
Using Redis for persistent storage in
serverless architecture to maintain state
management - Configuration Manual

MSc Research Project

Cloud Computing

Ankit Kumar
Student ID: 20149158

School of Computing

National College of Ireland

Supervisor: Adriana Chis

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Ankit Kumar

Student ID: 20149158

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Adriana Chis

Submission Due Date: 31/01/2022

Project Title: Using Redis for persistent storage in serverless architecture to
maintain state management - Configuration Manual

Word Count: XXX

Page Count: 6

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Using Redis for persistent storage in serverless
architecture to maintain state management -

Configuration Manual

Ankit Kumar
20149158

1 Introduction

The configuration manual represents an overview of the machine specification that has
been used in our experiments along with a detailed explanation of the technologies and
libraries. We will discuss how the core concept has been developed using our desired
programming language.

1.1 Hardware Specifications

Table 1: Hardware specification

Instance name (flavour) m6gd.xlarge
vCPU 8
RAM 16
Network Bandwidth Upto 6 Gbps

1.2 Software Specifications

1.2.1 NodeJS

The idea can be developed using NodeJS or Golang because the community packages and
documentation for Golang are comparatively new than NodeJS there are some open issues
in the implemented wrappers and libraries, so our choice of language will be NodeJS1. In
the experiments, we are using two versions of NodeJS. For hosting and core module de-
velopment, we have used NodeJS 16 and for the serverless function runtime environment,
we have used NodeJS 12. Both 12 and 16 version of NodeJS comes under Long-term
Support (LTS), therefore it will be a safer choice to choose the above two versions.

1.2.2 Libraries and Frameworks

• OpenWhisk2: An open-source framework for self-deployed serverless architecture.

1NodeJS: https://nodejs.org/en
2OpenWhisk: https://openwhisk.apache.org

1

https://nodejs.org/en
https://openwhisk.apache.org


• Redis3: Open-source in-memory data structure store that has various saving strategies
and replication is built-in by default.

• Docker-cli-js4: A CLI tool for managing docker containers via NodeJS.

• Express5: Back-end web application for NodeJS.

• HandlebarsJS6: Render library for NodeJS that can be used in conjunction with
Express.

2 Server Setup

Setting up the code is fairly easy because NodeJS provides ackage.json that can be used to install all the deendencies
with just a single command. For refernce the file should look like Figure 1

Figure 1: package.json file

Make sure that the system has NodeJS and NPM installed. If not, we can install it
by the following commands:

sudo apt install nodejs

3Redis: https://redis.io
4Docker CLI (NodeJS): https://github.com/Quobject/docker-cli-js
5ExpressJS: https://expressjs.com
6HandlebarsJS: https://handlebarsjs.com

2

https://redis.io
https://github.com/Quobject/docker-cli-js
https://expressjs.com
https://handlebarsjs.com


sudo apt install npm

Extract the core API code in a directory from the zip file: api.zip. Navigate to the
api directory. Run the command:

npm install

Now that we have our core set-up, we need to make sure that OpenWhisk and Docker
is deployed and running. Run the following commands to install the dependencies for
both Docker and OpenWhisk:

sudo apt update -y && sudo apt upgrade -y

sudo apt install git python-pip python-setuptools /

build-essential libssl-dev libffi-dev python-dev /

software-properties-common

sudo pip install ansible

2.1 For Docker

Follow the steps below or follow the official documentation for Docker installation in
Ubuntu7

sudo apt-get update

sudo apt-get install ca-certificates curl gnupg lsb-release

curl -fsSL https://download.docker.com/linux/ubuntu/gpg |\

sudo gpg --dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

echo \

"deb [arch=$(dpkg --print-architecture) \

signed-by=/usr/share/keyrings/docker-archive-keyring.gpg] \

https://download.docker.com/linux/ubuntu \

$(lsb_release -cs) stable" | \

sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

sudo apt-get update

sudo apt-get install docker-ce docker-ce-cli containerd.io

Verify that Docker is up and running:

sudo docker run hello-world

2.2 For OpenWhisk

• Clone the repository: https://github.com/apache/openwhisk-devtools.git

• Navigate into openwhisk-devtools/docker-compose directory

7Docker installation Ubuntu: https://docs.docker.com/engine/install/ubuntu

3

https://docs.docker.com/engine/install/ubuntu


• Before configuring OpenWhisk, we need to install two specific libraries e.g. zip and
net-tools, otherwise, it will throw an error while building the NodeJS environment.

– sudo apt install zip net-tools

Now after the dependencies are installed, we can start OpenWhisk with default set-
tings using the command:

sudo make quick-start

The above command will build the necessary docker containers for the framework to
work properly.

When the make command has finished the tasks, it will show an output withWSK CONFIG FILE
variable. We need to copy and paste the line in our current shell to let the system know
where to get the apihost and api key. We can cat the .wskprops file and copy the variables
as we will be needing those two for our UI inputs.

Along with WSK CONFIG FILE, the shell will also render the IP address or domain
name where the OpenWhisk APIs are currently running. Copy it, as we will be needing
that as well for the UI input.

2.3 Webserver

Navigate to api directory which we configured in [section], and run the command:

npm start

The command will host the application on localhost of the server on port 8001, if the
post is already taken, we can change the port by modifying the PORT variable in the
.env file on the root directory. The server should have a public domain where we could
access the webserver on the specified port and the UI should look like Figure 2.

Figure 2: Webserver input page

The inputs on the UI are mentioned below:

• Apihost: IP or domain name of the default host of OpenWhisk API.

4



• Api key: We would require a key provided by the OpenWhisk credentials manager,
we can get the key from .wskprops file.

• Name: It will be an identifier for the action, we can get activation details using it.
The activation details will hold the action output, duration, start time, end time,
etc.

• Kind: Depending on the programming language, we need to provide a runtime so
that OpenWhisk could deploy the action on a dependent Docker image.

• Code: Relative or absolute path of the zip file for the code.

• numberOfInvocation: This defines how many actions we would like to invoke par-
allelly.

After adding the parameters and submitting, the output will give us the details of our
actions, which should look like Figure 3.

Figure 3: Webserver output

3 Code Explanation

Our core module exports a start function that will accept the parameters from the UI.
The function has different tasks that return a promise, so that we could wait for the
executions of each task to be finished before it goes on to the next. We need to have
everything synchrously because we don’t want to fire our actions before Redis container
startup, else they will not be able to connect and start throwing errors. The flow of the
execution is mentioned below with code snippet Figure 4:

• Initiate OpenWhisk configurations

• Create action with the given name parameter

• Start Redis container

5



Figure 4: Code reference

• Loop through the numberOfInvocation parameter and fire the actions according to
the number

• With a defined offset time, stop Redis

• Loop through activationID and get the results for each actions

• The function will return:

– Activation duration average (activationAvg)

– Docker startup time (dockerTime)

– Activations JSON (activations)

The three actions mentioned in the report are api, setAction, and getAction are
available in the zip file with their respective names. Just unzip the the files and change
the Redis URL as per the setup.

6


	Introduction
	Hardware Specifications
	Software Specifications
	NodeJS
	Libraries and Frameworks


	Server Setup
	For Docker
	For OpenWhisk
	Webserver

	Code Explanation

