~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Ryan Bannon
Student ID: 14488478

School of Computing
National College of Ireland

Supervisor: Horacio Gonzalez-Velez

National College of Ireland National
Project Submission Sheet College of

School of Computing Ireland

Student Name:

Ryan Bannon

Student ID: 14488478
Programme: Cloud Computing
Year: 2022

Module: MSc Research Project
Supervisor: Horacio Gonzalez-Velez
Submission Due Date: 15/08/2022

Project Title: Configuration Manual
Word Count: 1052

Page Count:

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Ryan Bannon
Date: 14th August 2022

PLEASE READ THE

FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). U

Attach a Moodle submission receipt of the online project submission, to | J
each project (including multiple copies).

You must ensure that

a copy on computer.

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

you retain a HARD COPY of the project, both for | (I

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Ryan Bannon
14488478

1 Introduction

This document provides detailed instructions for setting up and running the research
experiments for this project on t2.large AWS EC2 instances. It also highlights the ne-
cessary software and platforms used. The conducted research experiments tested the
solutions ability to improve latency of cold starts, with primary focus on Apache Open-
Whisk. Table [1] lists the integral tools and platforms used in this research. Table [2] lists
the software libraries and packages used.

Table 1: Tools and Platforms

Type Tool /Platform

Virtual Machines Amazon Web Services (AWS) EC2

Operating System Linux Ubuntu Server 18.04 LTS (HVM)

Serverless Platform Apache OpenWhisk 1.0.0 (open-source)
Container Technology Docker 20.10.17 CE

Machine Learning Google Colab & Keras Tensorflow 2.8.0

Performance/Load Testing | Java (openjdk-11) & Apache JMeter 5.4.3

Programming Language Python 3.10.4

Table 2: Software pre-requisites

Bash wsk (openwhisk cli v1), docker-compose 1.21.2, docker-ce-cli, python-pip,
containerd, make, curl, npm, ca-certificates, gnupg, lsb-release, zip

Python | pandas, numpy, matplotlib

2 Experiments

A total of 4 main experiments were conducted to validate the hypothesis put forward by
this research paper. Phase 1 experiments simulated the Azure Functions data throughput
of 2 separate days against Apache OpenWhisk. Phase 2 experiments also simulated the

Azure Functions data of the same days, however, only a window 6 hours was selected. In
the background a process consumes the machine learning predictions and heats function
containers accordingly. Table |3 breaks this explanation down further.

Table 3: Experiment Breakdowns

Phase | Server | Description

Server 1 | Azure Function execution data on 04/02/2021 simulated through

Phase 1 Apache OpenWhisk (alias: experiment_1)
Server 2 | Azure Function execution data on 12/02/2021 simulated through

Apache OpenWhisk (alias: experiment_2)
Phase 2 Server 1 | Azure Function execution data on 04/02/2021 between 12:00 &

18:00 simulated through custom modules with Regression pre-
dictions applied (alias: experiment_1_2)

Server 2 | Azure Function execution data on 12/02/2021 between 12:00 &
18:00 simulated through custom modules with GRU predictions
applied (alias: experiment_2_2)

2.1 Provisioning AWS Resources

Step 1: Log into Amazon Web Services Portal

Step 2: Locate and open the EC2 service

Step 3: Open Key Pairs in Network & Security group along the left panel

Step 4: Create a key pair by supplying the name, leaving the default RSA type and
exporting as .pem file format

Note: Store the downloaded .pem file in a safe location on your client

EC2 Key pairs Create key pair

Create key pair o

Key pair
A key pair, consisting of a private key and a public key, is a set of security credentials that you use to prove your identity when connecting to
an instance.

Name
my-keypair

The name can include up to 255 ASCII characters. It can't include leading or trailing spaces.

Key pair type Info
0O RSA
ED25519

Private key file format

O pem

For use with OpenSSH

ppk

For use with PuTTY

Figure 1: Creating a key pair in AWS

Step 5: Navigate to Instances and click to launch new
Step 6: Enter a name for the virtual machines

Step 7: Search for and select the 'Ubuntu Server 18.04 LTS (HVM), SSD Volume Type’
(64-bit) AMI

EC2 > Instances > Launchaninstance > AMis Cancel

Choose an Amazon Machine Image (AMI)
An AMI is a template that contains the software configuration (operating system, application server, and applications)

required to launch your instance. You can select an AMI provided by AWS, our user community, or the AWS Marketplace; or
you can select one of your own AMIs.

Q Ubuntu Server 18.04 LTS (HVM) X \zl

Quickstart AMIs (1) My AMIs (0) AWS Marketplace AMIs (16) Community AMIs (493)
Cormmornly used AMIs Created by me AWS & trusted third-party AMIs Published by anyone

Refine results Ubuntu Server 18.04 LTS (HVM) (1 filtered, 1 unfiltered) 1

ubuntu® Ubuntu Server 18.04 LTS (HVM), SSD Volume Type

Clear all filters ami-07b63aa1cfd3bc3a5 (64-bit (x86)) / ami-007b2bda37770a29¢ (64-bit (Arm)) m

(Ui Ubuntu Server 18.04 LTS (HVM),EBS General Purpose (SSD) Volume Type. Support available from Canonical (http://www.ubuntu.com/cloud/services).

i o O 64-bit (x86)
Free tier eligible Platform: ubuntu Root device type: ebs Virtualization: hvm ENA enabled: Yes
Free tier only nfo Ga-bit (arm)

v 05 category

Figure 2: Selecting the required Ubuntu AMI in AWS EC2

Step 8: Increase the number of instances to 2

Step 9: Increase the instance type to t2.large (2vCPUs/8GB RAM), otherwise the ex-
periments will fail

Step 10: Select the previously created key pair
Step 11: Increase the storage of the virtual machines to 16GB

Step 12: Launch the instances

2.2 Connecting to Instances

Optional: Append -1” & -2’ to the end of the VM names to distinguish one from another
when the instances are up and running

Instances (2) info

Q

x14488478-ec2 | X | | Clearfilters
Name v Instance ID Instance state v Instance type ¥ Status check
x14488478-ec2-final-1 i-01234de114f0ee514 @ Running @& t2.large @ 2/2 checks passed
x14488478-ec2-final-2 i-084b4bab45988da4d3 ®Running @Q t2.large ® 2/2 checks passed

Figure 3: Running Instances in AWS EC2

Step 1: Copy the public IPv4 DNS in the details tab for each of the instances to your
clipboard or any other location for quick retrieval

Private IPv4 addresses

® Public IPv4 DNS copied

ec2-52-214-118-75.eu-west-1.compute.amazonaws.com | open address [

Figure 4: Copying the IP DNS of an EC2 instance to the clipboard

Step 2: Open a terminal session from your client (in the same directory as your .pem file
for ease)

Step 3: Enter ssh -i "{YOUR_KEYPAIR}.pem" ubuntu@{YOUR_EC2_PUBLIC_IP_DNS} to
open an SSH session to the EC2 instances

he authenticity of host 'ec2-52-214-118-75.eu-west-1.compute.amazonaws.com (52.214.118.75)"' can't be established.

ECDSA key fingerprint is SHA256:qSqBLq185RqY9%a9bb+HolwWTrsFiCc0o4UlYLp3b7GMafQ

Are you sure you want to continue connecting (yes/no/[fingerprint])? yes

arning: Permanently added 'ec2-52-214-118-75.eu-west-1.compute.amazonaws.com,52.214.118.75" (ECDSA) to the 1list of known hosts
elcome to Ubuntu 18.04.6 LTS (GNU/Linux 5.4.0-1078-aws x86_64)

Documentation: https://help.ubuntu.com
Management: https://landscape.canonical.com
Support: https://ubuntu.com/advantage

System information as of Sun Aug 14 09:13:42 UTC 2022

System load: 0.0 Processes: 106
Usage of /: 11.4% of 15.33GB Users Togged in: o]
Memory usage: 4% IP address for eth0: 172.31.21.62

Swap usage: 0%

* Ubuntu Pro delivers the most comprehensive open source security and
compliance features.

https://ubuntu.com/aws/pro

5 updates can be applied immediately.
0 see these additional updates run: apt list --upgradable

New release '20.04.4 LTS' available.
Run 'do-release-upgrade’ to upgrade to it.

~$

Figure 5: Connected to EC2 instance via SSH

2.3 Running the Installation

Step 1: Verify git is installed on the VM (which it should be) with the command
git —-version. Type sudo apt install git if it’s not already installed

Step 2: Now clone the projects codebase from the Github repository with the following
command sudo git clone https://github.com/ryanbannon/openwhisk.git

» sudo git clone https://github.com/ryanbannon/openwhisk.git
Cloning into 'openwhisk®...
remote: Enumerating objects: 402, done.
remote: Counting objects: 100% DIZGD}‘ done.

remote: Compressing objects: 1 140/140), done.
remote: Total 402 (delta 116), reused 140 (delta 59), pach -reused 202
Receiving QD?EEIS 10 (402/402), 11.59 Mig | 10.16 MiB/s, done.

Resolving deltas: 100% (216/216), done.

Figure 6: Cloning project repo onto EC2 instance

Step 3: The download and installation of required software tools and dependencies is
automated with the install.sh bash file. To run this file enter
sudo bash “/openwhisk/install.sh > “/installation.log

Note: This may take up to 15 minutes

Optional: Once completed, the installation log is available for users to observe and validate
completion nano “/installation.log

Step 4: Validate that Docker and OpenWhisk were both installed by observing running
containers sudo docker ps --format '{{.Names}}'

o $ sudo docker ps --format '{{.Names}}'
ypenwhisk_apigateway_ 1
penwhisk_kafka-topics-ui_1
ypenwhisk_controller_1
penwhisk_invoker_1

ypenwhisk_zookeeper_1
penwhisk_minio_1

Figure 7: Listing the running Docker containers on the EC2 instance

Step 5: Validate that the required Openwhisk actions were created for the Jmeter work-
load sudo wsk -i action list

$ sudo wsk -i action Tist

private python:

private python:

: / _cba0443c854.32e21. \4d0bc3fbd124b510f1ebb2dd /cffca private python:
’quest’SRbSabO* ba3f2312b7c99f7d4561e7195Fa81744cad27b6e989Fbdbb5c6eac? private python:
/guest/4ce/573ec82ceBa3d7bc9e2a3f45343b2fccf86faaladdls 9424cal948aa9 private python:
/guest/41630cdded05acl 45a72ft07c22e90febbld537c5825377a983998c05ad0 private python:
/guest/090691f051ach420d7663cd db5 89¢ f'“ 0 Rc5003015f4d42 private python:
/ 5F533dbf1002f50 he/ 8 private python:

7 98 b private python:

/ 5bb2108cc? dafSJf 8b36 b h 8 private python:
/619caebdeff262e3b7 3] private python:
quest’ b61fd55aa093a2d1 bla68a60af5cf6chbfa7 FSealf 1846027 a5°54blbd private python:
fguestf30aa434528bc68ee0 5ee/be3albdb33d58961fdc8460ce5h5b46b4ddef96e8 private python:
/guest/905e6674359F6487df56/7/fa2c8calc8641e/740f2e32d9fd26e9felff7a4670d private python:
/guest,/bd5be891d0d10fbc3c59215d5F8159ea496433bcdladba7d8dl0ea2ld35c3e3a private python:
/guest/c9f8e30e36dlaef62cl10b3cfcabe289a93848a148d876dd514753040314F4817 private python:
/guest/155e47f8e71751d0c845049456d01832013c61336a8cd85901330ac821a71534 private python:
ngestf313c03f53a0d31f?0aec25F62ef§33e?dd? 25cadaf579018452d1204beaad private python:

Tnd 1A A 1 LAd 1 A 1A o L T Bad 1o Il L L L L

Figure 8: Listing OpenWhisk actions on the EC2 instance

Step 6: Use the following commands to move the downloaded Jmeter files and execut-
ables to an appropriate location on the server, otherwise Jmeter cannot run
sudo unzip ~/apache-jmeter-5.4.3.zip

sudo mv ~/apache-jmeter-5.4.3 ~/jmeter

Y

sudo mv ~/jmeter /tmp

Y

echo 'export PATH="\$PATH:/tmp/jmeter/bin"' >> ~/.bashrc

Y

source ~/.bashrc

Step 7: Verify Jmeter can be executed sudo /tmp/jmeter/bin/jmeter.sh --version

$ sudo /tmp/jmeter/bin/jmeter.sh --version

opyright (c) 1999-2021 The Apache Software Foundation
$

Figure 9: Verifying Jmeter install on the EC2 instance

2.4 Running the Experiments
2.4.1 Experiment Phase 1

Server 1:

Note:
Step 1:

Step 2:

Note:

Server
Note:
Step 1:

Step 2:

Note:

2.4.2

Server
Note:
Step 1:

Step 2:

Note:

Server
Note:
Step 1:

Step 2:

This experiment will run for 24 hours
Make sure you're in the root directory cd /home/ubuntu/

Run the Jmeter test plan against OpenWhisk with this command sudo nohup
/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp
eriment_1/Experiment_1.jmx" -1 "/home/ubuntu/experiment_1_logs.csv
" > /home/ubuntu/experiment_1.log &

Above command can also be found in the project README file in Github

2:
This experiment will run for 24 hours
Make sure you're in the root directory cd /home/ubuntu/

Run the Jmeter test plan against OpenWhisk with this command sudo nohup
/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp
eriment_2/Experiment_2.jmx" -1 "/home/ubuntu/experiment_2_logs.csv
" > /home/ubuntu/experiment_2.log &

Above command can also be found in the project README file in Github

Experiment Phase 2

1:

This experiment will run for 6 hours

Make sure you're in the root directory cd /home/ubuntu/

Run the Jmeter test plan against the custom modules with this command sudo
nohup python /home/ubuntu/openwhisk/controller.py 1 experiment_serv
erless_1 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/
predictions/Experiment_1/Experiment_1_2.jmx" -1 "/home/ubuntu/exper
iment_1_2_logs.csv" > /home/ubuntu/experiment_1_2.log &

Above command can also be found in the project README file in Github

2:
This experiment will run for 6 hours
Make sure you're in the root directory cd /home/ubuntu/

Run the Jmeter test plan against the custom modules with this command sudo
nohup python /home/ubuntu/openwhisk/controller.py 2 experiment_serv
erless_2 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/
predictions/Experiment_2/Experiment_2_2.jmx" -1 "/home/ubuntu/exper
iment_2_2_logs.csv" > /home/ubuntu/experiment_2_2.log &

Note: Above command can also be found in the project README file in Github

riment_serverless_2
riment_2_2.jmx" =1 "

ring input and appending tput to “nohup.out”

warning: 3 gl bé rémoved from a future JDE réléase

Figure 10: Running experiment_2 2 on EC2 instance

2.5 Evaluating the Results

All log files are retrievable from the root directory. Phase 2 experiments, have an ad-
ditional results CSV file that contains cold start information. These files were written
directly to:

/home/ubuntu/openwhisk /predictions/Experiment_z /experiment_z_2_results.csv

	Introduction
	Experiments
	Provisioning AWS Resources
	Connecting to Instances
	Running the Installation
	Running the Experiments
	Experiment Phase 1
	Experiment Phase 2

	Evaluating the Results

