

Configuration Manual

MSc Research Project Cloud Computing

Aarthy Ramaswamy Student ID: X20188838

School of Computing National College of Ireland

Supervisor: Divyaa Manimaran Elango

National College of Ireland

School of Computing

Student Name:	Aarthy R	amaswamy						
Student ID:	X201888	338						
Programme:	Cloud Co	Cloud Computing Year: 2021-22						
Module:	Research Project							
Supervisor:	Divyaa Manimaran Elango							
Date:	January 31 2022							
Project Title:	Simulation of effective task scheduling algorithm for cloud environments							
Word Count:	1300 Page count 8							

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

<u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Aarthy Ramaswamy
------------	------------------

Date: 31/1/2022.....

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project	
submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both	
for your own reference and in case a project is lost or mislaid. It is not	
sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Aarthy Ramaswamy Student ID: X20188838

1 Introduction

1.1 Purpose of the Document

The configuration manual provides clarity on the simulation techniques that are followed in this cloud task scheduling project. It throws light into the steps involved in project set up and application handling.

2 System Requirements

The scheduling algorithms are practically expensive to run on real cloud environments due to which we have chosen simulation method to test the efficiency of FCFS and SJF algorithms. Initially the Cloudsim simulation tool is setup in local machine with the following system configuration.

2.1 Hardware requirements for Cloudsim

The CLoudsim is a simple Java simulation tool which requires basic system requirements only and not any high computing configurations. The system requirements are given below which were followed for the project set up.

Operating system: Windows 10 x64

Processor: Intel core i5

RAM: 140 GB

Hard Drive: 600GB

The above configuration is not the minimum requirements, any computer system with a dual-core processor, 2 GB RAM, and 1 GB storage is good enough to simulate the cloud-based systems using the Cloudsim.

2.2 Software requirements

Cloudsim is a tool built in Java completely, it requires an environmentalk set up to run java files and to design algorithms on it. The applications, IDE and software required to set up the Java IDE and build algorithms on it are mentioned below.

Eclipse

Java Development Toolkit (JDK)

CloudSim 3.0.3

GitHub

3 Setup of simulation environment

The simulator set up involves various steps from IDE installation until running the project to instantiate a simulated cloud environment similar to real time cloud machine. Before starting to working on CloudSim, it needs to be configured correctly. As the tool is developed using java language, we can use any IDE that supports java language development environment like NetBeans, eclipse etc. In this document we will set it up using Eclipse IDE.

3.1 Pre requisite Setup

Step 1: Download Eclipse IDE installation file from the following link and follow the steps to set up the IDE with default settings.

Eclipse Java IDE: <u>https://www.eclipse.org/downloads/packages/eclipse-ide-java-developers/keplersr2</u>

Step 2: To work on Java project requires a JDK which will be set up by following through the steps in the installation kit downloaded above.

3.2 CloudSim Setup

For this project we have used Cloudsim 3.0.3 version as it is the most stable set up to build algorithms and gives a most similar simulation cloud environment.

Step 1: Download the code files zip from the link provided below. Unpack the downloaded 'CloudSim-3.0.3.tar.gz' or 'CloudSim-3.0.3.zip. The folder structure of the code is as detailed below.

cloudsim/	top level CloudSim directory
docs/	CloudSim API Documentation
examples/	CloudSim examples
jars/	CloudSim jar archives
sources/	CloudSim source code
tests/	CloudSim unit tests

Step 2: Now we shall set up the workspace path for working in IDE. Navigate to **new workspace** in **File** menu of Eclipse. In the path textbox, browse the folder where unzipped code files are placed. Provide a suitable name to the workspace. The figure below shows a similar workspace created for this project.

🖨 New Java Project					×
Create a Java Project Create a Java project in the workspace or in an external location.					
Project name: CloudsimSampleSetup					
Use default location Location: C:\Users\DELL\eclipse-workspace\CloudsimSample	Setup			Browse	
JRE Use an execution environment JRE: Use a project specific JRE:	JavaSE-16 jre				v
O Use default JRE 'jre' and workspace compiler preferences			<u>C</u>	onfigure JF	<u>{Es</u>
 Use project folder as root for sources and class files Create separate folders for sources and class files 			Con	figure defa	<u>ult</u>
Working sets Add project to working sets Working sets:				New	
Module ☑ Create module-info.java file					
?	< Back	Next >	Finish	Can	cel

Step 3: Now the libraries required for the running of this toolkit is configured. For configuring the JDK, jar file from this link can be downloaded <u>http://commons.apache.org/proper/commons-math/download_math.cgi</u> and extract

'commons-math3-3.6.1.jar'.

Step 4: In the libraries dialogue box, choose **Add External JARS.** Choose the unzipped jar file from downloaded location. This is shown in below figure.

🖲 Source 😂 Projects 🛋 Libraries 💊 Order and Export				
ARs and class folders on the build path:				
G cloudsim-3.0.3 cources.jar - CloudSimSampleSetup/jars	Add JARs Add External JARs			
 E cloudsim-s.0.3.jar - CloudSimSampleSetup/jars E cloudsim-examples-3.0.3-sources.jar - CloudSimSampleSetup 				
E cloudsim-examples-3.0.3.jar - CloudSimSampleSetup/jars	Add Variable Add Library Add Class Folder			
> M JRE System Library [jre1.8.0_111]				
	Add External Class Folder			
	Edit			
	Remove			
1	Migrate JAR File			
< >				

Step 5: Upon successful set up of workspace, the project files are available in the explorer of IDE. The build is automatically started to make project ready for working. the figure shows project structure.

Now the simulation tool is ready to build algorithms and run the required configuration.

3.3 FCFS Algorithm

Upon successful set up of the Cloudsim tool, the task scheduling algorithm FCFS is built on it with simulated environmental set up to perform task scheduling. The code for running this algorithm is available in the artefacts submitted along with the project files. This code was developed and tested for various scenarios. The files FCFS_Scheduler.java and FCFSDatacenterBroker.java form this algorithm logic.

```
public class FCFS_Scheduler {
    private static List<Cloudlet> cloudletList;
    private static List<Vm> vmList;
    private static Datacenter[] datacenter;
    private static double[][] commMatrix;
    private static double[][] execMatrix;
```

The VM and Cloudlet are configured in the scheduler.java file.

3.4 SJF Algorithm

The artefacts folder contains SJF algorithm design files SJFDatacenterBroker.java and SJF_Scheduler.java. This code files where developed and tested to give the proposed outputs. The datacenter and cloudlet set up are done in these files and SJF algorithm is also run for same environmental setup as the previous algorithm.

```
public class SJF_Scheduler {
    private static List<Cloudlet> cloudLetList;
    private static List<Vm> vmList;
    private static Datacenter[] datacenter;
    private static double[][] commMatrix;
    private static double[][] execMatrix;
```

4 Task Scheduling and Validation

Following the completion of set up and algorithm design, the environment variables are to be configured and simulation is run to view results. For this we have used various environmental variable values for both the algorithms and validated the respective outputs for evaluation. The Cloudsim scheduler is run to perform task scheduling using the SJF algorithm and FCFS for static activities with a pre-determined processing time. The workloads, cloudlet length etc are pre defined and scheduler is run for these values. The cloudlet length is not taken into account by the FCFS algorithm. It starts with the first task (cloudlet) and then moves on to the next. However, the SJF algorithm sorts all cloudlets sent to the dc broker first. The experiment is carried out with 5 datacenters, and minimum of 30 cloudlets set up. The experiment is repeated several times to derive at a consistent result. The efficiency is checked with the make span time output from the simulation task.

Simulation completed.

01	JTPUT =====					
Cloudlet ID	STATUS	Data center ID	VM ID	Time	Start Time	Finish Time
00	SUCCESS	04	04	117.86	00.5	118.36
01	SUCCESS	03	03	461.88	00.5	462.38
02	SUCCESS	03	03	470.97	462.38	933.35
03	SUCCESS	04	04	809.03	118.36	927.38
04	SUCCESS	06	06	247.91	00.5	248.41
05	SUCCESS	05	05	238.49	00.5	238.99
06	SUCCESS	02	02	496.28	00.5	496.78
07	SUCCESS	06	06	319.72	248.41	568.13
08	SUCCESS	02	02	574.16	496.78	1070.94
09	SUCCESS	02	02	993.52	1070.94	2064.47
10	SUCCESS	06	06	218.04	568.13	786.16
11	SUCCESS	02	02	752.31	2064.47	2816.78
12	SUCCESS	03	03	575.73	933.35	1509.08
13	SUCCESS	04	04	709.84	927.38	1637.22
14	SUCCESS	05	05	575.49	238.99	814.48
15	SUCCESS	02	02	973.1	2816.78	3789.87
16	SUCCESS	04	04	374.32	1637.22	2011.54
17	SUCCESS	05	05	861.92	814.48	1676.4
18	SUCCESS	06	06	203.89	786.16	990.06
19	SUCCESS	05	05	530.81	1676.4	2207.21
20	SUCCESS	06	06	603.67	990.06	1593.73
21	SUCCESS	03	03	91.03	1509.08	1600.11
22	SUCCESS	05	05	702.1	2207.21	2909.31
23	SUCCESS	05	05	649.85	2909.31	3559.16
24	SUCCESS	02	02	398.72	3789.87	4188.6
25	SUCCESS	04	04	358.21	2011.54	2369.76
26	SUCCESS	03	03	641.19	1600.11	2241.3
27	SUCCESS	03	03	345.91	2241.3	2587.21
28	SUCCESS	02	02	646.58	4188.6	4835.18
29	SUCCESS	06	06	750.72	1593.73	2344.45
Makespan usi	ng ECES: 39	96.083402984705				

FCFS.FCFS_Scheduler finished!

FCFS Scheduler results

Repeating the same parameters for SJF scheduler provides a make span time of 6329 seconds as shown in figure below. Which is far beyond the FCFS scheduler.

======= 0	UTPUT =====					
Cloudlet ID	STATUS	Data center ID	VM ID	Time	Start Time	Finish Time
01	SUCCESS	05	05	368.67	00.1	368.77
02	SUCCESS	04	04	647.76	00.1	647.86
03	SUCCESS	02	02	678.17	00.1	678.27
06	SUCCESS	06	06	702.03	00.1	702.13
00	SUCCESS	03	03	745.58	00.1	745.68
07	SUCCESS	06	06	319.72	702.13	1021.84
18	SUCCESS	06	06	203.89	1021.84	1225.74
04	SUCCESS	03	03	535	745.68	1280.68
16	SUCCESS	05	05	960.27	368.77	1329.03
09	SUCCESS	04	04	748.46	647.86	1396.32
11	SUCCESS	02	02	752.31	678.27	1430.58
10	SUCCESS	04	04	325.12	1396.32	1721.43
05	SUCCESS	03	03	474.13	1280.68	1754.81
19	SUCCESS	05	05	530.81	1329.03	1859.84
20	SUCCESS	05	05	141.65	1859.84	2001.49
12	SUCCESS	02	02	807.91	1430.58	2238.49
15	SUCCESS	04	04	636.27	1721.43	2357.7
08	SUCCESS	03	03	727.34	1754.81	2482.14
22	SUCCESS	05	05	702.1	2001.49	2703.6
13	SUCCESS	03	03	396.17	2482.14	2878.31
21	SUCCESS	03	03	91.03	2878.31	2969.34
25	SUCCESS	05	05	327.74	2703.6	3031.33
14	SUCCESS	02	02	873.55	2238.49	3112.04
26	SUCCESS	05	05	247.6	3031.33	3278.93
17	SUCCESS	04	04	1037.09	2357.7	3394.79
23	SUCCESS	02	02	833.26	3112.04	3945.3
24	SUCCESS	04	04	943.63	3394.79	4338.42
27	SUCCESS	04	04	917.57	4338.42	5256
28	SUCCESS	04	04	428.55	5256	5684.55
29	SUCCESS	04	04	739.39	5684.55	6423.94
Makespan usi	ng SJF: 632	9.79919328607				

SJF Scheduler results.