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1 Introduction

This study requires the usage of a dataset that includes both DDoS attack traffic and benign
traffic characteristics. All irrelevant data present in the dataset such as NaaN, Negative and null
values are deleted as part of the data pre-processing procedure. It is also important to do
feature selection, encoding the class variables, forming a subset of datasets, developing
the model, and evaluating the model. The setup manual's objective is to help users in
installing this research project code on their system so that they may assess the study or make
changes to match their individual requirements. The prerequisites and environment set
up section povides comprehensive information for constructing a project setting as well as
a list of need for reproducing the study results. The Code Execution section includes the
completed created code as well as the parameters for modifying various aspects of
the project.

2 Requirement

To implement the project, a system that supports all the essential tools and related settings
is required, so that the implemented project runs sucessfully with all of its supported
dependencies. If the system supports all of the essential tools, there will be no issues running
the project resulting in a better outcome.

2.1 System Requirement

The machine learning process consumes very high resources on the host system. As a result,
the hardware configuration on the system in which the project is downloaded must be capable
of doing such duties. The system's minimal requirements are as follows:

For Windows:
e CPU: Intel i3 5" Gen and above
e RAM: 8GB DDR4 and above

e Storage: 20 GB free space in HDD
For i0S:
e Processor: 1.1GHz dual core Intel Core i3
e Memory: 8GB LPDDR4X onboard memory
e Storage: 128GB PCle-based SSD



2.2 Machine Requirement
e MS Excel —for analysing the dataset
e Proper working Internet Connection

e Web Browsers - Safari / Google Chrome

2.3 Software Requirements

e Anaconda Navigator- Jupyter Notebook(“Anaconda | Choose Your Anaconda IDE

Adventure,” 2021)
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Figure 1: Anaconda Navigator- Jupyter Notebook
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3 Dataset

The CICIDS 2017 dataset was used in this research. The dataset is a CSV file having normal
traffic and four different DDoS attack traffic captured from the web traffic. This dataset is open
sourced and is available to download from the CIC Website(“IDS 2017 | Datasets | Research |
Canadian Institute for Cybersecurity | UNB,” 2017).

Figure 3 shows the license of the dataset and how to download the dataset. however, it will
require a strong internet connection as the size of the dataset is 2GB. Figure 2 shows the sample
of dataset in the excel sheet.

License

The CICIDS2017 dataset consists of labeled network flows, including full packet payloads in pcap
format, the corresponding profiles and the labeled flows (GeneratedLabelledFlows.zip) and CSV files
for machine and deep learning purpose (MachineLearningCSV.zip) are publicly available for
researchers. If you are using our dataset, you should cite our related paper which outlining the details

of the dataset and its underlying principles:

« Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani, “Toward Generating a New Intrusion
Detection Dataset and Intrusion Traffic Characterization”, 4th International Conference on

Information Systems Security and Privacy (ICISSP), Portugal, January 2018

Figure 3: Dataset License and Download representation
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Figure 4: Preview of Dataset



4 Required Packages and Imports

The model was implemented on jupyter notebook and python code was used. The Python code
includes packages and imports that are listed below:

e Matplotlib 3.1.2
e Numpy 1.18.0

e scikit-learn 0.22
e sklearn

e pandas

e mpl_toolkits

e Seaborn

e train_test_split

e Sklearn.metrics

e Logisticregression

5 Execution of Code

Below are the few steps to run the code

1. Download the zip file with datasets and python files

2. Unzip the files into a folder

3. Open Jupyter notebook through anaconda navigator GUI

4. Open .ipynb file in Jupyter (DDoS_Detection_thesis)

5. Run the code, either step by step or whole code at the same time.

6 Evaluation of Code

There are multiple sections in which the whole model is implemented. Firstly, the whole data
is sent to feature selection in which correlation coefficient method is used to select the best
possible features and later these features is sent to logistic regression model to train and test
the model and to classify if the traffic is an attack or a normal traffic.

6.1 Feature Selection and Data Processing

For feature selection, Correlation Coefficient method is used to select the best features that are
dependent to each other. In Figure 5, function for plotting of correlation matrix is written but
as the size of the dataset is large the plotting shows the graph but has no clear values in it.
Figure 5 shows the function of correlation matrix in which it is implemented.



In [211]): # Correlation matrix
def plotCorrelationMatrix(df, graphWidth):

#filename = df.dataframeName

df = df.dropna('columns') # drop columns with NaN

df = df[[col for col in df if dfl[coll.nunique() > 1]] # keep columns where there are more than 1 unique va

if df.shape(1] < 2:
print(f'No correlation plots shown: The number of non-NaN or constant columns ({df.shape[1]}) is less
return

corr = df.corr()

plt.figure(num=None, figsize=(graphWidth, graphWidth), dpi=8@, facecolor='w', edgecolor='k')

corrMat = plt.matshow(corr, fignum = 1)

plt.xticks(range(len(corr.columns)), corr.columns, rotation=90)

plt.yticks(range(len(corr.columns)), corr.columns)

plt.gca().xaxis.tick_bottom()

plt.colorbar(corrMat)

plt.title(f'Correlation Matrix for ', fontsize=15)

plt.show()

Figure 5: Function for Correlation matrix

The preceding code is used to generate the correlation function, which is called by giving the
data frame and the graph width in it. Figure 6 shows how the function is called and the graph
width that is mentioned in it.

In [216]: plotCorrelationMatrix(ddos_test_df1l, 19)

Figure 6: Plotting the Correlation function

The Output of the plotting gives the features that are strongly in relation with the
target variable (variable that states whether it is legit traffic or attack traffic). Since the data
was too large, the plotting matrix did not show proper data in it and therefore in Figure 7, A
function has been implemented to retrieve the features which are highly correlated with each
other against the target variable (Label) are called through the function itself which lists down
the features in the output.

In [217]: # with the following function we can select highly correlated features
# it will remove the first feature that is correlated with anything other feature

def correlation
correlation(dataset, threshold):
col_corr = set() # Set of all the names of correlated columns
corr_matrix = dataset.corr()
for i in range(len(corr_matrix.columns)):
for j in range(i):
if abs{corr_matrix.iloc[i, j]) > threshold: # we are interested in absolute coeff value
colname = corr_matrix.columns[i] # getting the name of column
col_corr.add(colname)
return col_corr

In [218]: corr_features = correlation(ddos_dfl, ©.99)
len(set(corr_features))

Out[218]: 21

In [219]: corr_features

Out[219]: {' Average Packet Size',
' Avg Bwd Segment Size',
' Avg Fwd Segment Size',
' Bwd Header Length’,
' ECE Flag Count',
' Fwd Header Length',
' Fwd Header Length.1l',
' Fwd IAT Max',
' Idle Max',
Idle Min',
SYN Flag Count',
Subflow Bwd Bytes',
Subflow Bwd Packets',
' Subflow Fwd Bytes',
Total Backward Packets',
Total Length of Bwd Packets',
act_data_pkt_fwd',
'Fwd IAT Total®,
'Fwd Packets/s',
'Idle Mean',
'Subflow Fwd Packets'}

Figure 7: List of Features



6.2 Using Logistic Regression to classify the Data
Since the dataset was huge (count of traffic in dataset was around 6lakhs), we had to create the
subset of dataset from the original one which was performed in a random manner and imported
the same in the code which is listed in Figure 8.

In [66]: #Lregression.drop('Unnamed: 6°', inplace=True, axis=1) # dropiing unnamed column as it is added as index

lregression = pd.read_csv('Dataset_DDoS_1@kvalues.csv')
lregression.dataframeName = 'Dataset_DDoS_1@kvalues.csv'

nRow, nCol = lregression.shape
print(f'There are {nRow} rows and {nCol} columns')

There are 18000 rows and 2@ columns

In [67]: # checking if the dataset has na values
# Lregression.isna()
lregression.dropna ()

lregression.head()

lregression
Out[67]:
Total

Total Length Fwd IAT  Fwd IAT Bwd F SYN ECE Average Avg Fwd Avg Bwd Fwd Subflow Subflow Subflow

Backward ol Total Header . .. Flag Flag Packet  Segment Segment Header Fwd Fwd Bwd

Packets Packets Length "> Count Count Size Size Size Length Packets Bytes Packets

17 10393 60600000 10100000 344 0.297233 0 0 344342857 92.166667 611.352941 372 18 1659 17

6 11632 12500000 12500000 200 0.457574 0 0 861.285714 53.250000 1938.666667 264 8 426 6

Figure 8: Data fed into Logistic Regression

In Figure 9, StandardScaler functions is used because in StandardScaler the mean is removed,
and each feature/variable is scaled to unit variance. The data is divided
independent variables and y — target variables, which are subsequently utilized by the logistic
regression classifier to train and test the model.

In [71]:

In [461]:

Out[463]:

into X —

# Feature Scaling - which might help to improve the performance of the algorithm

#from sklearn.preprocessing import StandardScaler
scalar = StandardScaler()

X_train = scalar.fit_transform(X_train)
X_test = scalar.transform(X_test)

# Fitting the Logistic Regression into the Training set
#from sklearn.linear _model import LogisticRegression
#model Lg = LogisticRegression()

model_lg = LogisticRegression(solver='lbfgs', max_iter=5068)
model_lg.fit(X_train,Y¥Y_train)

# Predicting the test set results

Y_test_pred = model_lg.predict(X_test)

Y_test_pred

array([1, 6, 8, ..., 8, 1, 8], dtype=int64)

model_lg.score(X_test, Y_test)

©.8283333333333334

Figure 9: Model Training and Testing



The model's output is assessed in terms of an accuracy score, which is computed using the
confusion matrix. Figure 10 clearly depicts the confusion matrix and accuracy obtained while
training the model using logistic regression.

In [464]: # Making the Confusion Matrix
#from sklearn.metrics import accuracy_score,confusion_matrix

confusion_matrix(Y_test, Y_test pred)

Out[464]: array([l1341, 185],

[ 338, 1144]], dtype=int64)

In [465]: accuracy_score (Y_test,Y_test_pred)

Figure 10: Accuracy and Confusion Matrix
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