
Performance Optimization using Resource
Pooling and Load Balancing approaches to

achieve Green Computing.

MSc Research Project

Cloud Computing

Siddhant Padmakar Kadam
Student ID: x19219156

School of Computing

National College of Ireland

Supervisor: Akeel Kazmi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Siddhant Padmakar Kadam

Student ID: x19219156

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Akeel Kazmi

Submission Due Date: 31/01/2022

Project Title: Performance Optimization using Resource Pooling and Load
Balancing approaches to achieve Green Computing.

Word Count: XXX

Page Count: 20

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Performance Optimization using Resource Pooling
and Load Balancing approaches to achieve Green

Computing.

Siddhant Padmakar Kadam
x19219156

Abstract

As the demand of resources is rapidly increasing in the cloud computing en-
vironment, resource pooling is considered as one of the efficient way to share the
load capacity among the multiple resources, this technique helps the organizations
to utilize the unused resources such as spare computers, physical servers etc. The
concept of resource pooling allows the cloud providers for delivering the on-demand
supply of resources. In order to adhere the demand and utilize the resource capacity
efficiently, It is a crucial factor. This technique is used to distribute load among
numerous virtual servers in a Server through a network in order to obtain excellent
resource usage, the shortest computational duration, the lowest average response
time, and to avoid overloading. Algorithms based on FIFO, LIFO, and RR have
a similar drawback in that they have a greater waiting time, which is unfavor-
able to processes having fast execution. In this research, we have discussed about
the various shortcoming of using the traditional load balancing algorithm such as
Round robin algorithm and also proposed an efficient solution of load balancing
in cloud computing environment using Equally Spread Current Execution (ESCE)
algorithm. After performing certain set of experiments with both the algorithms in-
cluding the round robin and ESCE algorithm, we have reached to a conclusion that
ESCE algorithm reduces the response time of the system in addition it enhances
the resource utilization, processing capabilities of the cloud computing system.

1 Introduction

With the pacing technologies and its requirement, the adaptation of the cloud computing
system has also increased. The incremental usage of computational resources such as
memory, storage and various other hardware has led to this advanced technology. These
much-required resources shall be upgraded and available easily for multiple types of com-
putation. Therefore, these resources could be sourced and made available to the users
through the virtual component. Through this, the resources could be sourced over the
air to the users which were ultimately known as Cloud Computing. Over practicality,
this system allowed users or groups of users to attain the resources without the burden
of capital expenditures. Furthermore, the usage of the resources can be done without the
compulsion of the lock-in holding and the inconvenience of periodic maintenance. The
cloud services range from hardware and software to platforms. This system primarily

1



aims to service the large-scale computational requirements providing a convenient, feas-
ible and enhanced framework. Although the increasing use of cloud resources may affect
the efficiency and the performance of the resources due to the exponential increase of
the load. Therefore, to handle the increasing load capacity on the resources and efficient
utilization, a robust framework has to be established.

Over multiple types of research were taken into the consideration to counter these primary
challenges. On the other hand, it was sought that various large organizations and en-
tities have voluminous scaled resources for the computation. These physical resources
were only utilized for a certain period in the day and thereafter were left un-utilized.
The increased ideal time of these resources would decrease the return on investment of
the organizations or entities. To yield the complete potential of the resources, these
ideal machines could be incorporated into the cloud architecture. Once incorporated,
this resource could be used in the server during the ideal time of the servers. Ultimately,
the system of sharing resources is known as Resource Pooling. This system relies on
the network-based ecosystem which serves the user on demand. Here, the multiple ideal
virtual machines are pooled under the cloud architecture and the users can utilize these
VMs as per their convenience and feasibility. In this system, the aggregator sources the
resources from different suppliers and directs them to the users on-demand according
to their required instances. Considering the load capacity, it would be shared among
the ideal instances whether the instance is over the air or at the physical server. This
would enhance the convenience to the users with the efficiency to the performance as
well. Resource Pooling is considered as the best way to deal with the surging load capa-
city and there are various other types of pooling such as physical or virtual or storage, etc.

Additionally, utilizing the resources effectively can help provide a good impact on the
environment. As the increased usage of resources can lead the server to emit carbon to
the environment. It is necessary to align with the green computing protocols to reduce
the environmental distortions. Coming to the computational capacity of the resources,
a different set of machinery has a different level of capacity and performance efficiency.
Therefore, the load handling behaviour such as computational time may vary for every
resource. For load balancing, the framework types of resources come as the most cru-
cial part under the convenience and efficiency of the resource pooling and competency
of green computing protocols. With the extensive studies, researchers have introduced
various algorithms to distribute the dynamic workload among different virtual machines
rather than a single virtual machine. Primarily, various static algorithms were utilized
in the system such as round-robin algorithm, SJB algorithm, etc. These algorithms were
widely utilized for the load balancing techniques, but over time it was not efficient as re-
quired. The conventional algorithms distributed the workload equally among the various
virtual machines irrespective of the processing capacity. This instance would sometimes
lead to the situations such as deadlock. Therefore, a robust framework shall be developed
to distribute the dynamic workload to the virtual machines according to their computa-
tional capacity. Moreover, to this, the energy consumption and the computational time
would be preserved effectively.

To counter this challenge, our paper aims to introduce a robust load balancing algorithm
to effectively balance the load. The algorithm utilized for this study is the Equally Spread
Current Execution Algorithm (ESCE) which effectively manages the load in terms of both

2



computational capacity and execution period of the virtual machines. With a dedicated
execution period, the allocation of the resources is done based on the processing capacity.
This will ultimately help in enhancing the response time of the server and decrease the
ideal time of the server. In addition to it, it will decrease energy consumption without
compromising performance. The model can efficiently perform and replace the common
implementation of the Round Robin Algorithm for the enhanced load balancing. Our
study also aims to follow the green cloud computing policies and align with their devel-
opment. The implementation of the ESCE algorithm will help us to achieve the motto
of green cloud computing to an extent.

1.1 Research Question

Based on our findings, this research will provides the answer for following research ques-
tions.

• What are the challenges can be occurred in the cloud computing environment after
pooling the resources ?

• Which load balancing algorithm is the most efficient for cloud computing environ-
ment to achieve green computing?

• In what aspects the Equally spread current execution (ESCE) algorithm outper-
forms as compared to the round robin algorithm ?

2 Literature Review

2.1 Study on Resource Pooling and Management

Qadir et al. (2016) proposed a solution for resource pooling of the wireless network. The
paper also depicted the role of the wireless network in the growth of developing coun-
tries. Primarily, in this methodology, the system consists of the accumulation of multiple
units of different specification network resources. Then the author developed a dedic-
ated framework to effectively unify the resource pool showing an enhanced performance.
Various techniques were discussed and introduced in the paper for effective resource pool-
ing and load balancing. Multiple protocols were also taken into the consideration such
as Dynamic Spectrum Access, Community Networking, Multi-homing with the hetero-
geneous network, Mobile cloud computing, Virtualized wireless network, Edge comput-
ing, Delay-Tolerant Networking (DTN) and Information-Centric Networking (ICN). This
study actively helped in advancing wireless connectivity. Prasad and the team studied
the concept of resource pooling in the domain of e-commerce business and combined it
with the concept of gamification Vaidya et al. (2019). Here, each concept was considered
to incorporate because in e-commerce the diverse users interact with platforms from vari-
ous countries. Irrespective of age, colour, gender, geography or race, the e-commerce
platform should serve the whole user base. The authors in the paper also discussed the
various organizational structure and contributions in the concept of resource pooling and
gamification. The e-commerce business would be enhanced with effective resource pooling
of various types of tools whether it be social media or any other interactive tools. Zhong
et al. (2017) proposed a resource pooling and allocation policies to deliver differentiated
service. The concept of resource pooling has widely supported in enhancing the supply

3



and demand chain of IT resources around the world. This proposed study focused the
variable requirement of the users with different time period. The challenge was to adhere
to service level agreement and provide a differentiating requirement without disrupting
the network mechanism. The paper utilized the Blackwell’s Approach-ability Theorem to
counter the supply challenges for the resources. For the dynamic allocation of resource,
the author here combined the proposed approach and the threshold-type policies for the
various demand type classes.

On the other hand, Andradottir et al. (2016) compared the efficiency and the risk in-
volved in the resource pooling concept. Also, the paper discussed the measures taken
into the consideration during the presence of failure. Furthermore, the effect and the
changes to the overall performance were evaluated during the case mechanism failure. In
the paper, to assess this purpose, the author considered four types of queuing systems.
The different servers were considered are with no pooling, queued pooling, queues and
failure pooling and server pooling. The estimation of each pooling type was evaluated
and the failure factor of the server was assessed. In the final take, the paper showed that
pooling queues were indeed efficient but pooling both queues and failure was much higher
efficiency. Although with the higher efficiency it had a higher failure ratio.

Verma et al. (2016) investigated the prediction and distribution of variable workloads
in multi-tenant cloud computing services. They propose variable resource requirements
and allocation frameworks in multi-tenant application platforms. The suggested model’s
originating is the classification of resource mobilization relying on one’s enhanced or un-
distributed allocated resources. Depending on this classification, the structure prioritizes
the predictive model of those resource mobilization whose economic output will signific-
antly raise, streamlining the process for the predictive model. Furthermore, their method
adds network operators to compatible VMs and assigns them to actual host systems us-
ing an evolutionary approach. The efficiency findings show whether the perfectly suited
stochastic method can efficiently allocate VMs to servers to make the most of the re-
sources.

Chaturvedi and Rashid (2017) analyzed the resource pooling and allocation protocols
in cloud computing. The study stated that the pacing requirement of the IT resource
by the entities shall be source effectively and conveniently without hindering the per-
formance. The author in this paper analyzed the various proposed frameworks for the
cloud data centres such as the Monsson architecture, the VL2 architecture, the Seattle
architecture, the Portland architecture and the TRILL. These architectures were con-
sidered efficient and could be integrated into the real-time environment. Although these
frameworks needed room for improvement. Furthermore, the resource allocation mechan-
isms such as Round Robin algorithm, Shortest Job First algorithm, and Threshold-based
Dynamic Resource Allocation algorithm. Jennings and Stadler (2014) assessed over 250
papers and highlighted key findings in some other report. Researchers created a theor-
etical foundation for cloud environments administration and utilised it to organize the
state-of-the-art evaluation. Five difficulties were identified for additional research based
on the findings of the investigation. These include achieving universal Distributed cloud
administration skills, developing scalability resource management systems, economic be-
haviour and cloud pricing, and mobile cloud paradigm solutions.

4



2.2 Study on Load Balancing

Afzal and Ganesh (2019) studied the approach of hierarchical taxonomy classification
for load balancing in cloud computing. The author stated that load balancing can help
counter the issue of under-loading and over-loading. In the paper, a detailed version of the
load balancing was discussed. With the growing technological advances, the novel tech-
niques and challenges that occurred during the research were established. The algorithms
were further classified into hardware and elastic. In the hardware-based algorithm, the
functionality was based on the physical server. Whereas in the elastic, it relied on the
non-physical systems such as the network. Also, the different types of features were
evaluated for various cloud platforms. In Addition to this, various advanced learning
algorithms were also interpreted for the future scope of work.

Sajjan (2017) also surveyed the algorithms for load balancing. Effective balance and
management are the crucial part to improvise the cloud computing environment. There-
fore, with growing demand, it is necessary to keep a check on the mechanism. Here,
various types of load balancing algorithms were studied and discussed. Further, there
are two types of algorithms which are static and dynamic. Static algorithms work effi-
ciently in a stable environment but are not flexible enough. Some of these algorithms are
Round Robin Load Balancing Algorithm (RR), Load Balancing Min-Min Algorithm (LB
Min-Min) and Load Balancing Min-Max Algorithm (LB Min-Max). Considering the dy-
namic algorithms, these are flexible and can be implemented in any environment. Some
of algorithms are Honeybee Foraging Behaviour Load Balancing Algorithm, Throttled
Load Balancing Algorithm, ESCE (Equally Spread Current Execution) Load, Balancing
Algorithm Ant Colony Load Balancing Algorithm, Biased Random Sampling Load Bal-
ancing Algorithm, Modified Throttled Load Balancing Algorithm.

Haris and Khan (2020) conducted a rigorous review of cloud computing load balancing
concerns. In this study, they highlighted load balance issues that must be addressed to
provide efficient load balancing in cloud technology. They also go through several load
balancing strategies for distributing the load between nodes. These issues will soon aid in
the development of effective load balance solutions to improve cloud computing perform-
ance. F5, Inc., a well-known network equipment company, has an existing commercial
product. Kaur and Sachdeva (2016) conducted a comparison of load balancing techniques
in a cloud computing environment. The load balancer is supported in all scenarios for
continuous service and increased traffic handling. As a result, effective load-balancing al-
gorithms have to enable inexpensive resource consumption by giving cloud user resources
on demand. This article discusses a variety of load balancing approaches for improving
resource utilization and the quality of cloud computing technology.

Shafiq et al. (2019) proposed a novel algorithm for load balancing algorithm in the cloud
computing environment. In the existing application, there are various algorithms utilized
for cloud computing that have different advantages and disadvantages. The algorithms
are round-robin algorithms, equally spread current execution algorithm, active monitor-
ing load balancer, throttled load balancer. Although these algorithms are widely accepted
it do have some fallacies. These algorithms fall shorts when balancing load in terms of
executional features. Therefore, the author here proposed a pseudo code algorithm to
overcome the challenges with the existing algorithms. With overall implementation, the

5



model achieved better performance than the existing algorithms. Although for the real-
time implementations, theses models had to be improved with a particular level.

Shah and Farik (2015) supervised the study for surveying the static load balancing al-
gorithms in the cloud computing environment. The primary challenges in the domain
were discussed and interpreted to overcome them with an effective solution. The most
common issue interpreted in the cloud computing environment using the static algorithm
is the deadlock. Various algorithms such as round-robin, weighted round-robin, min-min
load balancing, max-max load balancing and opportunistic load balancing were studied.
The author then proposed some novel approaches to enhance the competency of the out-
put such as by combining two or more types of static algorithms. Through this, the
hybrid static algorithm can be the future scope of the study.

On the other hand, KUMAR and Sharma (2017) proposed an approach relying on the dy-
namic load balancing algorithm for balancing the workload in the virtual machine (VM).
Initially, the author discussed the various challenges in the existing mechanism and aimed
to develop a mechanism to overcome the existing challenges. There are various oxidizing
algorithms such as heuristic-based algorithm, meta-heuristic-based algorithm, conven-
tional approach-based algorithm etc. A different feature of the execution characteristics
such as make-span time, execution time, response time, resource utilization and through-
put depend on different algorithms. The proposed model aimed to counter the challenges
by combining the traditional approach and the task mitigation approach to enhance the
performance in the least possible computational time. Furthermore, it also overcome the
issue of overload and underload. In the final take, the proposed model outperformed the
conventional approach. Although this model did not some factors into the consideration
such as QoS, priority and deadline which can be considered as future scope of work.

2.3 Study on Green Computing

In a paper, Rakhshani (2019) surveyed the concept of green cloud computing. The au-
thor proactively discussed the need, approaches and challenges in green cloud computing.
Various approaches were discussed in the paper such as virtualization, green scheduler,
datacentre energy-efficient network-aware scheduling algorithm, nano data centres, use
of tranquil PCs, ASDI methodology, TOE model and dynamic migration algorithm. The
policies under green cloud computing are the solution for a brighter environmental im-
pact. Yang et al. (2018) advocated introducing an AI-based green cloud infrastructure
at the cloud server. The layout of the controlling machinery and the intelligent condi-
tioning actuator is presented in this work. Commodities are intended to be used more
efficiently, minimize actual equipment, and reduce power use as much as possible. An
additional component is the dynamic adaption of the cooling mechanism to accommod-
ate for environmental and resource constraints, lowering cloud data centre administration
and servicing expenses.

Patil and Rekha (2020) analyzed the current and future trends of green cloud computing.
The paper stated that the growing demand for cloud computing systems. In the paper,
previous researches were discussed in detail with the existing trend and future trends.
Furthermore, the author also suggested the future scope of work. Similarly, Domanal and
Reddy (2018) studied the green internet of thing-based networks and their optimization

6



using machine learning and deep learning algorithms. The paper stated that the green
IoT energy-aware network is considered a crucial and evolving technology in the sensing
domain. But with the evolving nature of the system, there are various fallacies such as
poor power efficiency, minimum network reach, regular maintenance and battery replace-
ment. Therefore, an improved mechanism had to be introduced to system overcome these
challenges. To also adhere to the green computing solutions, the author here utilized al-
gorithms relying on artificial intelligence, deep learning and various other neural network
algorithms. This paper effectively discussed the implementation and, in the final, take
the paper also suggested the future scope of study.

Castillo and Melin (2021) investigated the relationship between green computing and
the advanced learning approach in the cloud computing environment. In addition to this,
the techniques were implemented in both the virtual and real-world environment for the
detailed assessment. Applications in the various instances were also interpreted in the
study. The author also stated the implementation of a hybrid advanced model can help
achieve the competency of green computing policies.

Kamalakannan et al. (2019) conducted a quick study of green computing qualities and
vendor-peculiar techniques and discussed how it’s attributes are embraced and how the
cloud is classified as green based on particular criteria, as well as significant cloud service
providers such as AWS, Google, Microsoft, and IBM. As a result, while big cloud pro-
viders have some negative environmental impacts, they are transitioning to green cloud
computing. Dharan (2020) tackled the several factors and green cloud approaches that
are required to have a positive ecological impact as well as to reduce the metering of profit
margins and briskness for enterprises. It offers the required cloud-based initiatives to the
communication protocol, the design of Green Network Infrastructure, VM positioning,
Server consolidation, Stiff Clients, Green Statistics, Green Data, Data Management, Sus-
tainable Software Engineering, and 3-R’s safe disposable methodologies of Green Data
Cloud computing.

Thein et al. (2018) proposed an approach for energy efficient resource allocation in cloud
data centres using the reinforcement learning algorithm. Due to increasing usage of these
resource, the power and energy consumption has been exponentially increasing. Further-
more, decreasing energy consumption through the convention approach could violate the
SLA due to decreased performance. Therefore, the author here utilized the reinforcement
learning algorithms to counter the challenges and decrease the power consumption.

7



3 Methodology

In order to build the modern scalable and robust solutions, resource pooling plays an
important role in cloud computing architecture. The services offered by the resource
pooling strategy are data storage services, processing service, bandwidth services etc. In
this research we are considering the processing services as resource pooling strategy. Any
physical or virtual resources with different computing capabilities can be connected to
the cloud server by providing the correct credentials as an authentication mechanism.
Once the resources are attached with the cloud servers, the certain of traffic or load is
assigned to each resource for processing.

Therefore, connected resources also called as the processing nodes, which are respons-
ible for processing the assigned loads. There are certain ways the load can be assigned or
distributed among the multiple resources which includes the multi-tenant VM or physical
resources. An inefficient technique for load balancing can lead to overloading the resources
with tasks or may leave the resources under-utilized which may violate the Quality of
services (QoS) and Service Level Agreement (SLA). Therefore, an optimal load balancing
algorithm plays an important for reducing the resource overhead, minimizing the response
time of the process and also lowers the idle processing time of machines. In this work we
have proposed a framework which includes the resource pooling mechanism for acquiring
the resources and two different load balancing mechanism to distribute the load, which
will be discussed into the further subsections.

Figure 1: Proposed Framework for Resource Pooling and Load Balancer

8



Figure 1 depicts the architectural framework of the proposed system. Our proposed
system consists of various components, each component of the system is dependent on
one another. In this chapter, we will discuss about each component in detail.

3.1 Client

In the proposed architecture, the client represents the end users, which will generate the
multiple HTTP requests. Each request will carry a specific load on the system which
needs to be processed by the cloud servers and its associated resources. There can be any
number of clients, which can generate the requests in a dynamic manner. The network
connectivity between client and server can be established either via internet or local LAN
networks. Client server will be a web application which will be generating load in the
form of HTTP requests. We can make any node act as client node by running client
application on the server.

3.2 Cloud Server

Cloud server is the main component of proposed framework, which is responsible for
processing the services/load generated by the client. Cloud server can process the
load/services by either using their local computation capabilities or either by distrib-
uting the load to the resource pooling system. The mechanism of distributing the load
depends on the algorithm implemented in the load balancer. Any number of resources
can be connected with cloud server for sharing their computing capabilities in order to
develop robust, distributed and scalable system and it is connected with resource monit-
oring component containing the information about the all the resources. Cloud server will
act as a central part of the resource pooling and monitoring mechanism, load generated
by client servers will be processed and distributed by client servers by its own or with
the help of processing node using machine learning algorithms. To make server act as a
Cloud server we will be running server app on the particular node.

3.3 Resources/ Processing Nodes

In order to get associated with the cloud server, the resource or processing nodes needs
to register themselves on the cloud server. After successfully registration on the cloud
server, the generated load received from the client will be distributed by the cloud servers
to the connected resources. The computing capabilities of the each resource can be
different from one another. Each resource or processing node will share their statistic
information such as amount of load provided to the resource, amount of load processed by
the resource, number of cycle run of CPU, delayed processing etc. Processing nodes will
add computational power in the system with which system will be balancing and executing
the load. To make server act as a processing node we will be running processing app on
the server.

3.4 Load Balancer

Load Balancer is the most crucial component of cloud computing platform. It is directly
associated with cloud server, which define the policies for distributing the load among
multiple computing resources. The mechanism of distributing the load depends upon the

9



algorithm used in the load balancer component. In this work, we are utilizing the two dif-
ferent load balancing algorithm for distribution of load among pool of different resources.
The algorithms are Round Robin algorithm (RR) and Equally Spread Current Execution
Algorithm (ESCE). The working mechanism of both the algorithms are different from
one another. Therefore, we will measure the performance difference between both the
algorithms and try to identify the most optimal algorithm for load balancer.

3.4.1 Round Robin Algorithm (RR)

In the operating system, round robin algorithm is most popular scheduling algorithm
which resolves the problem of deadlock when multiple processed attempts to enter into
the critical section. Round robin is the most efficient algorithm as compared to the
other operating system algorithms such as First in First Out (FIFO), Short Job First
(SJF), Longest Job First (LJF), SRTF etc. This algorithm works on the concept of
time quantum, which provides the equal opportunities to every process to enter into
the critical section for specific time period. We have implemented the similar concept
of round robin algorithm in the load balancing algorithm, where service requests/load
is equally distributed among the multiple resources or processing nodes to process the
specific set of tasks. The disadvantage of round robin algorithm is that, this algorithm
distributes the load to every node equally without analyzing thee capacity and existing
load on the individual machine/node.

3.4.2 Equally Spread Current Execution Algorithm (ESCE)

ESCE is another popular approach, which is high used as a load balancing algorithm.
Overcoming the disadvantage of Round robin algorithm, this algorithm distributes the
load to the processing nodes/resources by analyzing their processing capabilities and ex-
isting load in the current time. If node with low capacity has been assigned the higher
load, it will delay the execution and which will lead to increase the response time. Sim-
ilarly, if a node with higher computing capabilities is assigned minimum load, it will
remain idle and thus will result in increase of idle time. Equally spread current execution
algorithm prevents the cloud system from both the cases and helps to reduce the response
time and idle processing time.

3.5 Resource Monitoring

Resource monitoring component is responsible for collecting all the information from the
resource pooling system and provide it to the cloud server, which can also be utilized
by load balancing algorithm for redefining the strategies. The performance information
about each individual resources also can be captured by the resource monitoring com-
ponent. The resource monitoring component captures the information such as Capacity
distribution, Load distribution, idle processing, processed load, delayed load etc. In-
formation provided by the resource monitoring component can be very useful for the
implemented load balancing algorithms.

10



4 Design Specification

There are various cloud computing and technical concepts have been utilized in the
developed application. In this section, we will discuss about the architectural design part
of the application. We have already discussed about the details of each component in
the Section 3, the functionality of application will be discussed in this chapter. The Flow
diagram of cloud computing application is shown in Figure 2.

Figure 2: Flow Diagram for Running the Application

As the diagram indicates, we need to follow the 6 different steps in order to execute
the application.

1. In the first step, the cloud server needs to be started which will be mainly responsible
for distributing the task. As we know that, load balancing algorithms are integrated
with cloud server, we need to specify the name of algorithm in order to start the
cloud server.

2. Once the cloud server is started, the processing needs to be started in order to
connect with cloud server.

3. In order to pool the resource to the cloud server, each Processing node/resource
need to register themselves with the cloud server by specifying their computing
capabilities.

4. Once the resource are registered successfully with the cloud server, resource pooling
setup is established. Now the load generated by the client will reach to cloud server
and using the specific load balancing algorithm, cloud server will distributed the
task to processing nodes.

5. The capabilities of each resource/processing node can be different from one another,
therefore execution speed may vary for every processing node.

11



6. After successfully running the application over 2000 cycles, the graphs will be plot-
ted which will help us to analyze the performance of algorithm.

After successfully obtaining the graphs, the above process can be repeated by changing the
algorithm name, while starting the cloud server (For example : Round robin algorithm
to Equally Spread current execution algorithm) and then graphs can be compared in
order to identify the best algorithm. The metrics which will be utilized for comparing
the performance of algorithm are Load distribution, capacity distribution, delayed loads,
processing load, idle processing etc.

5 Implementations

In this section, we will discuss about the tools, technologies, libraries and implementa-
tion part of the system. The overall application has been developed using python, our
developed system consists of UI part which has been developed using flask. Flask which
is micro web framework will be utilized to develop the web application, it will provide
the ease to the users for using the application. The developed web-application consists of
3 different system, Processing nodes, Client and Server and Cloud Serve. Each of com-
ponent are interconnected on a single Nat network and can run their services on different
port numbers. The design part of the application is already discussed in chapter 4. First,
all the components of the application needs to be started which will on the different port
number as shown in Figure 3.

Figure 3: Running Component of Application

When we run client/processing/cloud server application on server we can treat them
as client nodes, processing nodes and cloud server. After successfully start of the server,
the resource/processing nodes need to register themselves in order to pool the resource.
For that purpose we have developed a page where each processing node/resource can
register itself by providing the server URL and their capacity which needs to shared with

12



cloud server. This process needs to be followed by every resource where they will register
themselves and connect with the cloud server as shown in figure below 4

Figure 4: Resource Registration to Server

The list of Resources/processing can be found on the server page, which informs
about the connected resources along with their capacity to handle the load as shown in
Figure 5. The server is also responsible for distributing the obtained load from client to
the multiple resources. The method of load distribution either can be done via round
robin algorithm or via Equally spread current execution algorithm. The name of the
algorithm needs to be defined while starting the server. As server is also connected
with resource monitoring component which provides the information of every resource to
server. Therefore, statistical graphs also can be generated in order to get insights about
the performance of algorithm.

Figure 5: Server Page

Client is mainly responsible for generating the multiple requests on the server, which
needs to be processed by the cloud server using various resources. Before starting the
client component, the server and resources should be in running state in order to ac-
commodate the load generated by the client. Using client component we can generate a
random load, for which we need to define the Minimum and maximum amount of load
that needs to be generated, which will be in number format. Once the client start gen-
erating the load, the server starts distributing the load based on the specified algorithm
and every resources get busy in processing the loads as per their capacity.

13



Figure 6: Client Web Page

Our main goal of this research is to utilize the available resources in an efficient
way and avoid the situation of surging the load capacity. A good health of computing
resources provides an energy efficient solution and also help to reduce the emission of
carbon component in the environment, which can be aligned with green computing pro-
tocol to minimize the impact on environment. Latest version of python programming
language has been used in order to implement the application. There are certain set of
libraries and technical concepts has been utilized in order to develop the system such as
threading, parallel processing, request generation etc. The libraries that has been used
for developing the system are NumPy, Matplotlib, flask, rendering templates etc. The
current proposed system is developed to implement the concept of resource pooling and
to represent the performance difference between the load balancing algorithm. The pro-
posed system has been developed by considering the real-time resource pooling and load
balancing problem in the cloud computing environment and this system can be aligned
and can be implemented with any cloud computing resource or instances. As the com-
plete system has been developed in python.

The Linux operating system (Ubuntu 20.04) is the recommended OS to run the ap-
plication. Presently, the system is build and evaluated on the Ubuntu operating system
Ubuntu-20.04. The system was developed using the latest version of Python 3.8.10. It
may operate on any OS; but, certain changes to the program could be necessary to meet
the needs of the OS. The program does require a bit of computer power; it operates on
a Laptop with 8GB of RAM, 520 Gb of storage and Intel i5 processor..

6 Evaluation and Results

In this work, we have implemented the concept of resource pooling as well as the solution
for load balancing algorithm has been provided, for aligning the existing cloud computing
system with green computing protocols. In order to increase the reliability or capacity
(Concurrent user) of the application, the load balancers are used. Load balancers are
also responsible for optimizing the response time and avoid the unevenly overloading the
computing nodes. In order to meet the criteria of QoS, the load balancers are used and
implementation of inefficient algorithm for load balancing can violate the QoS and SLA
which occurs between the consumer and cloud providers. Therefore, in this work we
are measuring a performance difference between the RR and ESCE. We will perform a
contrast study between these algorithm in terms of 5 different measure which are load
distribution, capacity distribution, idle processing, delayed load, amount of load processed

14



etc. The following metrics will be collected from 5 different resources/processing nodes,
client and server component. In our analysis the capacity of every processing node is
different than other nodes. The capacity of processing nodes are considered as 10,20,30,40
and 50. The load has been generated in the range of 145 to 160 using client component.

6.1 Experiment 1 / Load and Capacity Distribution

In this experiment, we are going to compare the performance of the algorithm based
on the load and capacity distribution for both round robin and ESCE algorithm. The
mechanism for distribution of load plays an important role. For the round robin algorithm
it has been observed that the capacity of every resource is different from one another still,
the load is distributed equally to every resource. The graph for same is represented with
the help of pie chart in Figure 7. The Chart clearly indicates that round robin does not
consider the capacity of the processing it simply distributes the load in equal part to
every resource.

Figure 7: Round Robin Capacity and Load distribution

Whereas, on analysing the pie chart graph of ESCE algorithm it has been found
that load distribution is different for every resource. The ratio of the load has been
distributed as per the capacity of the processing. The resource with minimal processing
capability has been allocated the minimal ratio of load. Whereas, the nodes with high
processing capabilities have allocated the ratio of load. Equally spread current execution
algorithm considers the capacity of every processing and allocates the load according to
their capacity. Whereas, in case of round robin every resources has been allocated a
equal load without considering their computing capabilities. In terms of capacity and
load distribution, ESCE algorithm performance was found to be better as compare to
the round robin algorithm.

15



Figure 8: ESCE Capacity and Load Distribution

6.2 Experiment 2 / Idle processing

Idle processing mainly refers to the number of cycles, on which resource was not executing
any task/load. Maximum number of idle processing represents the improper utilization
of resource capabilities. The optimal algorithm minimises the idle processing by keeping
the resource busy with execution of task. Therefore, the algorithm with minimum idle
processing will be considered as the optimal algorithm.

Figure 9: Idle Processing using using RR and ESCE Algorithm

After analyzing the idle processing bar graph for round robin algorithm shown in
Figure 9, it has been observed that idle processing cycles by server 4 is approx 40,000.
The idle processing cycles by server 3 is approx 20,000 and idle processing cycles by
server 2 is around 500. Total idle processing cycles obtained using round robin algorithm
is 60,500 which means the resources are idle and consuming energy.

On the other hand, after analyzing the idle processing cycle using ESCE algorithm it
has been found that server 4 has idle processing cycles of approx 30,000. Idle processing
cycle of server 3 is around 2500. No idle processing cycles has been found for server
0, server 1 and server 2. Total idle processing cycles obtained using ESCE algorithm
is 32,500 which is almost 50 percentile less as compared to the round robin algorithm.

16



Thus, we can say that in terms of idle processing cycles the ESCE algorithm utilizes the
resources efficiently. The idle processing cycles obtained using ESCE is shown in Figure
9.

6.3 Experiment 3 / Delayed Load

Delayed load mainly refers to the the task/load, which were not processed on time and
were waiting in the task queue to be executed by resources or processing nodes. The
delayed load of an optimal algorithm should be minimal. Maximum value of delayed load
represents lead to increase in the response time of load as the load/task is waiting into
the queue for getting executed. The delayed load has been found in Server 0, Server 1
and Server 2 which has the minimum capacity distribution as compared to the server 3
and server 4.

After calculating the delayed load for round robin algorithm it has been observed that
delayed load by server 0 is 40,000. Delayed load obtained using Server 1 is 20,000 and
delayed load obtained using server 2 is approx 1,000. Total delayed load obtained using
round robin algorithm is approximately 61,000.

Comparatively, the delayed load for ESCE is found to be minimal as compared to the
round robin algorithm. The delayed load obtained using server 0 is 10,000, server 1 is
15,000 and using server 2 is 12,000. Total delayed load obtained using Equally spread
current execution algorithm is 37,000. Which is again very less as compared to the round
robin algorithm.

Figure 10: Delayed Load using using RR and ESCE Algorithm

This clearly indicates that less jobs/tasks are getting delayed using ESCE algorithm.
The delayed load for RR and ESCE algorithm has been visualized using bar graph as
shown in Figure 10.

6.4 Experiment 4 / Processing Load

Processing load mainly refers to the amount of load, that has been processed by the
resources in a specific time. The proper distribution of load plays an important role
for increasing the processing load by the algorithm. The algorithm with the maximum

17



processing load will be considered as the optimal and best algorithm. We have calculated
the processing load for both round robin and Equally spread current execution algorithm,
the results are shown in Figure 11.

Figure 11: Load Processed using RR and ESCE algorithms

As the round robin has distributed the equal amount to load to every resources. Some
of the resource with minimum capacity were not able to execute the complete allocated
load. Whereas, on the other hand, the node with higher capacity were able to process
the load with maximum capacity of 60,000. The total load processed using Round robin
algorithm is 2,50,000. As ESCE algorithm distributes the load as per the capacity of the
resource, all the resources were able to process the assigned load. Also, the load processed
by higher capacity resources is much higher as compared to round robin algorithm. The
maximum load processed by the server 3 is 80,000. Total load processed by all the
resources is approximately 2,70,000. Thus, we can say that in terms of processing the
load ESCE outperforms as compared to the round robin algorithm.

6.5 Discussion

In this work, we have successfully implemented the cloud computing system with the
concept of resource pooling and load balancing algorithm. Using the Resource pooling
we have developed a scalable and distributed system, where any number of resource or
processing nodes can be connected to the cloud server, in order to scaling up the capa-
city of cloud server. After successfully implementing the resources pooling mechanism,
assigning the task to the registered resources was another challenging task, which has
been achieved using Load balancer. After analyzing the results of multiple set of experi-
ments for load balancing algorithms, we can reach to a conclusion that in terms of every
aspect such as capacity distribution, load distribution, idle processing cycles, delayed
load and processing load, the Equally spread current execution algorithm outperforms as
compared to the round robin algorithm. As round robin algorithm does not consider the
resource capacity and current load on the system, these constraints make it the inefficient
technique for load balancing. Whereas, on the other hand ESCE algorithm distributes
the task based on the resources capacity and current load on the machine, this makes it
optimal algorithm to be used in the load balancer. Even if ESCE load balancer attempts
to enhance latency and processing times, it is not failure resistant and suffers from a
single point failure.

18



7 Conclusion

In this work, we have successfully implemented a cloud system, which consists a resource
pooling architecture along with load balancer. As balancing load is one of the most crucial
challenge in the cloud computing environment, to improve the efficiency of the system
we have proposed the solution for it using Equally Spread current Execution algorithm.
In order to prove the efficiency of the algorithm, We evaluated the ESCE algorithm’s
efficiency to that of the round robin algorithm. The Performance Comparison of both
the algorithm has been measured in terms of various metrics such as Load processed by
system, idle processing cycles, delayed load, capacity distribution, load distribution etc.
After certain set of experiments and various analysis, it can be concluded that ESCE
algorithm not only utilizes the resources efficiently but also reduces the delayed load and
idle processing cycles. This allows the system to handle more load/tasks in the same
amount of time and criteria of Service Level Agreements (SLA) also can be matched.
An optimal load balancing algorithm helps the cloud providers to align with the green
computing protocols, as the algorithm utilizes the unused resources in an efficient way,
minimizes the energy consumption, reduces the carbon emission and also maximize the
life-span of the resources. Currently, in this work we have considered only 2 algorithms
for comparative analysis. In the future work, more algorithms can be implemented and
performance of algorithm can be experimented in the same system. Machine Learning
and deep learning based solutions are another area of research which can be incorporated
in the cloud computing environment in order to automate the resource pooling and load
balancing process. These algorithms will require the large amount of historical data in
order to identify the patterns and predict the future requirements.

References

Afzal, S. and Ganesh, K. (2019). Load balancing in cloud computing -a hierarchical
taxonomical classification, Journal of Cloud Computing 8.

Andradottir, S., Ayhan, H. and Down, D. (2016). Resource pooling in the presence of
failures: Efficiency versus risk, European Journal of Operational Research 256.

Castillo, O. and Melin, P. (2021). Review on the interactions of green computing and
computational intelligence techniques and their applications to real-world problems,
Journal of Smart Environments and Green Computing .

Chaturvedi, A. and Rashid, A. (2017). Analysis of resource pooling and resource al-
location schemes in cloud computing, International Journal of Computer Trends and
Technology 43: 81–86.

Dharan, B. (2020). Harnessing green cloud computing- an energy efficient methodology
for business agility and environmental sustainability, 8: 4193–4200.

Domanal, S. and Reddy, G. (2018). An efficient cost optimized scheduling for spot
instances in heterogeneous cloud environment, Future Generation Computer Systems
84.

Haris, M. and Khan, R. Z. (2020). A Systematic Review on Load Balancing Issues in
Cloud Computing, pp. 297–303.

19



Jennings, B. and Stadler, R. (2014). Resource management in clouds: Survey and research
challenges, Journal of Network and Systems Management 23.

Kamalakannan, T., Senthil, K., Shanthi, C. and Radhakrishnan, D. (2019). Study on
cloud storage and its issues in cloud computing.

Kaur, P. and Sachdeva, M. (2016). Optimized load balancing strategy in cloud comput-
ing : A review, INTERNATIONAL JOURNAL OF COMPUTERS TECHNOLOGY
15: 6681–6685.

KUMAR, M. and Sharma, S. (2017). Dynamic load balancing algorithm for balancing
the workload among virtual machine in cloud computing, Procedia Computer Science
115: 322–329.

Patil, A. and Rekha, P. (2020). An analysis report on green cloud current trends and
future research challenges.

Qadir, J., Sathiaseelan, A., Wang, L. and Crowcroft, J. (2016). ”resource pooling” for
wireless networks: Solutions for the developing world, ACM SIGCOMM Computer
Communication Review 46.

Rakhshani, M. (2019). A survey of green cloud computing.

Sajjan, R. (2017). Load balancing and its algorithms in cloud computing: A survey.

Shafiq, D., Zaman, N. and Abdullah, A. (2019). Proposing a load balancing algorithm
for the optimization of cloud computing applications, pp. 1–6.

Shah, N. and Farik, M. (2015). Static load balancing algorithms in cloud computing:
Challenges solutions, International Journal of Scientific Technology Research 4: 353–
355.

Thein, T., Myo, M., Parvin, S. and Gawanmeh, A. (2018). Reinforcement learning based
methodology for energy-efficient resource allocation in cloud data centers, Journal of
King Saud University - Computer and Information Sciences 32.

Vaidya, R., Xxx, K. and Mruthyanjaya Rao, M. (2019). Gamification and resource pooling
for improving operational efficiency and effective management of human resources: A
case study with an ecommerce company gamification and resource pooling for improv-
ing operational efficiency and effective management of human resources: A case study
with an ecommerce, International Journal of Management and Business 10: 76–87.

Verma, M., Gangadharan, G. R., Narendra, N., Vadlamani, R., Inamdar, V.,
Ramachandran, L., Calheiros, R. and Buyya, R. (2016). Dynamic resource demand pre-
diction and allocation in multi-tenant service clouds, Concurrency and Computation:
Practice and Experience 28.

Yang, J., Xiao, W., Chun, J., Hossain, M. S., Muhammad, G. and Amin, S. (2018). Ai
powered green cloud and data center, IEEE Access PP: 1–1.

Zhong, Y., Zheng, Z., Chou, M. and Teo, C. (2017). Resource pooling and allocation
policies to deliver differentiated service, Management Sciences 64.

20


	Introduction
	Research Question

	Literature Review
	Study on Resource Pooling and Management
	Study on Load Balancing
	Study on Green Computing

	Methodology
	Client
	Cloud Server
	Resources/ Processing Nodes
	Load Balancer
	Round Robin Algorithm (RR)
	Equally Spread Current Execution Algorithm (ESCE)

	Resource Monitoring

	Design Specification
	Implementations
	Evaluation and Results
	Experiment 1 / Load and Capacity Distribution
	Experiment 2 / Idle processing 
	Experiment 3 / Delayed Load
	Experiment 4 / Processing Load
	Discussion

	Conclusion

