"‘""
\ National

Collegeof
[reland

Configuration Manual for Combined
Genetic Algorithm and Gradient Descent
Algorithm to Optimize Server Selection In
Mobile Edge Computing

MSc Research Project
Masters in Cloud Computing

Tamaraebi Besife Pibowel
Student ID: x20217871

School of Computing
National College of Ireland

Supervisor: Mr. Sean Heeney

“
National College of Ireland \ National

Collegeof
MSc Project Submission Sheet g
Ireland
School of Computing

Student Name: Tamaraebi Besife Pibowei

Student ID: x20217871

Programme: Master of Science in Cloud Computing Year: 2021

Module: Research Project...................

Lecturer: Mr. Sean Heeney..........

Submission Due Date:

.................. 16" December 2021...................
Project Title: Combined Genetic Algorithm and Gradient Descent Algorithm to

Optimize Server Selection in Mobile Edge Computing

Word Count: 7296 Page Count: 27

| hereby certify that the information contained in this (my submission) is information pertaining to research |
conducted for this project. All information other than my own contribution will be fully referenced and listed in
the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing
Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism)
and may result in disciplinary action.

Signature: ... Tamaraebi Besife Pibowei...............

Date: 09t December 2021..................

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies) o
Attach a Moodle submission receipt of the online project submission, to each project o
(including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for your own o
reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on

computer.

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box
located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual for Combined Genetic
Algorithm and Gradient Descent Algorithm to
Optimize Server Selection in Mobile Edge Computing

Tamaraebi Besife Pibowel
x20217871

1 Introduction

This document contains a brief description of the configuration manual i.e a complete
guide that was used the implementation of the research work “Combined Genetic
Algorithm and Gradient Descent Algorithm to Optimize Server Selection in Mobile Edge
Computing”. For this research project, an experiment was performed to simulation the
implementation of optimization of server selection in Mobile Edge Computing (MEC). The
EUA dataset was applied to the experiments and used to generate instances for the mobile user
and base stations. The goal of the experiment was evaluating the performance of combine
Genetic Algorithm and Gradient Descent Algorithm in optimizing server selection in MEC.
The remainder of the document is divided into four sections: section 2 describes the
hardware specification and the software requirement for implementing the research
project, section 3 describes the software installation guide for software used in
implementing the research work. Section 4 describes the implementation and evaluation
process used carry out this experiment and section 5 will be the conclusion note

2 System Specification

2.1 Hardware Requirement
The hardware configuration of the machine used to in the implementation the research project
is:

e 3.6 GHz Intel core i7 processor

e 16GB of RAM

e 256 GB SSD Storage

2.2 Software Requirement

The software requirements for this project includes Linux Ubuntu Desktop Operation System,
Anaconda Navigator, Web Browser Application. Below is the software environment used in
the implementation of the project.

OS - Ubuntu Desktop 21.04 Linux

Anaconda Navigator 2.1.0

Web browser — Mozilla Firefox
Jupyter Notebook v-6.3.0

2.2.1 Ubuntu Desktop 21.04 Linux

Ubuntu is a distro of Linux operating system (OS). Ubuntu Desktop 21.04 OS is the resource
manager for the hardware and other software running on the implementation machine. All other
software used in the implementation of this research experiment was installed on this OS.

2.2.2 Anaconda Navigator

Anaconda Navigator_is an open-source package manager, environment manager, and
distribution of the Python Programming language. This application was used to run Jupyter
Notebook Interactive Python IDE used in the implementation of research experiment.

2.2.3 Jupyter Notebook

Jupyter Notebook is a web-based development environment that is used execute Python script
that was used implementation and present research experiment and the generated outputs.

2.2.4 Web browse — Mozilla Firefox

Jupyter Notebook uses web browser for rendering the Jupyter Notebook IDE use for our
research experimentation.

3 Software Installation Guide
This section gives a guide on how to install the required software and important python
libraries that were used for the research work.

3.1 Installing Anaconda

Before you begin with this guide, you should have a non-root user with sudo privileges set up
on your Ubuntu PC

Step 1:
Change directory to ~/, then use curl to download the link that you copied from the

Anaconda website. We’ll output this to a file called anaconda.sh for quicker use.

: 5 cd ~/l

9
:-§ curl https://repo.anaconda.com/archive/Anaconda3-2021, 11-Linux-x86_64.sh --output anaconda.sh
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total GSpent Left Speed
100 5S80M 100 SeAM 6 0 897k 0 0:11:02 0:11:82 --:--:-- 926k

Figure 1:. Download Anaconda using curl from terminal

Step 2:
Verify the data integrity of the installer through the SHA-256 checksum

:-§ sha256sum anaconda.sh

fedf9e340039557f7b5e8a8a86affadd299f5e9820144bd70923e9f 7eelBach® anaconda.sh

https://repo.anaconda.com/archive/Anaconda3-2021.11-Linux-x86_64.sh

Figure 2:. Verifying data integrity downloaded file

You should check the output against the hashes available at the Anaconda with Python 3 on
64-bit Linux page for your appropriate Anaconda version. As long as your output matches the
hash displayed in the sha2561 row, you’re good to go.

Step 3:
After verifying data integrity of the installer, run the script using command below

:S bash anaconda.sh

Welcome to Anaconda3 2021.11

In order to continue the installation process, please review the license

Figure 3:. Installing Anaconda from the terminal

To continue with the installation press “Enter” on the keyboard. The next prompt will require
you to accept the license terms. You have to type yes to continue with the installation.

Last updated April 5, 2021

Do you accept the license terms? [yes|no]
[no] >>> [i

Figure 4:. Accepting license term

Step 4:
At this point, you’ll be prompted to choose the location of the installation. You can press

ENTER to accept the default location, or specify a different location to modify it.

Anaconda3 will now be installed into this location:
/home/akrosoft/anaconda3

- Press ENTER to confirm the location
- Press CTRL-C to abort the installation
- Or specify a different location below

[/home/akrosoft/anaconda3] === I

https://docs.anaconda.com/anaconda/install/hashes/
https://docs.anaconda.com/anaconda/install/hashes/

Figure 5:. Selecting Anaconda installation directory

The installation process will continue. Note that it may take some time. Once the installation
is complete, you’ll receive the following output:

done

installation finished.

Do you wish the installer to initialize Anaconda3
by running conda init? [yes|no]

[no] >>> i

Figure 6:. Completed installation prompt

Type yes so that you can initialize Anaconda3. You’ll receive some output that states changes
made in various directories. One of the lines you receive will thank you for installing
Anaconda. The installation has been completed; next step will start anaconda navigator on
Ubuntu.

Step 5:
To start anaconda navigator which is the GUI tool, on the terminal the following command

and press the Enter key on your keyboard

=5

=5 anaconda-navigatorl

Figure 7:. Start Anaconda Navigator from the Terminal

Anaconda Navigator L]

{7) ANACONDA NAVIGATOR Connectedto . =D
1o Applicationson | base oot <] [channels e
@ =vronments o p « = - o

w4 o — 7

b’ e
v Community " A < ! « & Con

| Launch Launc Launch
2 © & & L

Figure 8:. Anaconda home page

4 Implementation and Evaluation

4.1 Starting a new project in Jupyter Notebook
Now that Anaconda is installed and running, the step listed below will guide you on how to
load Jupyter notebook and start a new project

Step 1:
From the Anaconda home screen, click on Launch button on Jupyter Notebook

Anacenda mavigatar v ©

LD ANACONDA . NAVIGATOR connected ro . D
i Applications on base root) =] (channets P
B Ervironments - o - - B
e = =} Cian) e

= = = =

- *
wststs = > b
= == =

Figure 9:. Launch Jupyter Notebook from Anaconda Navigator

Step 2.

In Jupyter, on the loaded root directory click new dropdown button and select Python 3 to
start a new project

O [localhost:8890/tree b=3 ® L& o =B

Jupyter

olo/alagoc

Rbhhb

Figure 10:. Jupyter Notebook root directory page

4.2 Importing the required libraries from python into our IDE workspace

The libraries used during the implementation of various functionality of this research work
are listed and shown in figure 11 below

In [1]: import sys

import os

import pandas as pd

import mumpy as np

import matplotlib.pyplot as plt
import matplotlib.path as mpath

import time
import math
import enum

from collections import namedtuple

from random import choices, randint, randrange, random, uniform
from typing import List, Callable, Tuple, Dict, Union, TypeVar
from functools import partial

Figure 11:. Imported Python libraries

4.3 Import Dataset and Perform pre-processing task on the Dataset

The EUA dataset was downloaded from github.com, stored in the same directory as the
project file and imported into Jupyter Notebook by using panda’s library and viewed the first
5 records. Figure 12 below shows the implementation

https://github.com/swinedge/eua-dataset

In [3]: df users = pd.read csv(os.getcwd() + '/dataset/users.csv')
df base stations — pd.read csv(os.getcwd(} + '/dataset/edge servers.csv'}

In [4]: df_base_stations = df base_stations[['LATITUDE', 'LONGITUDE']]

df_ users.rename (columns = { 'Latitude':"'LATITUDE', 'Longitude':'LONGITUDE'}, inplace = True)
In [5]: # df users = df users.hsad(10)
df users.head()

outls]: LATITUDE LONGITUDE
0 -37.814619 144974443
1 -37.810140 144970454
2 -37.519892 144 957305
3 37814524 144953632

4 -37.814100 144963000
In [&]: # df base stations = df base stations.head(20)
df base_stations.head(}

out[6]: LATITUDE LONGITUDE
BTEIET 144.97476
3781524 144.95256

0
1
2 3781239 144.97120
3 -37.81679 14496918
4

-37.81808 144 95692

Figure 12:. Importing EUA dataset into IDE

4.4 Definition of helper functions and Variables

4.4.1 Variable declaration

Some variables were required to track data custom data-structure and computational values
from the experiment execution for later use. These variables were declared and initialized
with a default.

In [9]: user ids = list()
server ids = list()
base ids = list()

request ids = list()

user_instances = list()
station inatances = list()
server_instances = list()
request inatances = list()
user 1d init = "mobus"
gerv id init = "sery"
reqs id init = "rega"
bs id init = "bs"

earth radius = 6373.0 # Farth Radius in Km
base station radius = 0.4 § 400m

fitness limit = None

913PRaseStation = NestedDict

Figure 13:. Declared and Initialized variables

4.4.2 Helper Function definitions

Some helper functions were created to facilitate reusability and also to create specialization.
Below are some helper functions

4.4.2.1 Compute x and y coordinates from latitude and longitude

This function was created to help compute the x-axis and y-axis value for a 2-dimensional
plane from the latitude and longitude argument supplied to the function

In [10]: def compute xy coords latlng(lat, Ing):
X= earth_radiua * math.cos(lat) * math.cos{lng)
y = earth radtus * math.cos(lat) * nath.sin(lng)
return x, y

Figure 14:. Compute xy axis values function definition

4.4.2.2 Generate ID for custom datatype

These 3 sets of function were created to generate unique ids for all custom define data
structure. Generate_random_string() is used to generate random string with 20 characters in
length, generate_id() is used to generate new instance id while the get_id() is used to ensured
that the generated id is unique the class for which the id is being generated

In [11]: |def generate random string():
charset = "RaBbCcDdEeFfGgHhTiJiRkLIMmNnCoPpQqRrSsTtUuVviwiaYyZz";
length charset (charset)
rand_string = '
for i in range(20):
rand string += charset[randint(0, (length charset - 1))]
return rand string
In [12]: def generate_id(id_initials):
id = id_initials + "-" + str(int(time.time()*1000)) + generate random string()

return id

In [13]: def get_id(initials):
isValid = False
id = ""
while not isValid:
id = generate_id(initials)
if user_id init == initials and (not (id in user_ids)):
user_ids.append (id)
isValid = True
elif serv_id_init == initials and (not (id in server_ ids)}:
server_ ids.append(id)
isvalid = True
elif regs id_init == initials and (not (id in request_ids)):
request_ids.append (id)
isvalid = True
elif bs_id init = initials and (not (id in basze_ids)):
base_ids.append(id)
isValid = True

return id

Figure 15:. Generate id helper functions

4.4.2.3 Retrieve custom datatype by ID

In [14]: def get_request_by id(requests, req id):
target = Nene
for request in regquests:

if request.get_id() = reg_id:

target = request

return target

In [15]: def get_station by id(base_stations, stat_id):
target — None
for base_station in base_stations:

if base_station.get_id() — stat_id:

target = base_station

return target

In [16]: def get user by id(users, user_id):

target = None

for user in users:
if user.get_id(} = user_id:
target — user

return target

In [17]: def get_server_by_id(servers, serv_aid):
target — None

for server in servers:
if server.get_id() — serv_id:
target = server

return target

Figure 16:. Helper function to retrieve custom datatype instance from a list item

Figure 16 above show a group of functions create to help retrieve instances of the defined
custom datatype for the different classes created. These functions accept two arguments and
these includes a list of instances from the target class and id of the target instance.

4.5 Definition Custom/User Defined Data-structure

Four custom data structures were created to model Mobile User, Base Station, Server and
Request datatypes. These implementations are listed below

45.1 MobileUser Class

The MobileUser class defines a set of attributes that help to store and track data about an
instance of this class and defines getters and setters’ methods used to update and retrieve
these data. The class also defined other methods which enable the use perform functions such
as connecting to a base station, check if all user request has been processed.

In

[15] -

clasa MobileUser:

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

def

__init_ {self, latitude, longitude):
self.id = get_idf{user_id_init)
self latitude = latitude
gelf. longitude = lengitude
x_axis = Hone
¥ axis = Hone
connected to = Hone

reguests = [¥]
self. compute_xy coordsi()

get_id{self
return self. id

get_latitude {self):
return self. latitude

get_longitude {3elf):
return self.longitude

set_x_axis{self, x_value):
self x axis = x_wvalue
get_x axis(sell):

return self x axis

set_y axis(self, y wvalue):
¥ axis = y wvalue

get_y axis({self):
return self. y axis

add_request{self, reguest):
self reguests.append (request)

remove reguest{self, reguest):
self reguests.remove {reguest)

empty reqguesta (self
self requests =

get_all reguesats({self):
return self.regquests

get_request({self, reguests, reqg_id):

return get request by id{requests, reqg id)

set_connected to{self, station id):
self_ connected to = station id
get_connected toi{self):

return self. connected to

get_kase_staticni{self, base_stations):
return get staticon by idi{base stations,

10

self_get_connected tol

def

def

def

def

def

def

compute xy coords({self):

X, ¥y = compute xy coords latlng(self.get latitude(), self.get longitude())
self.set X axis(x)

self.set y axisly)

get_requests_status(self, requests):
if len{self.get all requests) <= 0:
return Status. EMPTY
elae:
if self processed all request{requests):
return Status.COMPLETED
elae:
return Status.DPENDING

processed all requestiself, requests):
all processed = True

for req in self.get all requests():
request = seli.get_request(requests, req)

if not request.get_status(] = Status.COMFLETED:
all processed = False

return all processed

show_base_station distance from user(self, base stations):
bagse servers = 1i
for index in range{len(base stations)):

print{"station (" + base stationa[index].get id{) + ") " + striindex) + " dis

connect to base station(self, base stations):

stationa =_;15:7} -

for index in range{len(base stations)):
distance = self.distance from selected base station(base stations[index].get latitude(), base staticn
if distance <= baae_atatIena[Index].geE_:adIua:]: - - -

bs_info = ()
ba_infol" e"] = base stations[index]
bs_infol" e"] = distance

bs_infol"
staticns.append (bs_info)

return stations

distance from selected base station(self, station lat, station lng):
user_lat = math.radians(self.get_latitude())

user_lng = math.radians(self.get longitude())

statien lat = math.radians({station lat)

statien lng = math.radians({station lng)

delta lat = station lat - user_lat

delta lng = station lng - user_lng

a = math.sin{delta_lat / 2)**Z + math.cos{user_lat) * math.cos(station_lat) * math.sin({delts lng / 2)**Z

2 * math.atanl (math.sqrt(a), math.sgrti{l - a))

n
n

return earth radius * c

Figure 17:. Definition of Mobile User Class

45.2 Server Class

The Server class defines a set of attributes that help to store and track data about an instance
of this class and defines getters and setters’ methods used to update and retrieve these data.
The class defined other methods to start and process all request sent to the server instance and
send out signals and response data to waiting processes and objects. Figure 18 below show
the class implementation

11

In [20]: class Server:
def _init ({(gelf):

gelf.id = get_id{serv_id init)
gelf base station = None
gelf_cpu layer = Hone
gelf cpu status = Hone
self workload capacity = Hone
gelf workload = 0
gelf requeat gqueue = liat{)
self.execute time = Hone
self initialize cpusa()

def get_id{self):
return self. id

def 3et base atation{self, staticon):
self.base station = station

def get base station{self):
return self base station

def get base station instance(self, base stationa):
return get_station by id(base stations, self.get base station{))

def add request to queue(self, request):
if self.is availsble(request):
seli.request gueue.append(request.get_id())
gelf aet workload(request.get load weight())
return True
alae:
return Falzse

def compute requeat weight loadiself, load weight):
return int{{load weight/self.get workload capacity()) * 100

def remove requeat Irom queus(seli, request):
negative workload = -1 * request.get lpad weight()
gelf set workload{negative workload)
geli requeat gueue.remove (request.get_id(])

def empty request queue({self):
gelf requeat gqueue = liat{)

def get_all requests from queue{self):
refurn self.request queue

def get _request from queue(self, requests, reg id):
return get_request by id(requesta, req_id)

def et _cpu layer(self):

aelf cpu layer = randint{7, 18)

def get_cpu layer(self):
return self.cpu layer

12

def initialize cpua(self):
gelf_set_cpu_ layer()
self.set workload capacity(seli.compute max workload())
gelf set workload{self. compute_initial worklocadi{))
pass

def set execute time{self, chorus eff):
gelf execute_time = self.generate execution_time{chorus_eff)

def get execute time(self):
used, free, use percentage, use ratio = seli.compute cpu usage()
return self.execute time

def set workload{self, workload):
gelf workload += workload

def get workload{self):
return self workload

def compute max workload(self):

return randint (400, 500)

def compute initial workload{self):
qtr_max wl = int{self. get_workload capacity() J 10)
return randint(l, gtr max wl)

def set workload capacity(self, max workload):
gself workload capacity = max workload

def get workload capacity(self):
return self.workload capacity

def compute cpu usage(self):
workload percentage = int(({self.get workload() / self.get workload capacity())*100)

used cpu layers = int(({workload percentage/100) * self_get cpu layer())
free cpu layers = self.get cpu layer{) - used cpu layers

usage_ratio = str{used cpu layers) + "/" + striself.get cpu layer())
usage percetage = int(({used cpu layers / self.get cpu layer()) * 100)

return used_cpu layera, free cpu layers, usage percetage, usage ratio

def get cpu status({self):
uaea, f;ee, use percentage, use_ratic = self. compute cpu usage()
pasa

def is_available{self, request):
avail = Falae
estimated workload = request.get locad weight() + self.get worklead()
if estimated workload < self.get workload capacityl():

avail = True

return avail

Figure 18:. Definition of Server Class

13

45.3 BaseStation Class

The BaseStation class defines a set of attributes that help to store and track data about an
instance of this class. Also, this class defines getters and setters’ methods used to update and
retrieve these attributes values. The class defined other methods which enables the class
instance initiate the process of executing all request mobile user connected to the station,
check if all requests sent via the station has been completed. Figure 19 below show the class
implementation

In [21]: claas BaseStation:

def init ({self, latitude, longitude):
gelf.id = get_id({bs_id init)
self_latitude = latitude
self . longitude = longitude
self x axis = None
gelf.y axia = None
self_radius = None
gelf trangmigaion rate = Hone
gself downtime latency = None
self roundtrip latency = Hone,

gself.request gqueue = list{]
geli.connected user = list{)
gself_servers = list{)

gelf. compute xy coords()
self_set tranamission rate()
gelf.get_downtime latency(]
seli.get roundtrip latencyl)

def get id{self):
return self._id

def get_latitude(zelf):
return self_latitude

def get_longitude (self):
return self.longitude

def set_x axis(self, x value):
gelf.x axia = x value

def get x axis(self):
return self x axis

def set y axis(gelf, y value):
gelf.y axia = y value

def get_y axis({gelf):
return seli.y axis

def set_radius(self):
self radius = uniform({0.3, 0.4)

def get radius(sgeli):
return self_radius

def compute xy coords{self):
¥, ¥ = compute_xy coords_latlng{self._get latitude({], self.get longitude(])
gelf.get x awisx]
gelf. set y axialy)
gelf. get radiua()

def set transmission rate(self):

gelf.transmigaion rate = randint(3, 10)

14

def get tranamission rate(self):
return self_ tranamission rate

def set downtime latemcy{self):
gelf_downtime latency = 0

def get_downtime latency(self):
return self downtime latency

def set_roundtrip latency{self):
gelf roundtrip latency = 0

def get roundtrip latency{self):
return self roundtrip latency

def add request to queue(self, regquest):
self.request queue.append{request)

def remove requeat from gqueue({self, request):
self_request gqueue.remove {reguest)

def empty request_gueue (self):
self_requeat queue = list()

def get_all requesta_from gqueue (self):
return self_ request gueue

def get_request_from gueue({self, requests, req id):
return get _request by id{requesata, reg_id)

def add server to station{self, server):
self.servers.append|server)

def remove server from station({self, server):
self.servers.remove (server)

def empty_server from staticn{self):
gelf.gervers = list()

def add user{self, user):

-r

self_connected user.append{user)

def remove user(self, user):
gelf connected user.remove (user)

def get_connected users(self):
return seli.connected user

def reset all(self):

self.request queue = list()
self. connected user = liat{)
gelf. gervers = list|)

def get_all servers from statiom{self):
return self.servers

def get server from staticn{self, servers, aserv_id):
return get_server by idi{servers, serv_id)

Figure 19:. Definition of BaseStation Class

15

4.5.4 Request Class

The Request class defines a set of attributes that help to store and track data about an instance
of this class and also defines getters and setters’ methods used to update and retrieve these data.
The class also defined another method which is invoked when the request instance has been
executed to track to facilitate the update process for the target instance of this class.

In [22]: class Bequest:

def _ inig_ {=elf):
=elf. id = get_idireqs id_init)

=elf. responze_data_size = Hone
=elf executicn time = Hore
=2lf load_weight = Hore

=elf. =tatus = Hore

=elf.cpu u=age = Hore
data_size = ram 5

5, 200
=elf. =et_reques a_sigei{data =sise)
ta_ sigei{data sice]
il

{@zatu= . PFEHDIRG]

def get_id{=elf]:
return =elf.id

def =et belongs_toi=zelf, user id):
=zlf belongs to = user_id

def get belongs_toi{=elf):
return =elf belongs to

def set request data_sise(self, request data =ise]:
=elf request data sige = request data sige

def get request_data_sise(self]:
return =elf request data sige

def set respomse data size({=zelf, respon=e data =ise]:
=2l f rasponse data_sige = responee_data =ige

def get respomse_data_sise{=elf]:
return =elf response data =ice

daf =at sxecution time(=elf, execution time):
=2l f swecution_time = ewecution time

daf get execution time{=elf):
return =elf execubion time

daf =at lpad weight({=elf]:
=elf. load weight = randint{l, 50)

def get load weight({=elf]:
return =elf.load weight

def mat status{=self, status):
=elf. =tatu=s = status

def get status(=elf]:
retun self.status

def =et_cpu u=agei=zelf, cpu usage):
=elf.cpu usage = cpu_usage

def get_cpu usage(=elf):
return =elf.cpu usage

def update request ewecution{=elf, tran=mi=z=ion rate, =erver response time, roundtrip latency, downtime latency):
time taken to_uplead data = =elf.g quest data =iz / tranmmiss=icn rate
time taken to_download server response = self get response data =ige(] [tranemission rate
ime taken to sxecute request = time taken to uplead data + server response time + time taken to_downleoad server responss

=elf =et execution_time(time taken So execute request)
=2lf =at_ status|3tatus.0OMELETED)

Figure 20:. Definition of Request Class

16

4.6 Algorithm Implementation

4.6.1 Gradient Descent Algorithm Implementation

The Gradient descent algorithm was implemented to evaluate the optimal BaseStation instance
a mobile user can connect to. The algorithm accepts two arguments namely the genome
(chromosome) which is the output from Genetic algorithm and a list of base stations the user
is within its radius. Setting up the given argument as a linear function, using the line equation,
we attempt to find the best fit line and the use the equation to estimate the optimal base station
the user can connect to.

In [24]:|def 5ISP GD{genocme, station):

X = np.array|(genome)
¥y = np.array({set y value for best fit genome(genome, station))

target = Hone

g curr = i curr = 1

iterations = 1000

n = len(x)

learning rate = 0.03

cost = 0

prev_cost = 100000000000000

pred i = Hone
min y pred = Hone

for i in range({iterationa):
¥ predicted = 3 curr * x + i curr
prev_coat = cost
cost = (1/n) * sum({[val**2 for val in (y - y _predicted)])

3 derv = -(Z/n) * sumix * (y-y predicted))
i derv = - (2/n) * sum({y-y_predicted))

3 curr = 3 _curr - learning rate * 3 derv
i curr = i curr - learning rate * i derv

if math.isclose (prev cost, cost):
break

for i, base_station in enumerate(station):
if genome[i] = 1:
vy pred = 3 curr * x[i] + i _curr
if min y pred = None :
min y pred = y pred
pred i =1
elaa:
if {y pred < min y pred) and (notimin y pred = 0)):
min y pred = y pred
pred 1 =i

if not pred i = Hone:
return station(pred i]["instance"]

return Hone

Figure 21:. Gradient Descent Algorithm implementation code

17

4.6.2 Genetic Algorithm Implementation

The Genetic algorithm was implemented to evaluate the neighbourhood for the optimal
solution by finding the genome (chromosome) with the fittest gene information. This the
algorithm attempt to archive by implementing the following functionalities as show in Figure
22 through Figure 24 below:

In [25]1: | Gencme = Listl[int]

Populaticon = List [Cencme]
FitnessFunc = Callablel [Gencmel]l, List[Request]l]
PopulateFunce = Callable[[], Populaticon]
SelecticnFunc = Callable[[Populaticon, FitnessFunecl, Tuple [Cencme, GCencme]]
CrossoverFunc = Calleble[[Eencme, Sencme], Tuple[Gencme, Gencmel]
MutationFunc = Callabkble[[Cencme], Gencme]
SISPBaseStation = List[HestedDict]
In [2€]:|def generate gencme {length: int) -> Cencme:

return choices([0,1]1, k=length)

In [27]:|def generate_populaticni{size: int, gencme_length: int) —> Population:
raeturn [generate_gencme {gencme_ length) for _ in range (size)]
In [23]: |def fitness(gencme: Gencme, base_staticns: [SISPBaseStaticnl], reguests: [Regquestl]l) —-3> int:
if lend{genome) '= len{base_statiocns) :
raise ValueError{"gencme and things must be of the same length™)
total_distance = get_total_ distance (base_stations, genome)

max_wal = O

for i, base_station in enumerate {base_statiocns) s

val = O
if genome[i] — 1:
val = 1/ (base_ station["distance”]/total_distance)
if wal > max_wal:

max_wal = wal

return max_wal

In [23 def selecticon pair(population: Population, fitness_func: FitnessFunc) —-> Populaticn:
pop = choices|
population—=population,
weights=[fitness_ funci{gencome) for genoms in populaticonl,
k=2

return pop

Figure 22:. Implementation of functions to generate a Genome, generate Population,
Fitness of a genome and a select function for the Genetic Algorithm implementation

In [30]:|def single point crossover{a: Genoms, b: Genome) -> Tuple[Genome, Genome]:
if len{a) '= lenib):
raige ValueError ("Genomes & znd b must be of same length™)
length = len(a)

if length < Z:
return a, b

p = randint{l, length-1}

return all:pl + blp:], bl0:pl + alp:1

In [31]: def mutation{genome: Genome, num: int=1, probability: float=0.5) -> Genome:
for _ in range {num) :
index = randrange {len{genome})

genome [index] = genome[index] if random() > probability elae zbs{genome[index] -1)

return gencme
In [32]: def set_y_wvalue_ Ifeor best_Ifit_gencme{gencme: Gencme, base_staticns: [SISPBaseStaticn]l) -> List[flcat]l:
result = []
for i, base station in enumerate(base stations):
if gencme[i] =— 1:
result += [base station["distance"]]
elaa:

result += [0]

return result

Figure 23:. Implementation of crossover function, and mutation function

18

Figure 24 below shows the copulation of the Genetic Algorithm by pulling together all the
component functionality defined to facilitate the search the best and optimal viable genome
which is feed into the Gradient Descent algorithm.

[33]:

def

SISP{

mobile user,

stations,

populate fune: PopulateFunc,

fitness func: FitnessFunc,

fitneaaZlinit: int,

selection func: SelectionFunc = selection pair,
crosaover_func: CrosscverFunc = single point_crossover,
mutation fune: MutationFunc = mutation,

generation limit: int = 100

I —* Tuple[Population, int]:

population = populate funci)

for i in range(generation limit):
population = sorted | B
population,
key = lambda gencme: fitness funcigencme),
reverse = True

if fitness_funcipopulaticn[0]) >= fitness_limit:
break

next_generation = population[0:2]

for j in rangei{int{leni{population)/2) - 1):
parents = selection func{population, fitneasa func)
offapring_a, cffspring b = crossover_func(parenta[0], parentsall]l)
offspring a = mutation func{ecifspring a)
offapring b = mutaticn_func{ocffspring b)
next_generation += [effspring a, ocffspring b]

population = next_generation
population = socrted|
population,
key = lambda gencme: fitness_ func(gencme),
reverse = True
b

target station = SISP GD(population[0], mobile user.comnect_to_base station({staticns))

if target_station =— HNone:

print{"Failed to connect to BS™)

station = get_station by id(stations, target_station.get_id())

if not station — None:
station.add user({mocbile user.get id{))

Figure 24:. Copulation of the component element that makes up the Genetic Algorithms

4.7 Run Experiment and Result

This section will show the code implementation used to run the experiment and to display the
outputs as the experiment will product output when such output is solicited.

4.7.1 Run Experiment

The code snippet show below is the implementation of function that actually pull together all
the code written so far and also display output to the console when an experiment has been

19

completed. A total of 8 experiment was perform iteratively using a loop. the function also
attempts to product a summary for each experiment performed.

: def execute_experiment|

experiment summary data =

iterator_counter = 0
class_count = 2

for index, row inm df users. iterrows|
mobus_inst = MobileUser{df users.locl[index, "LATITUDE"], df_users.loclindex, “"LONGITUDE™]1)
uger_instances.append (mobus_inst)

eXp users_sample_ sizes = get_sample_ sizes_bounds{len{user_ instances), class_count)

for iter_count in range({len{exp users_gample sizes)):

server_instances =

request_instances =

station instances =
reset_users_regqguests (user_ instances)

if exp_users_sample_sizes[iter_ count] >= len{user_instances):
EX.P_\.I.EEZE = use:_inatances
else:

exp users = select users randomly({user instaneces, exp users sample sizes[iter count])

for index,row in df base_stations.iterrows

station_inst = BaseStation{dfi_base_ stations.leoc[index, "
station_instances.append{station_inst)

WITITUDE"], df_base_ stations.locl[index,

for staticn in station instances:
server_ecount = randint {3,

for count in range({server count):
server = Server|
server.set_base staticn{station.get_id{})
station.add server to_station{server.get_id())
server_instances.append{server)

for user in exp users:
:equest_ccu;t = randint {3, &)
for count in range{request_count):
reguest = Regquest()
request.set_belongs to{user_get_i
user add reguest{reguest._get_id
reguest instances.asppend|{reguest)

for user in exp users:

5ISP(
user,
station instances,
populate func = partial(

"LONE:

= partial(
base stations=user.connect to_base station({station instances)

.
fitness_ limit =
generation limi

for station in station instances:

if leni{station._get_connected users()) > 0:
station.process all requests ervers{user instances, server instances, request_instances,
base_station count, server count = get_used base_stations_used{station_instances)
average cpu_usage, average_response time = compute averages for all regquest{reguest_instances)

experiment_ summary data.asppend({[len{exp users), base_ station count, sServer_count,

o

{("Experiment

Experiment " +

r{iterator_counter + 1))

(i)

{"Total User Count 3 W

= + en{exp users))
P {"Total Base Station Count e r{base station count))
= {"Total Server Count = r{gerver count
{("Total Regquest Count D"+ r{len{request_instances)
("Processed Reguest Count e r{get_completed reguest count {request ingtances))
erage HResponse Time S {average response time, 2)
erage CEU Usage "+ %

{average cpu usage, Z))+"

W T

iterator_ counter +=

return experiment summary data

20

, requests=user._get_all

len

{request_instances),

Figure 25:. Implementation of execute experiment function

Figure 26 below shows the invocation of execute experiment function. The figure also shows
a summary output for an experiment.

In [45]: experiment cutput = execute_experiment (]
Experiment Summary for Experiment 1
Total Usexr Count : 102
Total Base Station Count 18
Total Server Count]
Total Request Count : 457
Processed Request Count : 457
Average Response Time o 4.84
Everage CEFU Usage : 70.78 %
Figure 26:. Code snippet show the invocation of execute experiment functionality
4.7.2 Presentation of experiment results
The section will present the visual to summary the experiment output. The code snippets
shown below does exactly just that.
Figure 27 below show the code snippet use to add cell data to the summary table used to
display the summary or outcome for the entire experiment after execution.
In [42]: |def append_tatble_content {content, position):
cell data = " "
pad diff in string len = 12 - len{content)
cell data += content
for i in range(pad diff in string len):
cell data += " "
if poaition = 1:
cell data += " "
elif pogition =— 7
cell data += "|"
cell data += "wn"
else:
cell data += " "
return cell_data
Figure 27:. Implementation of a function used to append a cell to summary table for our

experiment

21

Figure 28 below show the code snippet use to generate the summary table used to for the
entire 8 experiment.

In [73]:

def display experiment summary in_ tabular view{output):

table designed = ""
cell size = 1l
table width
new_line = "\n

users count = servers_count = stations_count = reguests_coumnt = cpu_count = response_time count = 0

table width bar = ""
for bar in range (table_width):
table width bar += "="

table width bar += new_line

table designed += table width bar

table designed += azppend tatble_ content("Itex", 1) + append tatble_ content|
table designed += table width bar

2) + zppend tatble content

for index in range{len{output)):
users_count += cutput[index] [0]
servers count += putput[index] [2]
ataticn;_ccunr. += putput[indsax] [1]
requests_count += cutput[index] [3]
cpu_count += output[index] [4]
:eaEcnse_tine_ccunt += putput[indsx] [5]
table designed += append tatble_content({stri{index+l), 1) + append tatble_content (str{output[index] [0]1), 2Z)
table designed += table_width bar

table_designed += zppend_tatble_content ("IO
table designed += table_width bar
table designed += append tatble content{"kverage"”, 1) + append tatble content("", Z) + append_ tatble content("
table designed += table_width bar

1) + append tatble_content{str{users_count), 2) + append tath]

Figure 28:. Generate summary table for the entire experiment function

Figure 29 below shows the invocation of the function display experiment summary table. The
figure also shows a summary output for an experiment.

display experiment summary in tabular view|(experiment cutput)

| Itexr | Tzers | EdegCells | Servers | Reguests | RvResTimes | AvwCEUUsage |
1 | 1oz | 1% | &5 | 457 | 4.84 | 70.78 % |
2	204	21	&2	232	5.41	73.33 %
3	306	30 1 117	130		7Te.5¢ %	
4	408	34	122	1838	7.27	80.54 %
(-1	510	23 I 111	2z82	5.48	82.4% %	
&	&1z	28	10&	277	10.52	85.85% %
7	714	25	114	3244	13.1%5	87.08 %
8	8le	24	128	38283	15.51	83.8 %
TOTAL	3g72	230	235	18535	72.7	&4&_€7
Rverage					5.0%	80.83 %

Figure 29:. Code snippet showing the invocation display summary table and output of the

invoked function

22

Figure 30 below show a code snippet used generate the data that will be used to visualize the
out of the experiment on line graph.

In 0 avrestime x = list()
avrestime y = list()
server_x = lisat{)
avecpuusage_y = list{)

count = len{experiment ocutput]

for index in range {count):
avrestime_x_append(experiment_output [index] [0]1)
avreatime_y.append{round(experiment cutput [index] [5], 2))

server_ x.append (experiment cutput[index] [23])
avcpuusage_y.append (round (experiment cutput[index] [4], 2))

Figure 30:. Code snippet used to generate data for plotting the graphs

Figure 31 and Figure 32 show the output of the experiment performed visually on a graph.

In [71]: circle = mpath.Path.unit circle ()
plt.rcParams ["figure.figsize™] = [12, 7]
plt.rcParams ["figure.autolayout”™] = Truoe
plt.plot (avrestime x, avrestime y, '--r', marker=circle, markersize=5)

plt.title ("Performance comparisons of average response time with respect to mobile users connected”)
plt.xlabel ("Number of Users")
plt.ylabel ("Average Response

Time™)

pltc.show ()
Performance comparisons of average response time with respect to mobile users connected
16
2
L
14 -
-
l/’
.
,
#

2 -
I
E P
IS
@ -
2 ,.’
2 -
%10 .-
& -
z o
E -
2 -
s -

o
8 -
l”
s
=
"’
6 -
e .
- -
100 200 300 400 500 600 00 BOO

Number of Users

Figure 31:. Code snippet used to plot a line graph showing the relationship between number
of users and the average response time

23

]: circle = mpath.Path.unit_circle()

plt.rcParams["figure.figsize™] = [12, 7]
plt.rcParams ["figure.autolayout™] = Troe

plt.plot(server_ x, avcpuusage ¥, "—--r', marker=circle, markersize=3)

ple.title ("5 I d analysis using number of reguests to cpu usage™)
plt.
pltc.

plt.legend([""])

plt.show ()

Server overhead analysis using number of requests to cpu usage

g1.5

2.5 e

Average CPU Usage
a8
=

17.5

5.0

500 1000 1500 2000 2500 EDhD
Number of Request

3500

Figure 32:. Code snippet used to plot a line graph showing the relationship between number

of request and the average CPU usage

5 Conclusion

This configuration manual has been designed for anyone to serve as a guide in working on this
same project, implementing the same data structure as the code are tested and they work perfectly
fine. In this way, the code demonstrated above was used to achieve the main aim of the research

work.

6 References

DigitalOcean. 2021. How To Install the Anaconda Python Distribution on Ubuntu 20.04 |
DigitalOcean. [online] Available at: https://www.digitalocean.com/community/tutorials/how-
to-install-the-anaconda-python-distribution-on-ubuntu-20-04 [Accessed 15 December 2021].

En.wikipedia.org. 2021. Anaconda (Python distribution) - Wikipedia. [online] Available at:
https://en.wikipedia.org/wiki/Anaconda_(Python_distribution) [Accessed 15 December

2021].

GitHub. 2021. GitHub - swinedge/eua-dataset: Edge server, user dataset for Edge
Computing research. [online] Available at: https://github.com/swinedge/eua-dataset
[Accessed 15 December 2021].

24

Jupyter.org. 2021. Project Jupyter. [online] Available at: https://jupyter.org [Accessed 15
December 2021].

25

	1 Introduction
	2 System Specification
	2.1 Hardware Requirement
	2.2 Software Requirement
	2.2.1 Ubuntu Desktop 21.04 Linux
	2.2.2 Anaconda Navigator
	2.2.3 Jupyter Notebook
	2.2.4 Web browse – Mozilla Firefox

	3 Software Installation Guide
	3.1 Installing Anaconda

	4 Implementation and Evaluation
	4.1 Starting a new project in Jupyter Notebook
	4.2 Importing the required libraries from python into our IDE workspace
	4.3 Import Dataset and Perform pre-processing task on the Dataset
	4.4 Definition of helper functions and Variables
	4.4.1 Variable declaration
	4.4.2 Helper Function definitions
	4.4.2.1 Compute x and y coordinates from latitude and longitude
	4.4.2.2 Generate ID for custom datatype
	4.4.2.3 Retrieve custom datatype by ID

	4.5 Definition Custom/User Defined Data-structure
	4.5.1 MobileUser Class
	4.5.2 Server Class
	4.5.3 BaseStation Class
	4.5.4 Request Class

	4.6 Algorithm Implementation
	4.6.1 Gradient Descent Algorithm Implementation
	4.6.2 Genetic Algorithm Implementation

	4.7 Run Experiment and Result
	4.7.1 Run Experiment
	4.7.2 Presentation of experiment results

	5 Conclusion
	6 References

