provisioning AWS Resources

Step 1: Log into Amazon Web Services Portal

Step 2: Locate and open the EC2 service

Step 3: Open Key Pairs in Network & Security group along the left panel

Step 4: Create a key pair by supplying the name, leaving the default RSA type and
exporting as .pem file format

Note: Store the downloaded .pem file in a safe location on your client

Figure 1: Creating a key pair in AWS

2

Step 5: Navigate to Instances and click to launch new

Step 6: Enter a name for the virtual machines

Step 7: Search for and select the ’Ubuntu Server 18.04 LTS (HVM), SSD Volume Type’
(64-bit) AMI

Figure 2: Selecting the required Ubuntu AMI in AWS EC2

Step 8: Increase the number of instances to 2

Step 9: Increase the instance type to t2.large (2vCPUs/8GB RAM), otherwise the ex-
periments will fail

Step 10: Select the previously created key pair

Step 11: Increase the storage of the virtual machines to 16GB

Step 12: Launch the instances

2.2 Connecting to Instances

Optional: Append ’-1’ & ’-2’ to the end of the VM names to distinguish one from another
when the instances are up and running

Figure 3: Running Instances in AWS EC2

3

Step 1: Copy the public IPv4 DNS in the details tab for each of the instances to your
clipboard or any other location for quick retrieval

Figure 4: Copying the IP DNS of an EC2 instance to the clipboard

Step 2: Open a terminal session from your client (in the same directory as your .pem file
for ease)

Step 3: Enter ssh -i "{YOUR_KEYPAIR}.pem" ubuntu@{YOUR_EC2_PUBLIC_IP_DNS} to
open an SSH session to the EC2 instances

Figure 5: Connected to EC2 instance via SSH

2.3 Running the Installation

Step 1: Verify git is installed on the VM (which it should be) with the command
git --version. Type sudo apt install git if it’s not already installed

Step 2: Now clone the projects codebase from the Github repository with the following
command sudo git clone https://github.com/ryanbannon/openwhisk.git

4

Figure 6: Cloning project repo onto EC2 instance

Step 3: The download and installation of required software tools and dependencies is
automated with the install.sh bash file. To run this file enter
sudo bash ~/openwhisk/install.sh > ~/installation.log

Note: This may take up to 15 minutes

Optional: Once completed, the installation log is available for users to observe and validate
completion nano ~/installation.log

Step 4: Validate that Docker and OpenWhisk were both installed by observing running
containers sudo docker ps --format '{{.Names}}'

Figure 7: Listing the running Docker containers on the EC2 instance

Step 5: Validate that the required Openwhisk actions were created for the Jmeter work-
load sudo wsk -i action list

5

Figure 8: Listing OpenWhisk actions on the EC2 instance

Step 6: Use the following commands to move the downloaded Jmeter files and execut-
ables to an appropriate location on the server, otherwise Jmeter cannot run
sudo unzip ~/apache-jmeter-5.4.3.zip

,
sudo mv ~/apache-jmeter-5.4.3 ~/jmeter

,
sudo mv ~/jmeter /tmp

,
echo 'export PATH="\$PATH:/tmp/jmeter/bin"' >> ~/.bashrc

,
source ~/.bashrc

Step 7: Verify Jmeter can be executed sudo /tmp/jmeter/bin/jmeter.sh --version

Figure 9: Verifying Jmeter install on the EC2 instance

2.4 Running the Experiments

2.4.1 Experiment Phase 1

Server 1:

6

Note: This experiment will run for 24 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against OpenWhisk with this command sudo nohup

/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp

eriment_1/Experiment_1.jmx" -l "/home/ubuntu/experiment_1_logs.csv

" > /home/ubuntu/experiment_1.log &

Note: Above command can also be found in the project README file in Github

Server 2:

Note: This experiment will run for 24 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against OpenWhisk with this command sudo nohup

/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp

eriment_2/Experiment_2.jmx" -l "/home/ubuntu/experiment_2_logs.csv

" > /home/ubuntu/experiment_2.log &

Note: Above command can also be found in the project README file in Github

2.4.2 Experiment Phase 2

Server 1:

Note: This experiment will run for 6 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against the custom modules with this command sudo

nohup python /home/ubuntu/openwhisk/controller.py 1 experiment_serv

erless_1 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/

predictions/Experiment_1/Experiment_1_2.jmx" -l "/home/ubuntu/exper

iment_1_2_logs.csv" > /home/ubuntu/experiment_1_2.log &

Note: Above command can also be found in the project README file in Github

Server 2:

Note: This experiment will run for 6 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against the custom modules with this command sudo

nohup python /home/ubuntu/openwhisk/controller.py 2 experiment_serv

erless_2 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/

predictions/Experiment_2/Experiment_2_2.jmx" -l "/home/ubuntu/exper

iment_2_2_logs.csv" > /home/ubuntu/experiment_2_2.log &

7

Note: Above command can also be found in the project README file in Github

Figure 10: Running experiment 2 2 on EC2 instance

2.5 Evaluating the Results

All log files are retrievable from the root directory. Phase 2 experiments, have an ad-
ditional results CSV file that contains cold start information. These files were written
directly to:
/home/ubuntu/openwhisk/predictions/Experiment x/experiment x 2 results.csv

8

	Introduction
	Experiments
	Provisioning AWS Resources
	Connecting to Instances
	Running the Installation
	Running the Experiments
	Experiment Phase 1
	Experiment Phase 2

	Evaluating the Results

