~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Paris Moore
Student ID: x14485758

School of Computing
National College of Ireland

Supervisor: Horacio Gonzalez-Velez

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Paris Moore
Student ID: x14485758
Programme: Cloud Computing
Year: 2021-22
Module: MSc Research Project
Supervisor: Horacio Gonzalez-Velez
Submission Due Date: 15th Aug 2022
Project Title: "Continuous Benchmarking’ in DevOps to support Quality of
Deployments using Amazon Web Services
Word Count: 2042
Page Count: [3]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Paris Moore

Date: 15th September 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

'Continuous Benchmarking’ in DevOps to support
Quality of Deployments using Amazon Web Services

Paris Moore
x14485758

1 Introduction

This configuration manual will help its readers to understand the system requirements,
setup, software and install specifications that were used in this research. Also, this
manual includes detailed explanation of the steps needed to follow when implementing
this research project. The proof-of-concept pipeline is designed and built using Amazon
Web Services’ (AWS), which automatically deploys the system release, runs one or more
benchmarks, collects and analyzes results, and decides whether the release fulfils pre-
defined Quality of Deployment (QoD) goals.

Prerequisites

e AWS Cloud Knowledge
e Basic Command Line Knowledge

e AWS IAM access to create roles and add policies to users

Have Python installed to be able to run the application locally.

Have Git installed locally.

2 Before you begin

2.1 Software Installation

e Install AWS CLI locally following the steps for your Operating System
https://docs.aws.amazon.com/cli/v1/userguide/install-windows.html

e Install Docker locally following the steps for your Operating System
https://docs.docker.com/get-docker/

2.2 The Application

An application is required for analysis purposes and to test deployments on the pipeline.
An open source Twitter Sentiment Analysis application is chosen. The app is built on the
python flask framework with machine learning models developed to perform the predic-
tions. The application will be containerized using docker and deployed using AWS Elastic

1

Container Service (ECS). Inside directory ’sentiment-analysis/containerized_webapp/’ in
the Application source file is a .Dockerfile and buildspec.yml files which will be very
important when deploying the application on AWS Cloud.

¥ master v+ sentiment-analysis / containerized_webapp / Go to file
@ dmoonat readme dbeseac onJul 31,2021) History
K8s_configs Deployment configs for Kubernetes and CloudBuild 13 months ago
model v 14 months ago
templates package wepapp using docker 14 months ago
[Dockerfile package wepapp using docker 14 months ago
O apppy v 14 months ago
[buildspecyml updated buildspec 14 months ago
O cloudbuild.yaml Deployment configs for Kubernetes and CloudBuild 13 months ago
[requirements.txt package wepapp using docker 14 months ago
[sentimenttsv package wepapp using docker 14 months ago
O trainpy vl 14 months ago

GitHub Repository to download or clone application code:
https://github.com/dmoonat /sentiment-analysis/tree /master /containerized _webapp

Once the application has been downloaded and saved. The application can be ran locally
by running the following commands in the ’sentiment-analysis/containerized_webapp/’
directory.

e pip install -r requirements.txt

e python app.py

3 Deploying the Application on AWS

3.1 Docker

Once you have installed Docker, you can verify the installation is successful by running the
"docker’ command on the terminal /command prompt. Its time to dockerize the Sentiment
Analysis Application. The dockerfile already includes the necessary commands for docker
to build an image.

e docker build -t final project_2022:v1 -f Dockerfile .
e Check an image has been built using the 'docker images’ command

e Test the image by running it using this command:
docker run -p 5000:5000 -t -i final_project_2022:v1

e Go to the IP of the docker displayed to check that the app is running on a container.

3.2 Elastic Container Registry

AWS ECR is a registry to store and manage container images, similar to DockerHub.

e Login to AWS management console — ECR
e Create a repository for the application

Amazon ECR Repositories Edit: do_you_bench

Edit repository

General settings

Visibility settings Info
Choose the visibility setting for the repository.

Repository name
Provide a concise name. A developer should be able to identify the repository contents by the name.

_dkr.ecr.us-west-z.amazonaws.com/ do_you_bench

12 out of 256 characters maximum (2 minimum). The name must start with a letter and can only contain lowercase letters, numbers,
wyphens, underscores, periods and forward slashes.

Tag immutability Info
Enable tag immutability to prevent image tags from being overwritten by subsequent image pushes using the same tag. Disable tag
immutability to allow image tags to be overwritten.

(Disabled

(@ Once arepository is created, the visibility setting of the repository can't be changed.

e To communicate with Amazon services from your local machine, you must install
the AWS CLI and configure your profile using the terminal. For NCI students,
this must be done via SSO. For those with admin access, this can be achieved by
generating secret access keys within your AWS account.

:~$ aws configure
WS Access Key ID [None]:

WS Secret Access Key [None]:
Dpefault region name [None]: us-east-1
Default output format [None]:

e Once AWS is configured, next you need to authenticate to your ECR repo using
this command with your ’region’ 'profile’ and ’aws account ID’ defined:

aws ecr get-login-password --region 'region’ --profile 'profile’
| docker login --username AWS --password-stdin ‘aws_account_id'.dkr.ecr.'region’'.amazonaws.com

Further supporting documentation can be found here:
https://docs.aws.amazon.com/AmazonECR /latest /userguide/getting-started-cli.html

e Once Authenticated, follow the ECR push commands from your local terminal to
upload a docker image to the repo.

e You can confirm that your image has been pushed by checking the ECR console.

Amazon ECR Repositories

Public

Private repositories (1 of 1) ‘ View push commands ‘ ‘ Delete ‘ ‘ Actions w
Q U @
Repositor Ta, Scan Encryption aL
P Y URI Created at . 9 - yP through
name a immutability frequency type
cache
June 16, 2022,

(51 R . ccr.us-west-

18:17:56 Disabled Manual AES-256 Inactive
2.amazonaws.com/do_you_bench

(UTC+01)

o do_you_bench

3.3 Elastic Container Service

Amazon ECS is a container orchestration platform developed by Amazon, that helps
schedule and orchestrate containers across a group of servers. The two major ECS com-
ponents are Tasks and Services.

e First step is to create a cluster using ECS. Select 'Networking Only” and then create.

Amazon ECS Cluster : sentiment-analysis-cluster

Clusters Get a detailed view of the resources on your cluster.

Task Definitions

Account Settlngs Cluster ARN arn:aws:ecs:us-west-2:250738637992:cluster/sentiment-analysis-cluster

Amazon EKS
Status ACTIVE
Clusters
Registered container instances 0
Amazon ECR
L Pending tasks count 0 Fargate, 0 EC2, 0 Extemal
Repositories

Running tasks count 3 Fargate, 0 EC2, 0 External
AWS Marketplace

. Active service count 1 Fargate, 0 EC2, 0 Extemal
Discover software gale, ’

Subscriptions o Draining service count 0 Fargate, 0 EC2, 0 External

Services Tasks ECS Instances Metrics Scheduled Tasks Tags Capacity Providers

% liIndata Nealata Artinne «

e Next you must create a "Task Definition’and choose 'Fargate’ as launch type. Give
the task definition a name, specify task Memory and CPU needed to run the task.

Task size (2]

The task size allows you to specify a fixed size for your task. Task size is required for tasks using the Fargate launch type and is optional
for the EC2 or External launch type. Container level memory settings are opiional when task size is set. Task size is not supported for
Windows containers

Task memory (GB) 1GB -
The valid memory range fior 0.25 vCPU is: 0.5GB - 2GB
Task CPU (vCPU) | 0.25wCPU -
The valid CPU range lor 1G8 memory is: 0.25 vCPU - 0.5 wCPU

Task memory maximum allocation for container memory reservation

L

o 1024 shared of 1024 MiB
Task CPU maximum allocation for containers

VUTTTTTTTTTTTTHTTHTTHTTTTTTTT

0 256 shared of 256 CPU units
Container Definitions o
Contalmer ... Image Hard/Soft ... CPU Units GPU Inference A... Essential
No results

e On the same page, click "Add container’ and provide a name and the image URI
(available from your ECR repo). As per how the application is developed, specify
the port mappings to 5000 so containers can send or receive traffic.

Container definitions

Container Name Image CPU Units GPU Inference Ac... Hard/Soft memory limits (MiB) Essential
- . sentiment-analysis-container 25073863799... 0 /- true
Details Mount Points

Container Path Source Volume Read only

Port Mappings

No mount points
Host Port Container Port Protocol

Volumes from
5000 5000 tep

- caes e Satiree Container Read onlv

e Click on Actions and Run Task, select launch type as Fargate. Select the VPC and
subnet from the dropdown and click Run Task.

e Our Task is created successfully, now we need to add an inbound rule to the security
group to access our application on port 5000.

e C(lick on the created task — click 'ENI Id” — network interface page.
Click on the network checkbox and scroll down to ’Security groups’.

Networkntetace 1/1) s

Q Search 1 &
Network interface ID = eni-04f1125caf9850890 | x ‘ ‘ Clear filters
Name v Network interface ID v Subnet ID v VPCID v Availability Zone v Security group n... ¥
- eni-04f1125caf9850890 subnet-002044907772bed21 [4 vpc-0b3bde132ef075470 [4 us-west-2b sentim-1088
3
Network interface: eni-04f1125caf9850890 ® X

¥ Network interface details

Network interface ID Name Description

@ eni-04f1125caf9850890 - arn:aws:ecs:us-west-
2:250738637992:attachment/21036467-cd19-4f5b-a49e-
bc4c18580ed6

Network interface status Interface type Security groups

@ In-use Elastic network interface sg-08faefde2caabd4ce (sentim-1088)

VPCID Subnet ID Availability Zone

vpc-0b3bde132ef075470 [4 subnet-002044907772be421 [4 us-west-2b

e Now click on Edit inbound rules and click Add rule. Add a custom TCP rule with
port 5000 and source to be 0.0.0.0/0 (to make the application accessible through
all IPs) and click Save rules.

EC2 Security Groups sg-08faefde2caabd4ce - sentim-1088 Edit inbound rules

Edit inbound rules

Inbound rules control the incoming traffic that's allowed to reach the instance.

Inbound rules info

Security group rule ID Type Info Protocol Info
sgr-03fe4c0bd09598b64 Custom TCP v Tcp
sgr-01bdded235a1a455f f— v Tep

[Addrute

Port range
Info

5000

Source Info Description - optional Info

Custom ¥ Q sentiment-analysis-app Delete
0.0.00/0 X

Custom w Q Delete
0.0.00/0 X

Cancel

e Go back to the task page and using the public IP and port 5000, you can access
the sentiment analysis application from the browser.

<« C O A Notsecure | 5421897.19:5000

College Misc Helpful & Clockify) Github ,

3] Markdown Cheat S.

2 % B »0

i@ MsForm | Create P.

) Paused

"% Anintroto Gitand... W Tutorial: Git for Abs... [~

Machine Learning Sentiment Analysis Application Containerization using Docker- new test on TEST pipeline

Twitter Sentiment Analysis

Enter Your Message Here Please

3.4 EC2 Load Balancer

predict

Next, we create an Application load balancer (ALB) for our application. A load balancer
serves as the single point of contact for clients and distributes incoming application traffic

across multiple targets, such as EC2 instances, in multiple Availability Zones.

This

increases the availability and scalability of the application.

e Go to EC2 and click on Load Balancers. Choose Application load Balancer and

Create.

e Add a name, VPC and availability zones.

e Create a new security group, add a name to Target group, for Target type select

IP and then click Next.

VPC vpc-0b3bde132ef075470 ('

Availability Zones subnet-002044907772be421 - us-west-2b (4
IPv4 address: Assigned by AWS

subnet-0dd58493a4229a46f - us-west-2a (
IPv4 address: Assigned by AWS

Edit subnets

Hosted zone Z1H1FLSHABSF5
Creation time June 21, 2022 at 6:54:23 PM UTC+1

Security

Security groups sg-O8faefde2caabd4ce, sentim-1088
+ 2022-06-22T715:51:20.663Z

Edit security groups

e Once created, note the DNS name, which is the public address where the application
is accessed from the browser.

3.5 AWS Fargate

We will use the same task definition we already created in ECS to create a Fargate Service.
AWS Fargate is a serverless compute engine for Amazon ECS that runs containers without
requiring us to worry about the underlying infrastructure.

e Go to Task Definitions in Amazon ECS — tick the radio button corresponding to the
existing task definition — click Actions — Create Service — Choose Fargate.

e Leave all other options as is, including rolling update as deployment type.

e Choose the same subnets as the one configured in the load balancer.

e Choose ALB as the load balancer type and add the already created ALB to it.
e Select the target group created in the ALB and click Create Service.

e Go back to the EC2 ALB and click on security groups; add a 'Custom TCP’ rule
with port 5000’ under inbound rules. This is the internal port that the flask app
is set to run on.

e Visiting the ALB DNS url previously noted, you can check the application is running
on the fargate service.

Oregon ¥ X14485758-Project/x14485758@student.ncirLie ¥

@ New EC2 Experience
Teluswhatyouthiok Create Load Balancer [NG1CRd o%e

EC2 Dashboard Q Filter by tags and attributes or search by keyword 1to10f1

EC2 Global View
@ Name “ DNSname State VPC ID
Events

[] i t-analy bal: ti it bal 1898041068 us-west-2.elb.amazonaws.com Active vpc-0b3bde132ef075470

Tags

DNS URL to Running application: sentiment-analysis-app-balancer-1898041068.us-
west-2.elb.amazonaws.com

4 Configuring the Pipeline

4.1 CodeCommit

AWS CodeCommit is used to store the applications artifacts. It is Amazon’s version of
Github.

e Click Create Repository and fill in the required details.

e Once created, click on the repo and from the drop-down choose 'Connection Steps’

Developer Tools CodeCommit Repositories MySentimentApplicationRepo
MySen‘UmentAppI_|cat|onRep0 master v Create pull request ‘ ‘ Clone URL a
Clone HTTPS
R R . Clone SSH
MySentimentApplicationRepo info
Clone HTTPS (GRC)

Name Connection steps

[] containerized_webapp

- YO i

e You must still have an active session on the AWS CLI for the next steps. Otherwise,
refresh the session by re-running ’aws configure’

e Next, follow the steps as outlined on the CodeCommit console to push the local
application folder to the CodeCommit repository.

4.2 CodePipeline

AWS CodePipeline is used to configure and build the CI/CD/CB pipeline.
e Go to CodePipeline using the AWS Console. Click Create Pipeline.

e Provide a name and take note of the pipeline role name created for you. Click next.

e Go to IAM and add the following policies to the CodePipeline role:

Permissions policies o simulate Add permissions w
1 @
Policy name ' Type Description
AWSCodePipelineServiceRole-us-west-2-TEST Customer managed Policy used in trust relationship with CodePipeline
AWSLambdaDynamoDBExecutionRole AWS managed Provides list and read access to DynamoDB strea...
AWSCodeDeployRoleForLambda AWS managed Provides CodeDeploy service access to perform ...
AWSLambdaExecute AWS managed Provides Put, Get access to 83 and full access to...
AWSCodePipelineFullAccess AWS managed Provides full access to AWS CodePipeline via the...
AWSLambdalnvocation-DynamoDB AWS managed Provides read access to DynamoDB Streams.
AWSCodePipeline_FullAccess AWS managed Provides full access to AWS CodePipeline via the...

4.2.1 Source

e Next we configure the source stage. Choose AWS CodeCommit as the action pro-

vider.

e Choose your application repository in CodeCommit.

e Choose 'master’ as branch name. This is what will become your release trigger.

e Keep CloudWatch logs enabled.

4.2.2 Build

e The next

Project’.

Action name
Choose a name for your action

Source

No more than 100 characters

Action provider
AWS CodeCommit

Repository name

Choose a repository that you have already created where you have pushed your source code.
Q MySentimentApplicationRepo

Branch name

Choose a branch of the repository

Q, master

Change detection options - optional

Choose a detection mode to automatically start your pipeline when a change occurs in the source code.

© Amazon CloudWatch Events (recommended)
Use Amazon CloudWatch Events to automatically start my pipeline when a
change occurs

Output artifact format - optional
Choose the output artifact format.

© CodePipeline default
AWS CodePipeline uses the default zip format for artifacts in the pipeline.
Does not include git metadata about the repository.

Build - optional

Build provider

AWS CodePipeline
Use AWS CodePipeline to check periodically for changes

Full clone

AWS CodePipeline passes metadata about the repository that allows
subsequent actions to do a full gt clone. Only supported for AWS CodeBuild
actions.

stage is build. Choose CodeBuild as Build Provider and click 'Create

This is the tool of your build project. Provide build artifact details like operating system, build spec file, and output file names.

AWS CodeBuild

Region

US West (Oregon)

Project name

v

Choose a build project that you have already created in the AWS CodeBuild console. Or create a build project in the AWS CodeBuild console

and then return to this task.

Q

Environment variables - optional

or Create project [

Choose the key, value, and type for your CodeBuild environment variables. In the value field, you can reference variables generated by

CodePipeline. Learn more [

Add environment variable

Build type

© Single build
Triggers a single build.
execution

Batch build
Triggers multiple builds as a single

Cancel

Previous

| Skip build stage ‘ m

10

e Configure the build project by adding a name, choose 'custom image’, environment
type as 'Linux’ and specify the Amazon ECR repo from the dropdown.

e Ensure you check the box that gives privileged access for CodeBuild to build docker
images on your behalf.

e Add the following environment variables under Additional configuration:

Environment variables

Name Value Type
AWS_ACCOUNT ID S emnreas Plaintext v
IMAGE_REPO_NAME do_you_bench Plaintext v
IMAGE_TAG latest Plaintext v

Add environment variable

e Under ’Logs’, ensure both cloudwatch and S3 are checked. You will need to specify
what bucket in S3 you wish to use.

e Leave everything else as default and click create.

e Go to IAM and add the following policies to the CodeBuild role that has just been

created:

Permissions Trust relationships Tags Access Advisor Revoke sessions

Permissions policies (7) e Simulate Remove Add permissions w

You can attach up to 10 managed policies.

Q. Filter policies by property or policy name and press enter 1 (O]

Policy name ' - Type - Description
CodeBuildBasePolicy-sentiment_analysis_x14485758-... Customer managed Policy used in trust relationship with CodeBuild
CodeBuildBasePolicy-TEST-us-west-2 Customer managed Policy used in trust relationship with CodeBuild
CodeBuildCloudWatchLogsPolicy-sentiment_analysis_x... Customer managed Policy used in trust relationship with CodeBuild
CodeBuildCloudWatchLogsPolicy-TEST-us-west-2 Customer managed Policy used in trust relationship with CodeBuild
GodeBuildVpcPolicy-sentiment_analysis_x14485758-Us. .. Customer managed Policy used in trust relationship with CodeBuild
AmazonEC2ContainerRegistryPowerUser AWS managed Provides full access to Amazon EC2 Container R...
EC2InstanceProfileForimageBuilderECRContainerB. .. AWS managed EC2 Instance profile for building container image..

Permissions boundary - (not set)

4.2.3 Deploy

e For deploy provider, chose Amazon ECS, cluster and service name. Include the
name of the image definitions file as ’'images.json’ which is a command in the
build.yml file that creates this file during the build process.

11

#Required sequence. Represents the commands CodeBuild runs during each phase of the build.
phases:
pre_build:

commands :

acho Logging in to Amazon ECR...

- CODEBUILD_RESOLVED SOURCE_VERSION="%{CODEBUILD RESOLVED_ SOURCE_VERSION:-$IMAGE_TAG}"
IMAGE_TAG=$%(echo $CODEBUILD_RESOLVED_SOURCE_VERSION | cut -c 1-7)

- echo image_tag $IMAGE_TAG

- REPO="$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGICN.amazonaws.com"
IMAGE_URI="$AWS_ACCOUNT_ID.dkr.ecr.$AWS_DEFAULT_REGION.amazenaws.com/$IMAGE_REPO_MAME : $IMAGE_TAG"
- echo Repository $REPO

docker login -u AWS -p $(aws ecr get-leogin-password --region $AWS_DEFAULT_REGION) $REPO

build:
commands :
- echo Build started on “date”
- echo Building the Docker image...
- docker build -t $IMAGE_URI .
post_build:
commands :
- bash -c¢ "if [/"$CODEBUILD BUILD SUCCEEDING/™ == /"8/"]; then exit 1; fi"
- echo Build stage successfully completed on “date’
- echo Pushing the Docker image...
- docker push $IMAGE_URI

printf '[{"name":"sentiment-analysis-container”,"imagelri":"%s"}]" "$IMAGE_URI" > images.json

artifacts:

files: images.json
e Click next and Create Pipeline.

5 Implementing Benchmarking

Once the pipeline is built and the application has been deployed, its time to develop
benchmarking using Lambda. AWS Lambda is an event-driven, serverless computing
platform. Two additional stages will be created in the pipeline, both which will trigger
lambda functions. The first benchmark will take place after the source stage and the
second will be after the build stage.

Benchmarking after the Source Stage

This lambda function is dependent on event data from CodeCommit in order to perform
the benchmarks.

e Go to Lambda and create a new function. Choose ’Author from scratch’. Create a
new role and add the following permissions:

12

Permissions Trust relationships Tags Access Advisor Revoke sessions

Permissions policies (5)

~ Simulate Remove Add permissions ¥
You can attach up to 10 n
Q. Fitter policies by 'y name and press entel 1 (o]
Policy name (' < | Type <~ Description
AWSLambdaBasicExecutionRole-e28b72ca-b375-47b. Customer managed ¢
® AWSCodeCommitFullAccess AWS managed <
AmazonDynamoDBFuliAccess AWS managed [
® AWSLambdaDynamoDBExecutionRole AWS managed <
AWSCodePipelineFullAccess AWS managed 4
e The python code for this function is below:
b= lambda_function = Execution results %
1
2 import json
3 import boto3
4 from datetime import datetime
5
6 print('Loading function')
7
8 def lambda_handler(event, context):
9 n=3
18 dynamodb = boto3.resocurce('dynamodb”)
11 table = dynamodb.Table{"BuildTimes™)
13 pipeline = boto3.client('codepipeline’)
13 codecommit = boto3.client(’'codecommit’}
14
15 records = table.scan{)
16 records = records['Items"]
17 dynamoResponse = sorted{records,key=1lambda x:datetime.strptime{x["Timestamp”], '¥Y-%¥m-%d ¥H:EM:¥5.%F"'),reverse=Trus)[8]
18 lastDeployment = dynamcResponse['Timestamp']
19 print{"Last Deployment: "+lastDeployment}
28
21 pullRequestsresponse = codecommit.list_pull_requests(
22 repositoryName="MySentimentipplicationRepo’
23 }
24
25 list = []
26 for i in pullRequestsresponse[' pullReguestIds']:
27 pullRequestresponse = codecommit.get_pull request(
28 pullRequestId=i
29)
38 timestamp = pullRequestresponse['pullRequest']['lastActivityDate'].strftime(®Y-¥m-%¥d ¥H:¥M:¥5.%F')
31 if(timestamp > lastDeployment):
32 if{pullRequestresponse['pullRequest']['pullRequestTargets'][@]['mergeMetadata’][' isMerged’]):
33 print{"Merge since last deployment™)
34 print{timestamp)
35 list.append(pullRequestresponse['pullRequest']["title'])
36
37 int{list)
38 if{len(list) »>= n):
39 print("the release can continue')
48 response = pipeline.put_job_success_result(
41 jobId=event['CodePipeline.job"]["id"]
42)
43 else:
44 print('the release criteria has not been met')
45 print('failing release'}
46 response = pipeline.put_job_failure_result(
47 jobId=event['CodePipeline.job"]["id"],
48 failureDetails={"message': 'Stopping Release’, 'type': 'JobFailed'}
49)
58
51 return response
52

e Boto3 is an AWS SDK that provides a Python API for AWS infrastructure services.
We use this SDK to query event data from CodeCommit. 16

Benchmarking after the Build Stage

This lambda function is dependent on log data from CodeBuild in order to perform the
benchmarks.

13

e The build project was setup to send the logs to an s3 bucket. By default, these
appear as zipped files in s3 so in order to be able to review the logs and target
certain key events, we will create a lambda function to unzip the log files from s3
and send our targeted attributes to a table in DynamoDB.

e Go to Lambda and create a new function. Choose ’Author from scratch’. Create a
new role and add the following permissions:

Permissions | Trustrelationships | Tags | AccessAdvisor | Revoke sessions
Permissions policies (7) o Simulate Remove Add permissions ¥
Q Fater porcres by prope : @
Folicy name [> Type <~ Description
AWSLambdaBasicExecutionRole-54758¢47-3594-4651 Customer managed
AWSLambaMicroserviceExecutionRole-19142afc-9c64- Customer managed
AWSLambdaTestHamessExecutionRole-3314890 1-c0c. Customer managed
AWSCodePipelineCustomActionAccess AWS managed Provides access for custom actions to poll for jobs details (including temporary credentials) and report status up
AWSCodePipelineFullAccess AWS managed Provides full access to AWS CodePipeline via the AWS Management Console.
AWSLambdalnvocation-DynamoDB AWS managed Provides read access to DynamoDB Streams
AWSCodePipeline_FullAccess AWS managed Provides full access to AWS CodePipeline via the AWS Management Console

e The python code for this function is below:

File Edit Find View Go Tools Window Test
Q B lambda_function Execution results x
5= 1 fimport json
2 v B8 my-c3-function -/ &4+ 2 import urllib.parse
£] lambda_function.oy 3 import boto3
2 4 import gzip
F 5 datetime
6 import uuid
7
8 print(’Loading function')
2
10 def lambda_handler(event, context):
11 try:
12 n=3
13 writeToD8 = True
14 bucket = event[Records’1[@]['s3'1['bucket']['name']
15 key = urllib.parse.unquote_plus(event[Records’1[@]1["s3'1[‘object]['key'], encoding='utf-8')
16 s3 = bote3.resource("s3!
17 dynamodb = boto3. resource(' dynamodh")
18 table = dynamodb.Table("BuildTimes")
19 ucket, ke
20 e(Fileobj=obj.get()["Body"]) as gripfile:
21 ile.read()
22 ("utf-8").split(' [Container]')
23
24 i "Entering phase BUILD") != -1:
25 start = i.replace(” Ent phase BUILD",
26 i time(start.strip(), "%Y/%n/%d XH:%M:%5)
27 BUILD State: SUCCEEDED") != -1:
28 mplete: BUILD State: SUCCEED:
29
30
31 i
32 end_obj = ptime(end.strip(), 'SY/Xm/%d ¥H:%H:%S')
33 writeToD8 = False
34
35 if(writeToDB):
36 build_time = (end_obj-start_obj) econds()
37 table.pu m(Ttem={'Buile_ID' :str(key), 'Timestamp':str(datetime.now()), build_time’:str(build_time)})
38
33
40
41 . *.format(key, bucket))
43
43

e To trigger this function, we add a lambda trigger to the S3 bucket where the build
logs are being sent. Therefore, everytime a build completes, the log files are sent
from cloudwatch to s3.

14

Event notifications (1)

Send a notification when specific events occur in your bucket. Learn more E

Name Event types

Create event notification

Filters Destination type Destination
S30bjectPut Put - Lambda function my-s3-function [
Amazon EventBridge
For additional capabilities, use Amazon EventBridge to build event-driven applications at scale using $3 event notifications. Learn more [or see EventBridge pricing [

Send notifications to Amazon EventBridge for all events in this bucket
off

e Once they land in s3, our lambda function is triggered to get the data we need and

store them in our dynamo table:

Items returned (50)

Build_ID v
c002f23a-5f7e-4d9c-a2c4-cb8d1b5558e3.gz
29cc113f-634a-417f-9f02-8287eb0419fc.gz
6e14e959-5dfc-4f51-bd9c-10f950dad6a2.gz
e5b0eeba-8d1f-430d-855b-2735a2ee7937.gz
69da8f30-87ac-48dd-a62e-ddad2d 1cafd9.gz

da293d9b-76bb-48a3-b660-64852045a1a3.92

Timestamp

2022-08-09 15:34:39,184255

2022-08-09 17:05:07.042794

2022-08-08 15:40:05.529062

2022-08-09 10:51:06.320893

2022-08-08 16:29:10.557199

2022-08-01 14:10:32.271023

build_time

320

320

52

32.0

53

53

Actions ¥ H Create item

1 . > &R

e Next we develop the logic to perform the benchmarking, the python code for this

is below:

15

Tools Window Test |'

B lambda_function * Execution results =

1 [import json

2 import boto3

3 from datetime import datetime

4

5 print{’Loading function®)}

6

7 def lambda_handler(event, context):

8 n=3

9 dynamodb = boto3.rescurce('dynamodb”)

18 table = dynamodb.Table{"BuildTimes™)

11 pipeline = boto3.client('codepipeline”)

12

13 records = table.scan{)

14 records = records['Items']

1s print{records}

16 response = sorted{records,key=1lambda x:datetime.strptime(x["Timestamp™], "%Y-Em-%d ¥H:%M:%5.%f'),reverse=Trus)[n+1]
17 print{response)

18 print{'Records returned from dynamodb®)

19 sum = @

20 counter = @

21 for i in response:

22 print(i['Build_ID'])

23 if counter != @:

24 print(i['build_time"])

25 sum = sum + float(i['build_time"])

26 counter = counter + 1

27

28 baseline = (sum/n) + (sum/n})/18@+5@

29 build_time = float(response[@]['build_time"]}
38

31 print{'baseline:', str{baseline))

32 print('build time:', str(build_time))

33

34 if(build_time <= baselimne):

35 print("build time is less than baseline')
36 response = pipeline.put_job_success_result(
37 jobId=event['CodePipeline.job"]["id"]
38)

39 else:
48 print("build time is more than baseline')
41 print("failing build"')
42 response = pipeline.put_job_failure_result(
43 jobId=event['CodePipeline.job"]["id'],
44 failureDetails={"message’': 'Build Failed', 'type': 'JobFailed'}
a5)
45
47 return response
45

e Boto3 is an AWS SDK that provides a Python API for AWS infrastructure services.
We use this SDK to communicate with other services such as S3 and dynamo.

Add Benchmarking Stages to the Pipeline

Once the lambda functions have been developed, its time to add two new benchmarking
stages to our pipeline.

e Go to CodePipeline — Click into your pipeline — Click Edit — Add Stage.

e Name your action and choose AWS Lambda as Action provider and choose the
relevant function name from lambda:

16

Action name
Choose a name for your action

Release-Criteria-Check

No more than 100 characters

Action provider

AWS Lambda v
Region
US West (Oregon) v

Input artifacts
Choose an input artifact for this action. Learn more [4

No more than 100 characters

Function name
Choose a function that you have already created in the AWS Lambda console. Or create a function in the AWS Lambda console and then return to this task.

Q MyLambdaFunctionforCodeCommit X

Function name contains only letters, numbers, hyphens, or underscores with no spaces. This does not include the function alias or function ARN

User parameters - optional
This string will be used in the event data parameter passed to the handler in AWS Lambda,

Variable namespace - optional

Choose a namespace for the output variables from this action. You must choose a namespace if you want to use the variables this action produces in your configuration. Learn more [4

e Repeat the above for the second benchmarking stage. Once you have done so, your
pipeline should look something like this:

v

@ Build succeeded

Pipeline execution 10: a8bf5553-e09e-46e3-9ebb-e08882cBd38b

DoYouBench
Build ®

AWS CodeBuild
© Source succeeded

Pipeline execution 1D: a8bf5553-e09e-46e3-9ebb-c08882c8d38b © succeeded - 2days ago
Details
B8522a6e9 Source: newbbe7 7777
Source @

AWS CodeCommit

@ Succeeded - 2 days ago Disable trans n
8522a6e9

8522a6e9 Source: new6&677777 ® QoD-Benchmark-Build succeeded
Pipeline execution 10: a8bf5553-e09%e-46e3-9ebb-e08882c8d38b

Build-Stat-Check

AWS Lambda [

6]

® QoD-Benchmark succeeded © succeeded - 2 days 290

Details [
Pipeline execution 1D: aB8bf5553-e09e-46e3-9ebb-e08882cBd38b

8522a6e9 Source: newt6677777

Release-Criteria-Check @

AWS Lambda B

@ Succeeded - 2 days ago
Details 2

© Deploy succeeded

B8522a6e9 Source: newbB6677777 Pipeline execution ID: aBbf5553-e0%e-46e3-9ebb-e08882cBd38b

NB: The lambda functions code should be updated with suitable endpoints
for your project such as CodeCommit repo, dynamo table, S3 bucket etc.

17

6

Running Deployments

Now its time to use the pipeline to deploy application changes.

Make a code change to a html file and push the changes to the master branch in
your CodeCommit repo.

git add .

git commit -m 7 7

git push

The pipeline release should start instantly.

Developer Tools CodePipeline Pipelines DoYouBench

DOYOUBenCh £\ Notify w | ‘ Edit ‘ | Stop execution ‘ ‘ Clone pipeline ‘

@ Source n progress
Pipeline execution ID: f3e161de-7da3-4124-8177-2906551ee724 e

Source [6)

AWS CodeCommit

@ 1n progress - 2 minutes ago

Disable transition

Both benchmarking functions include logic that will send a response back to the
pipeline to say the benchmarks has pass or not. This will determine whether the
application release can proceed to the next stage of the pipeline. If the criteria was
not met, a response is sent to ’fail’ that stage of the pipeline, preventing the cycle
from proceeding to the next stage.

The criteria for when each benchmark should pass and should fail is discussed in
detail in the research paper.

18

	Introduction
	Before you begin
	Software Installation
	The Application

	Deploying the Application on AWS
	Docker
	Elastic Container Registry
	Elastic Container Service
	EC2 Load Balancer
	AWS Fargate

	Configuring the Pipeline
	CodeCommit
	CodePipeline
	Source
	Build
	Deploy

	Implementing Benchmarking
	Running Deployments

