
Improving sentiment analysis using
containerized microservices approach

Research in Computing
MSc in Cloud Computing

Bharat Goyal
Student ID: x19215860

School of Computing
National College of Ireland

Supervisor: Dr. Rashid Mijumbi

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Bharat Goyal
Student ID: x19215860
Programme: MSc in Cloud Computing
Year: 2021
Module: Research in Computing
Supervisor: Dr. Rashid Mijumbi
Submission Due Date: 16/12/2021
Project Title: Improving sentiment analysis using containerized microservices ap-

proach
Word Count: 5080
Page Count: 18

I hereby certify that the information contained in this (my submission) is information per-
taining to research I conducted for this project. All information other than my own contribution
will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required
to use the Referencing Standard specified in the report template. To use other author’s written
or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to each project
(including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for your own refer-
ence and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed into
the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):



Improving sentiment analysis using containerized
microservices approach

Bharat Goyal
x19215860

Abstract

Disaster management heavily relies on the monitoring of social media data, but the
number of users growing is exponential, which generates a very large amount of data when
a disaster happens. It is very difficult to monitor the data manually, so to monitor it requires
a highly available system that can be scaled up and down easily according to the demand
and perform analytics in real-time. This work aims to develop and evaluate a system that
solves the issues of collecting such huge data, performs analysis in real-time, and can be
set up and scaled very easily. Performance of the system will be measured by comparing
memory usage, execution time, the accuracy of the models, and response time of the sys-
tem. After evaluating the performance of the system, storage requirement was reduced by
31 percent when a parquet file format is used compared to a text file to store, the accuracy
of the model was increased by approximately 5 percent and there was almost a 75 percent
reduction in response time of the system. However, this system has some limitations which
can be addressed and further research can be done to improve the system.

1 Introduction
Natural or man-made disasters, such as cyclones, hurricanes, floods, volcanic eruptions, ter-
rorism, or a pandemic can result in the loss of lives and massive destruction. In the immediate
aftermath of a natural hazard event, victims need both immediate and long-term assistance from
the community. Many potential solutions are being investigated in support of current disaster
management techniques to provide relief to the public, and one such solution is to monitor
and analyze social media data. Social media usage in disaster-affected countries results in an
enormous amount of unstructured user-generated data, which necessitates the development of
new computational techniques. Out of the many computational techniques, sentiment analysis
can automatically extract and summarize a vast amount of data that the average human reader
is unable to comprehend.

Traditional approaches in developing a sentimental analyzer are by using a monolithic ar-
chitecture, which researchers often choose. What they do is collect data in text files and then
analyze it using standard tools and then share the results, and update them once the next ana-
lysis is complete. This is easier to design and implement the project. But if the dataset is
huge, it becomes difficult to analyze the data and develop classification models. It is also very
difficult to scale up the application quickly as the whole application needs to be deployed on
a single server, which becomes costly and time-consuming due to the tight coupling between
components. In disaster-affected areas, it becomes highly critical to scale up the application
quickly so that disaster management efforts can be quick. Analysis results need to be shared

2



with a large set of people in real-time such as other government departments, non-government
organizations, or public volunteers, so that they can contribute to relief efforts response time
of the application needs to be high, which is often not when following this approach. Another
approach is to use microservices architecture which enables to break up the functionality into
pieces and deploy them separately on different machines. This makes it comparatively easier to
scale up the application, but some problems remain, such as implementing load balancing and
deploying each service manually. It is also difficult to integrate them with CI/CD pipelines.

Therefore, identifying the correct approach remains an open research area. Serverless com-
puting is one approach that can be considered. No server management is required, reduced
costs, high scalability. But the problem with this approach is too much dependency on a single
cloud provider, which is also termed as vendor lock-in, difficulty working with cloud APIs, and
less control over the underlying infrastructure. Therefore, an approach that uses the strengths
of both microservices architecture and serverless architecture, while reducing their limitations,
is required. The aim of this is to evaluate if the proposed containerized microservices approach
in this work can solve the described issues.

The containerized microservices approach divides each task in the sentiment analysis pro-
cess into loosely coupled microservices deployed using docker containers so that researchers
can easily make changes to a service without affecting another. Each service can also be eas-
ily scaled horizontally depending on the requirement using Docker Swarm In this approach,
containers can be deployed on a single host or multiple host machines. For instance, Model
training, which is a resource-intensive task, can be deployed on host machines with higher spe-
cifications, such as a higher number of CPUs or GPUs compared to the data collection service
which doesn’t require too many resources. This approach is very useful in disaster scenarios as
the disasters can be sudden, such as wildfire, storm or an earthquake, so services can be created
and scaled up in a very short time to enable public authorities to respond quickly. Another
example where this approach will be useful in analyzing social media content is the Covid-19
pandemic. As the pandemic is affecting countries in multiple waves and once the wave starts
cases start increasing exponentially, services can be scaled quickly, and when the cases go
down, services can be scaled with just a few terminal commands to save on costs.

The docker based microservices approach proposed is used to create a machine learning
application that performs sentiment analysis using real-time Twitter data. To evaluate the ef-
fectiveness of this, various tests are performed and detailed in the evaluation section.

1.0.1 Research Question

Objective of this research is to answer the following research questions -

1. Does the container-based microservices approach have benefits over other approaches for
social media sentiment analysis?

2. Does performing sentiment analysis using real-time data improve the performance of
sentiment classifiers compared to just using historical data?

This report is structured as follows. Section 2 presents related works. Section 3 describes
the employed methodology. Section 4 discusses the design specification. Section 5 presents the
implementation. Section 6 presents the evaluation, and Section 7 conclusions and future work
are discussed.



2 Literature Review
The following is a summary of some past writing papers which are identified with the theme.
The information gives a concise finish of the work done by different analysts; additionally a
short synopsis of the different calculations and methodologies that are being utilized by them.

2.1 Real time twitter sentiment analysis
Yadranjiaghdam et al. (2017) proposes a method for extracting and analyzing structured and
unstructured Twitter data using in-memory processing. This research examines the earthquake
in Japan and the reactions it elicited from around the world. To analyze data in real-time, the
stream of data must be ingested and processed before the data is stored. Real-time results can be
achieved with this method, but it cannot accomplish anything more than simple data processing.
The suggested framework provides an infrastructure for real-time processing. Machine learning
algorithms can be used to analyze real-time data, such as sentiment analysis. A streaming
machine learning method is provided by the engine, although it is often necessary to analyze
past data. This paper does not evaluate the proposed framework for the accuracy of models but
only proposes a method to perform real-time analytics in real-time using Apache Spark, but
will be following a different approach. Twitter data will be collected in real-time and stored
but instead of using Apache Spark, which is difficult to set up and increases the complexity of
the project, python libraries such as pandas, which also does in-memory processing, will be
used to implement the project. Historical data will be taken into consideration along with real-
time data and then evaluated to evaluate the performance of the architecture. Then the machine
learning models for sentiment classification will be evaluated for accuracy and the time taken
to execute the model so that a conclusion can be made based on both.

Khaleq and Ra (2018) proposes a microservice architecture for Twitter data analytics during
a disaster that meets the requirements of disaster management and a cloud-based microservices
Twitter analytics framework for disaster management is proposed. The presentation of a cloud-
based microservices architecture framework for Twitter analytics on hurricane disaster data.
The framework is composed of Twitter streaming, preprocessing, disaster relevance classific-
ation, disaster phase classification, and knowledge extraction. In this paper, a microservices
architecture prototype is implemented but doesn’t describe how the data is filtered, which ma-
chine learning models to implement, or compare the performance of the system to another
model. So the research will be extended to include these aspects.

Karanasou et al. (2016) provides high-quality research on real-time Twitter data analytics
and presents a scalable system using Apache Storm, which has features such as scalability,
parallelism and fault-tolerance. The topology of the system has a node (called Spout) that
acts as the source of Twitter data stream. Then there are nodes(called Bolt) that process the
data. It has the following types of bolts: the preprocessing bolt, the post-processing bolt,
the classification, bolt, the NoSQL bolt, and the statistics bolt. Architecture is very complex to
implement real-time analytics and system requirements are high. The research will be presented
in this paper to implement a real-time Twitter sentiment analysis that is not as complex to set
up and can run with low system requirements.

2.2 Machine Learning Methods
Aziz et al. (2019)analyzed ten different natural disasters through tweets using sentiment ana-
lysis and deducted the most dominant disaster. They used sentiment analysis techniques to



classify Twitter data related to natural disasters. In this paper, an approach was described to
classify tweets as positive, neutral, or negative using the Naive Bayes algorithm. Data is extrac-
ted from Twitter using the Twitter API search feature, but we will be using Twitter streaming
to collect the data. The solution presented in the paper is implemented in R language, but we
will use Python programming language. Also, this paper doesn’t compare the presented model
with any other model and mostly focuses on visualization, so we will be evaluating another
machine learning algorithm and metrics will be compared. This paper also doesn’t present an
approach to scaling up the system, but we will be evaluating ways to scale up the system using
the microservices approach.

Maldonado et al. (2016) presents a system for monitoring Twitter, connecting to the API,
and filtering content based on four categories (volcanic, telluric, fires, and climatological) that
affect Ecuador due to its geographic location, and all tweets are stored in a database for analysis.
The NLTK tool is used to determine the frequency of a word in a tweet, which is then used to
classify it into one of the recommended categories. The dashboard is implemented with PHP
which adds an overhead of using another programming language with different requirements
for using the libraries but will be using a single programming language throughout the system
which doesn’t add this overhead. There is also no performance evaluation of the dashboard
presented. Also, the paper presents a way to filter, clean, and process the data from a database
but intermediate data is not stored anywhere, and the whole system is dependent on the previous
steps; but our work will follow the microservices approach and each step of the process will
not be dependent on any other step.

2.3 Microservices architecture
Malik et al. (2020) proposes a good system for containerization of airline sentimental analysis
using docker containers. It divides the process into multiple steps using separate containers
and presents a frontend system developed using Java. Similarly to the above paper, this adds an
overhead of using an additional language. It also doesn’t provide in detail the implementation
of the system, which makes it difficult for researchers to implement without doing some extra
research. It also doesn’t show how the data can be collected in real, stored and processed and
also how the system will be scaled up when the number of users grows. Why the approach was
better was not presented in this paper with proper evaluation results. Our research will be aimed
to show how this architecture can be improved by using different approaches of collecting the
data, reading the data, cleaning, processing the data and finally generating the results all in
real-time.

Liu et al. (2020) presents an overview of microservices and compares them with traditional
monolithic and service-oriented architecture. It explains the technology of the container system
and virtualization concepts are used in the container system in good detail. It then presents how
the microservices can be containerized and how containers can be orchestrated using different
tools. It gives an overview of containerization and how it can be used in creating microservices.
It finally presents the challenges of containerization,n such as how networking factors affect the
performance of the system. Debugging challenges in the distributed environment and how they
can implement is also presented in this paper. This research was used to make decisions about
the different tools and architecture of the system presented in this paper.

Hamilton et al. (2020) presents an intelligent system for big data applications and presents
an Apache Spark-based micro-service orchestration framework that extends database opera-
tions. Architecture takes full advantage of the cluster, thread, and, asynchronous parallelism.
Finally, they have presented a containerized system to reduce network overheads. Spark cluster



is used to directly interact with source database store and then outputs the data in a sink data
store. The approach in our research is different in that the output of the analytics system will
be stored in the storage so instead of having to maintain multiple databases. Also, the data
pipeline has been created in the presented research instead of having to deal with an advanced
system such as apache spark.

2.4 Summary

Figure 1: Real time analytics

Figure 2: Machine Learning methods



Figure 3: Microservices Approach

3 Research Methodology
To conduct the research many steps were followed as Data Analysis and machine learning is a
multi-step process. Each step in the research process has been described in the detailed below.

3.1 Data Collection
Twitter data is collected using tweepy python library to access Twitter API. Twitter data can
be collected by either using Twitter API search or streaming. There are various limitations of
using the search such as fetching 450/15 minutes so using the search feature is not very useful if
a large dataset is required for the project. Twitter streaming provides access to real-time tweets
and has no such limitation. For this project, a python script has been written to stream real-
time data and store it in SQLite database. To access the Twitter API using tweepy, credentials
need to be created from Twitter developer portal access which can be requested from Twitter.
Once the access is granted an app can be created on the developer portal and credentials can
be generated to set up the Twitter data stream. To get the tweets related to disasters list of
keywords has been used to filter data.

3.2 Data Storage and Reading
Data will be read from SQL database using a python script into a DataFrame. As the Data-
Frames are in memory it needs to read the data multiple times when performing analysis and
machine learning operations. It may not affect the project when the data size is small but
when there are millions of records to read it can make a huge difference in overall analysis



time. Another alternative to Pandas DataFrames are Dask DataFrames, which is a large paral-
lel DataFrame, composed of many smaller Pandas DataFrames, split along the index.

For Twitter data storage SQLite database will be used, which is a fast, end program data-
base storage technology that stores the data on the disk and can use. Using cloud-hosted data-
bases such as Amazon Relational Database Service (RDS) is a much better approach in a mi-
croservice architecture. It is also decoupled completely from the architecture because there is
no dependency on the script because of high availability and scaling abilities but due to the time
limitations of this research, data will be stored using SQLite, because it is much easier to set up
and integrate code with. Some file systems are also used to collect data such as CSV. As a part
of this research read times of SQL, CSV, Pickle, and Parquet by both Pandas DataFrame and
Dask DataFrame will be evaluated so that researchers can make an informed decision about
which technology to use according to their needs.

3.3 Data Cleaning and Processing
As the data collected in dataframe is raw it needs to be cleaned before it can be processed.
First, the URLs are removed and then @ and hashtag are removed as they do not help get the
sentiment of the text. Then the RT symbol is removed because it stands for retweets in the
twitter text. Data collected also contains tweets of other languages which needs to be converted
to a standard language so they are converted to English using a textblob library. At the last
step stop words, words like ‘if’, ‘but’, ‘we’, ‘he’, ‘she’, and ‘they’, are removed from the tweet
after converting the words into tokens and then rejoining them back. Texts are then normalized
which means converting different forms of a word into a normal form using the stemming
approach.

Once the data is cleaned it is assigned a target variable against which algorithm prediction
can be trained and tested which is done at this step. It is assigned a variable 1 for positive,
variable 0 for neutral and -1 for negative. But any variable can be assigned.

3.4 Algorithm Training and Prediction
For this research, two classification algorithms are trained and predictions are performed. First
is the Naive Bayes algorithm in which a particular feature of a class is assumed to be unrelated
to the presence or absence of any other feature in the class. Next is logistic regression which
predicts the probability of a target variable. Data is then split into test data and train datasets.
The training dataset is used to train the classifier and the prediction is performed on the test
dataset. The accuracy of the models can then be checked for the algorithms. In this research
as the data is being collected in real-time, the accuracy of the algorithm is calculated so that
classifier is improved in real-time. In the evaluation sections, accuracy is being compared for
both the algorithms at an increasing number of records to evaluate if performing the analytics
in real-time results in accuracy improvement of the classifier.



3.5 Visualization
For visualization of the results a live dashboard has been created. Flask framework has been
used to setup the dashboard as it provides an easy way to setup endpoints and templates can be
used to generate web pages pages if a very simple dashboard needs to be setup.

3.6 Containerized microservices
The whole process is split into four scripts for this project and then each script is containerized
using packaged into a container using docker and then deployed on a docker swarm cluster.
Another approach to scaling up the microservice architecture is by using a container-based ap-
proach and another by using different servers for different services.

As a part of this research, dashboard performance is tested before and after scaling up the
system to see if there is any performance improvement.

4 Design Specification
This section details a sentimental analyzer using containerized microservices approach and
architecture diagram is presented in figure.

Figure 4: Proposed archiecture

4.1 Microservices architecture
Docker engine is used to create the containerized microservices, which divides each task in
the sentiment analysis process into loosely coupled microservices so that the researchers can
easily make changes to a service without affecting another. Each service can also be easily



scaled horizontally depending on the requirement. Other containers such as windows containers
can be used depending on the workload and processing requirements but this research will be
limited to using docker containers. Containers can be deployed on a single host or multiple host
machines. For instance, Model training which is a resource-intensive task can be deployed on
host machines with higher specifications such as a higher number of CPUs or GPUs compared
to the data collection service which doesn’t need require too many resources. This approach is
also very useful in disaster scenarios as the disasters can be sudden such as wildfire, storm or
an earthquake, so services can be created and scaled up in a very short time to enable public
authorities to respond quickly. The covid-19 pandemic is affecting countries in multiple waves
and once the wave starts cases start increasing exponentially, so this approach can also be
implemented to monitor social media and provide relief efforts quickly, and when the cases go
down services can be scaled down quickly to save on costs.

4.1.1 Data Collection

Data Collection service streams the live Twitter data using tweepy according to the filter cri-
teria, disaster-related keywords are used as a filter and then stores the data in a database.

4.1.2 Data Cleaning

Data Cleaning service cleans the data collected as the Twitter data can have a lot of unnecessary
information such as removing links URLs, punctuations, etc and stores the data as a parquet
file on the storage server which can then be used for transformation and model training.

4.1.3 Classifier

Model training service transforms the data into a vector and then classification models are
trained. Prediction is performed and then tested for accuracy for which the results are stored
on storage.

4.1.4 Visualization

Lastly, the visualization service creates a live dashboard using the results on storage which can
then be accessed remotely.

4.2 Storage
For storage, centralized storage is used which can be mounted on the docker containers using
bind mounts. As the docker containers are ephemeral they are not very useful to store data and
it needs to be stored in a storage server. Storage is decoupled from the containers because if we
store the data on containers then it will be lost once the docker containers are deleted.

4.3 Scaling microservices
Once the services are required to be scaled up a container orchestration service is required. In
the proposed approach Docker Swarm, which is a container orchestration tool is as opposed to
Kubernetes. Docker Swarm is a good choice if the cluster size is small as it comes built-in the
docker engine and is easy to set up and deploy compared to Kubernetes. To create a docker
swarm cluster master workers are created and the services are deployed on the worker nodes.



Figure 5: Docker Swarm Cluster

5 Implementation
Several python scripts are developed for this project which are run inside docker containers
once the stack is deployed on the machine.

5.1 Python scripts
5.1.1 Data Collection

Data Collection script streams the live twitter data using tweepy according to the filter criteria,
disaster-related keywords such as ”storm”, ”hurricane”, ”wildfire” are used as a filter then
stores the data in a database. Only Tweet ID and tweet text are stored to speed up the collection
process but other data related to tweets can also be stored. A python script has been developed
to stream real-time data and store it in SQLite data which starts collecting data automatically
once the container is up and running. To access the Twitter API using tweepy, credentials
need to be created from Twitter developer portal access which can be requested from Twitter.
Once the access is granted an app can be created on the developer portal and credentials can be
generated to set up the Twitter data stream.

5.1.2 Data Cleaning

Data Cleaning python script reads the data from the database using DataFrame and cleans the
data collected as the Twitter data can have a lot of information not useful for analysis and
training the model. It removes the null values from the data first, then URLs, punctuation, @
references and hashtag symbols are removed, and then stop words are removed from the data.
Once the data is cleaned it is stored as a parquet file in the storage which can be further used
for transformation and model training.



5.1.3 Classifier

In this python script, the Parquet file is read using DataFrame. A feature vector is then generated
using the TfidfVectorizer library imported from sklearn and the data is transformed in the next
lines. X is the NumPy array of feature vectors the Y is the NumPy array of target variables
which we will try to predict. Two classification models Naive Bayes and Logistic Regression
are trained in this script. Pickle is used to serialize both classifiers and then the serialized
format is saved to a pickle file. Dataset is split into 80:20 for training and testing respectively,
and Prediction is performed using the test data. Accuracy is determined for both classification
models whose results are stored on the storage to be used for creating a live dashboard.

5.1.4 Visualization

The dashboard is created using flask API which makes it easy to develop API with one endpoint.
Templates are used instead of a frontend library to speed up the creation of a dashboard for the
prototype. Matplotlib library has been used to generate plots.

5.2 Docker files
Dockerfile has been used to create the container for each service. In the dockerfile python:3.9.7
image has been imported which comes with preinstalled python on Linux container. WORK-
DIR /app is created which will be used as the main directory inside the container. Requirements
file which is generated by using pip freeze command is then copied and installed. In the last
line python script is run for the respective container. Dockerfiles are named according to the
script so that it is easier to recognize them.

docker-compose file is used to create a microservice without having to run each container
manually. It is in YAML format. Storage is mounted to the container using a bind mount.

5.3 Tools Used
Python v3.9.0 was used to develop the whole project. Data analytics and machine learning
libraries are Numpy, Pandas, NLTK, scikit-learn, Flask python library was used to develop
API. Docker was used to containerize the project.

5.3.1 Apache Bench

To test the scalibility of the application Apache Bench (ab) is used. It very simple is a load
testing and benchmarking tool for HTTP servers. It can be run from the command line. One
minute is all it takes to get a quick load testing result. Because it doesn’t require a lot of
knowledge of load and performance testing concepts, beginners and intermediate users can use
it. No complicated setup is required to use this tool.



6 Evaluation Results
research evaluation section is divided into three parts.

6.1 Data Read evaluation
6.1.1 Evaluation of file sizes

For this evaluation size of the SQLite, CSV, and Parquet on files are compared for the same
number of records.

Parquet files need less storage compared to the CSV file, so storage costs can be reduced
especially for large datasets.

6.1.2 Evaluation of Pandas Dataframe Read times

For this evaluation, SQLite, Parquet and CSV are read by Pandas Dataframe for different num-
bers of data records. An evaluation script was run while collecting the data to record the read
times and a line chart is plotted as shown in the figure.



It can be seen from the graph that Dataframe read time for SQLite database is signific-
antly lower than Pickle, Parquet, and CSV especially when the number of records is more but
it is costly to host and manage a production database so file storage may be a better option
for researchers for performing Twitter sentiment analysis. In file storage comparison Parquet
performs better in comparison with CSV supported so for very large datasets parquet file is a
much better option as it stores data in a columnar format instead of CSV which stores the data
in table structure, so read times can be improved further when we only need to read some of
the columns.

6.1.3 Comparison between Read times - Dask Dataframe and Pandas Framework

In this evaluation CSV and Parquet files containing the same number of records are loaded to
both Dask and Pandas dataframes and then the read times(seconds) for both files are compared.



It can
be noted that Dask can load both CSV and Parquet files much faster than the Pandas Dataframe

To conclude the first part of the evaluation SQL is preferred due to the faster read time but
when it’s not possible to use a database, Parquet file is better in terms of both file size and read
times compared to a CSV file and dask dataframe are better in terms of reading the reading a
very large dataset as it breaks it chunks of pandas dataframes but

6.2 Dataframe operations evaluation
For these evaluations, a large dataset with 1.6 million records is taken to evaluate if using Dask
Dataframe make a difference in execution time of algorithms and accuracy. Code is run ten
times in parallel using docker in each scenario and average values are taken so that error in
values can be reduced.



6.3 Algorithm comparison
For this evaluation, both naive bayes and logistic regression classifiers are trained and tested to
find for an increasing number of records. We can see from both the graphs that as the number
of records starts to increase the accuracy of the model starts to increase. When we compare the
accuracy of both models, Logistic regression is higher compared to Naive Bayes.

Figure 6: Accuracy comparison

6.4 Performance benchmark of microservices
For this evaluation, Apache Bench is used to benchmark the microservices. First tests are
conducted with 1 container for the dashboard and then the same tests are conducted are after
scaling up the service to 10 containers. 10000 requests are sent to the server with 0, 20 and 100
concurrent requests(number of users) and the average time is noted for each request is noted.
The results are shown in figure



Figure 7: Apache bench load test results

As we can see from evaluations results using multiple containers reduce the response time
when no concurrent requests are sent but there is a drastic reduction in response time when the
concurrent requests are sent. As we increase the number of concurrent requests the difference
starts increasing. For 20 concurrent requests there is a 63 percent reduction in response time
but for 100 concurrent requests reduction is 80 percent which is

7 Conclusion and Future Work
In this work, we discussed the container-based microservices approach of developing a senti-
mental classifier for a disaster scenario. To achieve these recent developments microservices
architecture were researched and a real-time sentimental classifier was implemented with a
working live dashboard using containers. As evaluated the system shows the reduction in stor-
age requirement, improvement inaccuracy of the model and average response time. But there
are some limitations such as complexity in understanding virtualization technology, the eph-
emeral nature of containers which means everything can not be containerized, and difficulty in
monitoring the containers and securing the system which was not evaluated in this research. In
future work, these aspects can be researched and implemented in the architecture.

References
Aziz, K., Zaidouni, D. and Bellafkih, M. (2019). Social network analytics: Natural disaster

analysis through twitter, 2019 Third International Conference on Intelligent Computing in
Data Sciences (ICDS), pp. 1–7.

Hamilton, M., Gonsalves, N., Lee, C., Raman, A., Walsh, B., Prasad, S., Banda, D., Zhang,
L., Zhang, L. and Freeman, W. T. (2020). Large-scale intelligent microservices, 2020 IEEE
International Conference on Big Data (Big Data), pp. 298–309.

Karanasou, M., Ampla, A., Doulkeridis, C. and Halkidi, M. (2016). Scalable and real-time
sentiment analysis of twitter data, 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW), pp. 944–951.

Khaleq, A. A. and Ra, I. (2018). Cloud-based disaster management as a service: A microservice
approach for hurricane twitter data analysis, 2018 IEEE Global Humanitarian Technology
Conference (GHTC), pp. 1–8.



Liu, G., Huang, B., Liang, Z., Qin, M., Zhou, H. and Li, Z. (2020). Microservices: architecture,
container, and challenges, 2020 IEEE 20th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), pp. 629–635.

Maldonado, M., Alulema, D., Morocho, D. and Proaño, M. (2016). System for monitoring
natural disasters using natural language processing in the social network twitter, 2016 IEEE
International Carnahan Conference on Security Technology (ICCST), pp. 1–6.

Malik, S., El-Sayed, H., Khan, M. A. and Alexander, H. (2020). Application of containerized
microservice approach to airline sentiment analysis, 2020 14th International Conference on
Innovations in Information Technology (IIT), pp. 215–220.

Yadranjiaghdam, B., Yasrobi, S. and Tabrizi, N. (2017). Developing a real-time data analyt-
ics framework for twitter streaming data, 2017 IEEE International Congress on Big Data
(BigData Congress), pp. 329–336.


	Introduction
	Research Question

	Literature Review
	Real time twitter sentiment analysis
	Machine Learning Methods
	Microservices architecture
	Summary

	Research Methodology
	Data Collection
	Data Storage and Reading
	Data Cleaning and Processing
	Algorithm Training and Prediction
	Visualization
	Containerized microservices

	Design Specification
	Microservices architecture
	Data Collection
	Data Cleaning
	Classifier
	Visualization

	Storage
	Scaling microservices

	Implementation
	Python scripts
	Data Collection
	Data Cleaning
	Classifier
	Visualization

	Docker files
	Tools Used
	Apache Bench


	Evaluation Results
	Data Read evaluation
	Evaluation of file sizes
	Evaluation of Pandas Dataframe Read times
	Comparison between Read times - Dask Dataframe and Pandas Framework

	Dataframe operations evaluation
	Algorithm comparison
	Performance benchmark of microservices

	Conclusion and Future Work

