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1 Introduction

This document provides detailed instructions for setting up and running the research
experiments for this project on t2.large AWS EC2 instances. It also highlights the ne-
cessary software and platforms used. The conducted research experiments tested the
solutions ability to improve latency of cold starts, with primary focus on Apache Open-
Whisk. Table 1 lists the integral tools and platforms used in this research. Table 2 lists
the software libraries and packages used.

Table 1: Tools and Platforms

Type Tool/Platform

Virtual Machines Amazon Web Services (AWS) EC2

Operating System Linux Ubuntu Server 18.04 LTS (HVM)

Serverless Platform Apache OpenWhisk 1.0.0 (open-source)

Container Technology Docker 20.10.17 CE

Machine Learning Google Colab & Keras Tensorflow 2.8.0

Performance/Load Testing Java (openjdk-11) & Apache JMeter 5.4.3

Programming Language Python 3.10.4

Table 2: Software pre-requisites

Bash wsk (openwhisk cli v1), docker-compose 1.21.2, docker-ce-cli, python-pip,
containerd, make, curl, npm, ca-certificates, gnupg, lsb-release, zip

Python pandas, numpy, matplotlib

2 Experiments

A total of 4 main experiments were conducted to validate the hypothesis put forward by
this research paper. Phase 1 experiments simulated the Azure Functions data throughput
of 2 separate days against Apache OpenWhisk. Phase 2 experiments also simulated the
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Azure Functions data of the same days, however, only a window 6 hours was selected. In
the background a process consumes the machine learning predictions and heats function
containers accordingly. Table 3 breaks this explanation down further.

Table 3: Experiment Breakdowns

Phase Server Description

Phase 1
Server 1 Azure Function execution data on 04/02/2021 simulated through

Apache OpenWhisk (alias: experiment 1)
Server 2 Azure Function execution data on 12/02/2021 simulated through

Apache OpenWhisk (alias: experiment 2)

Phase 2
Server 1 Azure Function execution data on 04/02/2021 between 12:00 &

18:00 simulated through custom modules with Regression pre-
dictions applied (alias: experiment 1 2)

Server 2 Azure Function execution data on 12/02/2021 between 12:00 &
18:00 simulated through custom modules with GRU predictions
applied (alias: experiment 2 2)

2.1 Provisioning AWS Resources

Step 1: Log into Amazon Web Services Portal

Step 2: Locate and open the EC2 service

Step 3: Open Key Pairs in Network & Security group along the left panel

Step 4: Create a key pair by supplying the name, leaving the default RSA type and
exporting as .pem file format

Note: Store the downloaded .pem file in a safe location on your client

Figure 1: Creating a key pair in AWS
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Step 5: Navigate to Instances and click to launch new

Step 6: Enter a name for the virtual machines

Step 7: Search for and select the ’Ubuntu Server 18.04 LTS (HVM), SSD Volume Type’
(64-bit) AMI

Figure 2: Selecting the required Ubuntu AMI in AWS EC2

Step 8: Increase the number of instances to 2

Step 9: Increase the instance type to t2.large (2vCPUs/8GB RAM), otherwise the ex-
periments will fail

Step 10: Select the previously created key pair

Step 11: Increase the storage of the virtual machines to 16GB

Step 12: Launch the instances

2.2 Connecting to Instances

Optional: Append ’-1’ & ’-2’ to the end of the VM names to distinguish one from another
when the instances are up and running

Figure 3: Running Instances in AWS EC2
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Step 1: Copy the public IPv4 DNS in the details tab for each of the instances to your
clipboard or any other location for quick retrieval

Figure 4: Copying the IP DNS of an EC2 instance to the clipboard

Step 2: Open a terminal session from your client (in the same directory as your .pem file
for ease)

Step 3: Enter ssh -i "{YOUR_KEYPAIR}.pem" ubuntu@{YOUR_EC2_PUBLIC_IP_DNS} to
open an SSH session to the EC2 instances

Figure 5: Connected to EC2 instance via SSH

2.3 Running the Installation

Step 1: Verify git is installed on the VM (which it should be) with the command
git --version. Type sudo apt install git if it’s not already installed

Step 2: Now clone the projects codebase from the Github repository with the following
command sudo git clone https://github.com/ryanbannon/openwhisk.git
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Figure 6: Cloning project repo onto EC2 instance

Step 3: The download and installation of required software tools and dependencies is
automated with the install.sh bash file. To run this file enter
sudo bash ~/openwhisk/install.sh > ~/installation.log

Note: This may take up to 15 minutes

Optional: Once completed, the installation log is available for users to observe and validate
completion nano ~/installation.log

Step 4: Validate that Docker and OpenWhisk were both installed by observing running
containers sudo docker ps --format '{{.Names}}'

Figure 7: Listing the running Docker containers on the EC2 instance

Step 5: Validate that the required Openwhisk actions were created for the Jmeter work-
load sudo wsk -i action list
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Figure 8: Listing OpenWhisk actions on the EC2 instance

Step 6: Use the following commands to move the downloaded Jmeter files and execut-
ables to an appropriate location on the server, otherwise Jmeter cannot run
sudo unzip ~/apache-jmeter-5.4.3.zip

,
sudo mv ~/apache-jmeter-5.4.3 ~/jmeter

,
sudo mv ~/jmeter /tmp

,
echo 'export PATH="\$PATH:/tmp/jmeter/bin"' >> ~/.bashrc

,
source ~/.bashrc

Step 7: Verify Jmeter can be executed sudo /tmp/jmeter/bin/jmeter.sh --version

Figure 9: Verifying Jmeter install on the EC2 instance

2.4 Running the Experiments

2.4.1 Experiment Phase 1

Server 1:

6



Note: This experiment will run for 24 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against OpenWhisk with this command sudo nohup

/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp

eriment_1/Experiment_1.jmx" -l "/home/ubuntu/experiment_1_logs.csv

" > /home/ubuntu/experiment_1.log &

Note: Above command can also be found in the project README file in Github

Server 2:

Note: This experiment will run for 24 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against OpenWhisk with this command sudo nohup

/tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/jmeter/Exp

eriment_2/Experiment_2.jmx" -l "/home/ubuntu/experiment_2_logs.csv

" > /home/ubuntu/experiment_2.log &

Note: Above command can also be found in the project README file in Github

2.4.2 Experiment Phase 2

Server 1:

Note: This experiment will run for 6 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against the custom modules with this command sudo

nohup python /home/ubuntu/openwhisk/controller.py 1 experiment_serv

erless_1 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/

predictions/Experiment_1/Experiment_1_2.jmx" -l "/home/ubuntu/exper

iment_1_2_logs.csv" > /home/ubuntu/experiment_1_2.log &

Note: Above command can also be found in the project README file in Github

Server 2:

Note: This experiment will run for 6 hours

Step 1: Make sure you’re in the root directory cd /home/ubuntu/

Step 2: Run the Jmeter test plan against the custom modules with this command sudo

nohup python /home/ubuntu/openwhisk/controller.py 2 experiment_serv

erless_2 & /tmp/jmeter/bin/jmeter.sh -n -t "/home/ubuntu/openwhisk/

predictions/Experiment_2/Experiment_2_2.jmx" -l "/home/ubuntu/exper

iment_2_2_logs.csv" > /home/ubuntu/experiment_2_2.log &
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Note: Above command can also be found in the project README file in Github

Figure 10: Running experiment 2 2 on EC2 instance

2.5 Evaluating the Results

All log files are retrievable from the root directory. Phase 2 experiments, have an ad-
ditional results CSV file that contains cold start information. These files were written
directly to:
/home/ubuntu/openwhisk/predictions/Experiment x/experiment x 2 results.csv
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