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Abstract 
MEC has become the new frontier in minimizing latency in data transmission for mobile 
devices that are limited in resources. Firstly, the constraints of an edge server in terms of 
processing capacity and distance that can be covered result in only a limited number of 
users being able to have their requests completed at the same time. Secondly, because of 
the varied geographical locations of user mobility pathways in MEC, edge user mobility 
is significantly connected to data transmission rate and influences edge server latency. 
Furthermore, when multiple users in an edge server covered region require the same 
resources at the same time, they interfere with each other and may reduce the experience 
of service if an effective strategy for requests distribution to different capable edge servers 
is not in place. Therefore, to reduce latency and computational overhead, we consider the 
above constraints and propose a novel approach that combines genetic algorithm (GA) and 
gradient descent (GD) to find an approximately solution to the edge server selection 
optimization problem. We validate our model by conducting experiment on the EUA 
dataset. The outcome of the experiments conducted demonstrates that, our model 
significantly outperforms the baseline approaches. 

 
 

1 Introduction 
 
Swift advancements in mobile developments and its applications in our daily business 
interaction activities such as natural language processing, facial recognition, internet of things 
and interactive online entertainment and have garnered interests from both academia and 
industry experts. This paradigm shift in cloud computing and mobile networks has turned 
computing from being managed on-site to virtually hosted hardware and software services 
(Zhang et al., 2012). Cloud computing is a consolidation of hardware and software 
components; thus, a significant amount of computing functionality is offloaded to distributed 
cloud frameworks such as fog and mobile edge computing (MEC) to the accessibility of end 
users which translates to the reduction of latency and computational limitations mobile devices 
and centralized cloud architecture (Yuan, Guo and Wang, 2021). While the capability of mobile 
devices could be considerably scaled up by such offloading events, communication latency 
becomes unavoidable since the remote cloud infrastructure are usually far away from the 
mobile users. For applications that are time-sensitive, long transmission duration can 
noticeably reduce the user’s quality of experience (Tan et al., 2017).  
MEC, as an extension of centralized computing aims to bring computing resources closer to 
mobile users by adding edge servers to the edge of the network, it still faces the fundamental 
issue of limited edge server resources. While a user might want to connect to the edge servers 
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to fulfil certain service requests made, the edge servers might not have enough computing 
resources to satisfy the requests made (Zhang et al., 2021). This problem is further reinforced 
with users’ mobility and multiple users request, therefore, selecting the optimal edge server 
from the solution space. Each edge server is usually delegated to provide coverage to a 
dedicated geo-location and users can connect to them when they are withing the range of 
coverage. Given a user’s mobility, when a user migrates from the coverage of the original edge 
server with uncompleted tasks, the user’s connection to another edge server needs to be 
established where the computation task will be offloaded to guarantee service continuity 
(Xenakis et al., 2013). This demonstrates that, if a user continues to utilize the initial edge 
server for data transmission through other nodes, more computational resources will inevitably 
be consumed, leading to increase in latency as a result of other nodes’ resources being 
occupied. Therefore, the best policy for selecting the optimal edge server for service migration 
should be implemented, the policy should include a decision for if a service should be migrated 
and where it should be migrated to. Between the user and the MEC, there is a bater between 
the cost of service migration and cost of transmission (communication latency and network 
overhead respectively). Determining the best selection is difficult because of the 
unpredictability in user mobility as well as the likely non-linearity of migration and 
transmission costs (Wang et al., 2015).  
To mitigate these issues, the edge server a user would migrate to should be selected in advance. 
As mobile users move, several edge servers must be selected in order for the user to receive 
resources. To improve the quality of experience, the servers with the widest coverage and more 
resources should be selected (Yin et al., 2016).  The figure  

 

 

Figure 1: System Model Architecture. 
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In this paper, we look at how to choose the optimal edge servers for mobile users in order to 
reduce the user's overhead. The overhead of mobile users will be influenced by elements 
frequency of service migration, scarce edge server resources, energy constraint of mobile 
devices (Wang et al., 2018; Shah-Mansouri and Wong, 2018; Tianze et al., 2017). In this 
research, we present the combined genetic algorithm and simulated annealing algorithm for 
edge Server Selection approach to overcome the aforementioned challenges., the proposed 
approach can, in polynomial time, pick edge servers for the mobile user. The following are the 
key contributions: 
1. We simulate the job completion probability of edge servers and examine the user's 
computation cost in non-migration scenario of edge server selection. 
2. In order to reduce user overhead in terms of time delay in mobile environments, we 
present the Combined genetic gradient descent (CGGD) algorithm, which picks the best edge 
server in a large solution space for users with known paths. 
3. To evaluate the performance of our CGGD framework, we perform comprehensive 
simulations based on a real-world data. The outcome of the experiments demonstrates that 
CGGD can effectively minimize the user's overhead. 
 
The rest of the paper is organized as follows: in section II we discuss the most recent research 
done and their approach. In section III, we give details of our approach, the experiment design, 
details of the algorithm and implementation. Then, in section IV, we discuss the experiment 
setup and outcome obtained. We then discuss the result obtained and give a summation of our 
research. 
 
In this section you introduce the topic of the paper, motivate why it needs to be studied 
(appropriate citations are best for this), presents the research question(s) and research 
objectives, and/or hypothesis or hypotheses. Briefly summarise the contribution to the scientific 
literature your work entails. Finish this section by outlining the structure of the report. 
 
 
2 Related Work 
 
A lot of solutions to edge server selection problems have been proffered by many scholars 
(Zhang et al., 2019) introduced a Multi-user Edge server Selection method based on Particle 
swarm optimization (MESP). The model selects edge servers ahead of time for mobile users 
within polynomial time. Although the approach can effectively reduce the total waiting period, 
however, the approach only performs well when the path of the mobile users is known. (Zou 
et al., 2021) proposed a genetic algorithm-based model, GASISMEC. The model is built 
around three factors – complexity of crossover, response time-aware mutation operation and 
fitness calculation. The model performs service instance selection in polynomial time by firstly, 
generating a random group of allocation strategies and evaluating the response time during 
which the response time-aware mutation operation is initiated. In their study, (X. Chen et al., 
2018) proposed a deep Q-network-based offloading policy modelled as a Markov decision 
process to reduce the long-term cost an offloading decision between a mobile user and multiple 
base stations. The model proposes to learn the best policy without having previous knowledge 
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of the dynamic data such as the quality of the channel. However, the model does not account 
for multiple users and the numerical calculation shows 56% increase in performance. (Zhao et 
al., 2019) proposed A cross-edge computation offloading (CCO) framework based on 
Lyapunov optimization algorithm (Chen, Wang and Li, 2019) without prior knowledge to 
determine the edge server selection for partitionable applications. The framework proposed can 
achieve asymptotical optimality with battery capacity of mobile devices.  (Alchalabi et al., 
2021) proposed a Quadruple Q-Learning model that minimizes the variance of latency by using 
geo-distance between the users and the edge server. The model uses Reinforcement Learning 
(RL) method to reduce the action space which emphasizes fairness in edge server selection. 
The framework adopted a modified version of Action Elimination Network (AEN) for linear 
vector rather than neural network for a tabular case.  
A MEC server selection policy which is reliant on the MEC server’s resources and link 
parameters was introduced by (Dilanka et al., 2021). The Mobile Edge Orchestrator determines 
which server is selected based on the MEC server infrastructure, linked bandwidth, and 
distance between end-user and MEC server. The requests are handled based on a queue 
structure, however, priority on more important requests is not considered in the execution 
order. 
An online secretary framework is proposed by (Lee, Saad and Bennis, 2017) to minimize the 
maximum computational latency for a fog network. In this framework, the initial fog node 
cooperates with other neighbouring fog nodes and the cloud data centre to build a fog network 
and distribute tasks. In the midst of uncertainty, any fog node can dynamically create a fog-
network by choosing the most appropriate set of fog node neighbours where tasks will be 
distributed among the fog nodes and the cloud without prior knowledge of future incoming fog 
nodes or their performance capacity. Similarly, (Shah-Mansouri and Wong, 2018) proposed a 
model to efficiently allocate the sparse processing power of fog nodes in IoT environment 
where each user can strive to improve its own quality of experience in a computation offloading 
game. Each user task can be executed locally or offloaded to computing servers which 
comprises a set of fog nodes and cloud servers. Each user is greedy and therefore, the fog nodes 
cannot emphasize applications of an IoT user over other IoT users. In contrast, they propose a 
Nash Equilibrium (NE) algorithm to obtain the equilibrium. To reduce the time complexity of 
achieving the Nash Equilibrium, they proposed the adoption of near–optimal resource 
allocation algorithm. (Chen, Liang and Dong, 2017) proposed a three-step algorithm to 
collectively optimize the offloading decisions of all users’ tasks while allocating computation 
and communication resources in a bid to decrease the total cost of power, computation, and 
latency for all users in a mobile cloud environment. The steps which are semidefinite relaxation 
(SDR), alternating optimization (AO), and sequential tuning (ST) can optimize the process 
independent of one another. However, they opined that when combined, the optimization is 
more efficient. A computing task caching policy (Edge-CoCaCo) was introduced by (M. Chen 
et al., 2018) which uses computing task caching placement and task offloading decision 
optimization to curb latency in task processing and improve users’ quality of experience. The 
framework proposed a combined optimization of computation, caching and communication on 
the edge cloud. Popular tasks, are cached on the edge cloud and is not required to be offloaded 
by the mobile user. Local processing is done for tasks that have large data size but require a lot 
of data transmissions and small computing resources. However, for tasks with fewer data 
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transmissions requirements but computation-demanding resources, such tasks can be offloaded 
to the edge cloud for processing using a branch and bound algorithm.  
To address service interruption caused by vehicle mobility and the inadequate edge coverage, 
(Tang et al., 2021) proposed a pre-allocation algorithm for vehicle tasks. Their study 
demonstrates how network selection can be adaptive and efficient by breaking huge tasks into 
smaller sets and offloading computational tasks to the newly added cells to the edge server in 
a vehicular edge computing environment. A technique that shares subtle similarities in 
computation offloading proposed by (M. Chen et al., 2018). 
A heuristic approach was adopted by (Guidara et al., 2015) to choose the best possible 
combination of services to deal with the temporal properties that impact QoS. The proposed 
approach is based on clustering achieved via k-means algorithm, constraints decomposition 
techniques and local selection. 
 
Given the time-consuming characteristics of randomly searching through a large pool of 
possible solutions, (Kasi et al., 2021) proposed a heuristic approach using genetic and hill-
climbing combined with annealing algorithms to find the best solution against the multi-
objective constraint optimization problem in the least number of possible solutions available 
for edge server placement.  
(Zeng et al., 2019) proposed greedy techniques that routinely chooses nodes that can connect 
as many other nodes as possible under multiple constraints that pertains to the delay, degree 
and cluster size and also to lessen the capacity constraint of the edge servers in a wide 
metropolitan area network (WMAN). It also aimed at reducing the number of edge nodes on 
the network given that too many nodes in a cluster decreases the quality of service while using 
an annealing algorithm to globally optimize the model.  
(Wu et al., 2019) took a heuristic approach to properly transmit service requests to edge and 
cloud servers in order to enhance the quality of service and minimize the latency in service 
invocations in MEC systems. The heuristic model combined genetic and annealing algorithm 
in mobile edge computing (GAMEC) for efficient service selection.  
(Qian et al., 2013) introduced CSS for automatic selection of cloud infrastructure and proposed 
a stepwise application placement algorithm to address scalability constraints. Similarly, 
(Soltani, Martin and Elgazzar, 2018) developed a framework to automate the selection of the 
most suitable requirements and preferences for an application’s features in an IaaS for service 
deployment. The model further addressed the issue of total service cost by consolidation to 
improve resource utilization. 
(Deng et al., 2015) proffered a genetic algorithm (GA) based offloading technique to invoke 
multiple mobile services in workflows and makes decision on whether the services of a 
workflow should be offloaded to the cloud server to prioritize the optimization of execution 
time and energy consumption. 
The network and computational capabilities of edge nodes in a video streaming service were 
appraised by using a score-based edge service scheduling algorithm proposed by (Scoca et al., 
2018) to achieve the highest scoring mapping between services and resources to improve QoS 
delivery. 
(Thiruvasagam, Chakraborty and Murthy, 2021) adopted Integer Linear Programming to 
proscribe a survivable mapping and latency-aware technique to reduce service provision cost 
in and ensure persistence against failure of Virtual Network Functions (VNF) in MEC cloud 
facility. 
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Authors / Year Methodology Objective 
Lee, Saad and 
Bennis, 2017 

Online secretary 
algorithm 

Computational latency reduction for a 
fog network 

Zhang et al. 2019 Particle Swarm 
Optimization (MESP). 

Latency reduction in edge server selection 

Zou et al., 2021 Genetic Algorithm 
(GASISMEC) 

Latency reduction in service instance 
selection 

X. Chen et al., 2018 Deep Reinforcement 
Learning  

Latency reduction in task offloading 
decision 

Zhao et al., 2019 Cross-edge 
Computation 
Offloading (CCO) 

Latency reduction in edge server selection 

Alchalabi et al., 2021 Deep Reinforcement 
Learning 

Latency reduction in edge server selection 

Dilanka et al., 2021 Mobile Edge 
Orchestrator (MEO) 

Optimal edge server selection 

Shah-Mansouri and 
Wong, 2018 

Nash Equilibrium  Optimal task offloading  

Chen, Liang and 
Dong, 2017 

SDR-AO-ST algorithm Optimization of power, computation, 
and latency in task offloading 

M. Chen et al., 2018 Edge CoCaCo Optimization of task offloading decision 
and task caching placement 

Tang et al., 2021 Adaptive task offloading 
algorithm 

Optimization of task offloading in 
dynamic environment 

Guidara et al., 2015 K-means algorithm Optimization of service selection 
Kasi et al., 2021 Combined genetic 

algorithm and annealing 
algorithm 

Optimization of edge server placement 

Zeng et al., 2019 Greedy algorithm Optimization of edge server placement 
Wu et al., 2019 Combined genetic 

algorithm and simulated 
annealing algorithm 
(GAMEC) 

Latency reduction in service invocation 

Qian et al., 2013 CSS Effective cloud infrastructure selection 
Soltani, Martin and 
Elgazzar, 2018 

Case-based reasoning 
and Multi-criteria 
Decision Making 
(MCDM) 

Automated cloud infrastructure selection 

Deng et al., 2015 Genetic Algorithm Optimization of task offloading decision 
Scoca et al., 2018 Score-based edge 

service scheduling 
algorithm 

Optimization of task scheduling decision 

Thiruvasagam, 
Chakraborty and 
Murthy, 2021 

Integer Linear 
Programming 

Computational cost reduction of virtual 
network function 

Chen, Wang and Li, 
2019 

Lyaponuv Optimization Optimization of task offloading for 
energy-efficient MEC 

   

Table 1:  Summary of Literature Review 
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3 Research Methodology 
 
In this section, we assume that the load of each edge server fits a normal distribution over a 
period of time and analyse the task completion probability of edge servers. Then, we compute 
the overhead of completion task in cases of a non-migration scenario. Finally, we can obtain 
the user’s total overhead. 
 
Computation Probability Model: In this model, as the edge server provides resource to 
the user, the server resource is reduced correspondingly. Because of the limited resources of 
the edge server, there is little to no guarantee that the edge servers connected by the user can 
provide the resources required by the user. Therefore, it is necessary to measure how probable 
the task will be completed successfully, denoted by p. Assuming that the load of each edge 
server fits a normal distribution over a period of time, we set the probability density function 
of the edge server load as  
 

𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2 + 𝑏𝑏 

In this equation, x denotes the load of the edge server whose classification domain is [0, 2μμ], 
while f(x) is the probability when the load is x. Further, the value of μμ is equal to half of the 
total resources of the edge server, and we define b as a constant, that is related to the total 
amount of resources.  

𝑏𝑏 =
∫ 1

√2𝜋𝜋
𝑒𝑒−

𝑥𝑥2
2 + ∫ 1

√2𝜋𝜋
𝑒𝑒−

𝑥𝑥2
2

+∞
2𝜇𝜇

0
−∞

2𝜇𝜇
 

 
If the limited resources required by the user are k, the probability that the edge server can 
satisfy the resource required by the mobile user equals is 

𝑝𝑝 =  � 𝑓𝑓(𝑥𝑥)
2𝜇𝜇−𝑘𝑘

0
 

If the connected edge server cannot satisfy the resource requested by the user, the edge server 
will send the request to the remote cloud to get the resource required by the mobile user. The 
probability is 1–p. At any time, the user can connect to the remote cloud server, and the remote 
cloud server always is able to provide the resource required by the mobile user. 
 
 
Computation model of user’s overhead: We assume that there are S edge servers in the 
system, where (1, …, S) denotes the set of edge servers. The mobile user can connect to these 
edge servers to transmit data through the wireless channel during the mobile process. When 
the user moves, we further denote the set of all servers available as (0, 1, …, S) where 0 
represents the remote cloud server which has enough computing resources. When the edge 
server cannot provide enough resource to the user, because the edge server has limited 
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resources, the user can also get resources from the remote cloud server by directly connect to 
the remote cloud server.  
During the movement, the task can be computed either on the edge server or the remote cloud 
server, so we consider it as one of the many tasks to be performed as 𝑇𝑇𝑇𝑇 ≜ (𝐵𝐵𝑇𝑇,𝐷𝐷𝑇𝑇). Here, 𝐵𝐵𝑇𝑇 
denotes the size of computation input data (that is, the program codes and input parameters) 
involving in the task 𝑇𝑇𝑇𝑇, and 𝐷𝐷𝑇𝑇 denotes the total number of CPU cycles required to accomplish 
the computation task 𝑇𝑇𝑇𝑇.  
 
• No service migration: If a task is executed on the edge server, 𝑑𝑑𝑖𝑖.𝑠𝑠 < 𝑅𝑅𝑠𝑠 must be 
guaranteed when the user connects to the edge server 𝑠𝑠, where 𝑑𝑑𝑖𝑖,𝑠𝑠 indicates the distance 
between the user handheld mobile device and the edge servers, and 𝑅𝑅𝑠𝑠 is the coverage radius 
of edge server s. Assuming the mobile user can connect to only one server at any time, the time 
the user transfers data to the edge servers is 𝐵𝐵𝑖𝑖/𝑟𝑟𝑇𝑇,𝑠𝑠 for task 𝑇𝑇𝑖𝑖. 
Here, 𝐵𝐵𝑖𝑖/𝑟𝑟𝑇𝑇,𝑠𝑠 indicates the data transfer rate between the user and the edge server s, which can 
know in advance by the user. The computing power of the edge server s is represented by 𝐹𝐹𝑠𝑠 . 
Should the user maintain connection with “s” before the edge server s completes the task 𝑇𝑇𝑖𝑖, 
the execution time of task 𝑇𝑇𝑖𝑖 on the edge server is 𝐷𝐷𝑇𝑇 /𝐹𝐹𝑠𝑠. The latency that occurs when the 
edge server sends the computation output back to the user is neglected, due to the fact that for 
most applications, the size of the output in general is much smaller than the size of the input 
data. So, the response time of the task 𝑇𝑇𝑇𝑇 executed on the edge server 𝑠𝑠 can be given as  

𝑇𝑇𝑖𝑖,0 =  
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠

  

 
We can compute the overhead in terms of processing time as 
 

𝐶𝐶𝑖𝑖 =  𝜆𝜆𝑇𝑇 � 
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠
� 

 
Here 𝜆𝜆𝑇𝑇 denote the weights of time consumption for the user. We assume that 𝜆𝜆𝑇𝑇 ∈ (0, 1) to 
prevent high latency. However, the setting of the parameters is user and application dependent, 
such that to minimize latency in a latency-sensitive application, the user might raise the weight 
of time latency. It is worth noting that edge servers cannot always satisfy user’s resource 
requests because of their limited resources. When the remaining resources of the edge server 
cannot meet the requirements, the edge server needs to connect directly to the cloud server and 
send the request to the remote cloud. The task upload time, execution time and roundtrip bac 
to user’s mobile device is a summation of the latency between user and cloud server. 
 

𝑇𝑇𝑖𝑖,0 =  
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜

 + 𝑑𝑑 

Where, 𝑟𝑟𝑇𝑇, 𝑜𝑜 and 𝐹𝐹𝑜𝑜 represents the data transmission rate between user and cloud server and 
cloud server computing power respectively. In addition, the time latency overhead of task 𝑇𝑇𝑖𝑖 
processed in the cloud is expressed as 
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𝑇𝑇𝑖𝑖,0 =  𝜆𝜆𝑇𝑇 � 
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜

 + 𝑑𝑑� 

 
When the edge server lacks the required computational capacity minimum to execute the task.  
According to the model of task completion probability, the success rate that the edge server 𝑠𝑠 
completes the task is 𝑝𝑝. Thus, the overhead computation function that the edge server completes 
the task 𝑇𝑇𝑖𝑖,𝑜𝑜 is expressed as 

𝑇𝑇𝑖𝑖,0 =  𝑝𝑝 �𝜆𝜆𝑇𝑇 � 
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠
�� + (1 − 𝑝𝑝)�𝜆𝜆𝑇𝑇 � 

𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +  
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜
��  

 
 
Mobile user’s total overhead: When an edge server is selected, the computational overhead 
for completing a single task can be obtained according to computation model overhead. For 
this to happen, many tasks need to be completed for a user over a period of time. Due to user’s 
mobility, the mobile user will connect to different edge servers to get resources. Next, we will 
go into how the user selects the edge servers in the mobile path. 
 
The Mobile Path: A mobile path is represented by a triple (𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒, 𝐿𝐿,𝑁𝑁), where: 
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 is the time span during which the user is moving. It includes a set of continuous 
time points; 
• 𝐿𝐿 is the set of the user’s locations corresponding to all time points in Time; 
• 𝑁𝑁 is a mapping function between the time points and the user’s locations on the path. 
𝑁𝑁: 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒→ 𝐿𝐿. 
In this definition, 𝐿𝐿 divides the entire moving path into multiple segments. 𝑁𝑁 represents the 
connection between time and location, which indicates the variable speed while a user moves. 
Specifically, if the time interval is small, it means the user moves with a high speed in that 
location; otherwise, the user moves slowly. 

 
Selection of Edge Server: The selection of edge server during user movement is a triple (𝑆𝑆𝑒𝑒, 
𝑆𝑆, 𝐺𝐺), where; 
• 𝑆𝑆𝑒𝑒 represents the set of many segments, and Path = 𝑠𝑠𝑒𝑒1 ∪ 𝑠𝑠𝑒𝑒2 ∪. (Combining all 
segments can compose the user’s mobile path) 
• 𝑀𝑀 = (0, 1, …, 𝑆𝑆) represents the set of all the servers that the user can connect to 
• 𝐺𝐺 is a function representing the correspondence between the segment and all edge 
servers that cover the segment: ∀𝑠𝑠𝑒𝑒𝑇𝑇 ∈ 𝑆𝑆𝑒𝑒,𝐺𝐺: 𝑠𝑠𝑒𝑒𝑇𝑇 → 𝑀𝑀. 
Since the user movement path is known in advance, according to the geographical location and 
the coverage radius of each edge server, we can get all potential servers that the user can 
connect during the moving path: (0, 1, …, 𝑆𝑆). Function 𝐺𝐺 divides the moving path into many 
segments 𝑆𝑆𝑒𝑒, and makes each segment be covered by the same severs. When the user moves 
to the position of the segment 𝑆𝑆𝑒𝑒𝑇𝑇, one of the 𝑠𝑠 servers that cover the segment is connected to 
provide resource for the mobile user. 
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The Total Overhead: By assuming that the user’s movement path, we divide it into n 
segments, and all servers that the user can connect are represented as a vector of length 𝑛𝑛: <
𝑠𝑠1, 𝑠𝑠2,  …   , 𝑠𝑠𝑛𝑛  > , 𝑠𝑠𝑇𝑇 ∈  {0, 1,  …   , 𝑆𝑆}.∀1 ≤ 𝑇𝑇 ≤ 𝑛𝑛 − 1 and 𝑠𝑠𝑇𝑇 ≠ 𝑠𝑠𝑇𝑇 + 1, if a task is not 
completed before the user leaves the coverage area of the edge server 𝑠𝑠𝑇𝑇, the task needs to be 
migrated, otherwise it will not be migrated. Assuming that there are 𝑇𝑇 tasks to be completed, 
the user’s total overhead can be obtained according to the above calculation model:  
∑ 𝐶𝐶𝑇𝑇𝑚𝑚
𝑖𝑖=1 . Our goal is to minimize the total overhead of the mobile user: 𝑇𝑇𝑇𝑇𝑛𝑛∑ 𝐶𝐶𝑇𝑇𝑚𝑚

𝑖𝑖=1 .  
 
 
 
4 Design Specification 
 

4.1 Gradient Descent 
Gradient Descent (GD) is the most often used machine learning method. It is not just used to 
solve optimization problems, but it is also the most prevalent approach for training any type of 
neural network, including deep learning. There are a few implementations of the method, but 
they all depend on the gradient theorem. GD is based on a convex function that alters its 
parameters iteratively to minimize a given function to its local minimum. These models evolve 
over time with the use of training data, and the cost function inside gradient descent functions 
as a way of measurement for assessing its correctness with each iteration of parameter changes. 
 

4.2 Genetic Algorithm  
The relationship between the GA and edge server selection problems are such that, in genetic 
algorithm (GA), achievable solutions are designed by select servers also known as 
chromosomes responding to the edge servers in each section. The chromosomes, also 
comprises of a set of independent servers called genes to represent the selected servers. During 
user movement, the locus of a gene in a chromosome expresses itself as a segment. The energy 
consumption, time and latency of the chromosome are implied as low if it has a high fitness 
due to the end user. 
In GA, new candidates are generated through crossover and mutation. The overhead of the 
chromosome is calculated according to the fitness function where the GA algorithm is executed 
iteratively and approximate optimal solution is eventually achieved. 
At the earlier phase, we updated the algorithm parameters such as population size, 
initialization, learning rate, step size, terminating condition, and mutation rate, and etcetera. 
The selection process involves a simple process of reserving the superior chromosomes 
represented as 0’s or 1’s and randomly removing out a part of the inferior chromosomes while 
the remaining chromosomes are now identified as the parent chromosomes. 
In the Cross-over process, the parent chromosomes recombine to generate new chromosomes 
(child chromosomes). During the process, a point is chosen at random from the chromosomes 
directly, after which a randomly selected parent chromosome parent loses the genes after that 
point and another randomly selected parent chromosome parent loses the genes before that 
point, hence a new child chromosome child is generated by combining the two parent 
chromosomes. 
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4.3 Combined CGGD 
 
The ability of the genetic algorithm, as one of two commonly used heuristic algorithms lies in 
powerful global searching while the gradient descent is an optimization method used to find 
the local minima of a given function. This heuristic algorithm is called Combined Genetic 
Gradient Descent (CGGD) algorithms for edge server selection. It can inherit the powerful 
searching ability of the genetic algorithm, and the ability to avoid being trapped in saddle point 
during the early stages by decreasing the converge speed or increasing it to improve its 
efficiency. This algorithm is a combination of the two algorithms which works to achieve a 
derivative function from the genetic algorithm and optimize it using gradient descent. This 
proposed algorithm can select edge servers for the mobile user to get an approximate and 
optimal solution within a set amount of time from a population of several candidates. In this 
section, we will detail how CGGD is applied to our edge server selection process. 
 
Firstly, we use GA to generate the fittest chromosomes from the records from the base stations. 
The fittest chromosome is then used as the 𝑥𝑥  value which is the independent variable. The 𝑥𝑥 
value is then used to define the corresponding 𝑦𝑦 value which is the dependent variable for the 
equation where anywhere the 𝑦𝑦 value = 1, the distance between the user and the edge server is 
saved in the 𝑦𝑦 column. Using the standard definition and the derivative function of the gradient 
descent, the slope and the intercept for the line equation is defined. Given the definition, slope 
and gradient is substituted into the line equation and used to retrieve the index of the fittest 
chromosomes based on the relationship between the 𝑥𝑥 and 𝑦𝑦 variables, and find the minimum 
of the predicted values. The index is used to retrieve the edge server from the base station.  
 

 
 

Figure 2: System Model Flowchart. 
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Algorithm 1: Genetic Algorithm for Server Selection in MEC 

Input: SISP(Um, List(BaseStations), Pfunc, Ffunc, Sfunc, COfunc, Mfunc, gl, fl) 
Output: Chromosome with the highest fitness 
 
population <=  Pfunc() 
      for i in range(gl)  
           # evaluate the fitness of every member of the population 
           population <= sort(Ffunc()) 
            
           Wf  <= Ffunc(population[0]) 
           if  Wf >= fl 
                break 
            
           next_gen <=  population[0:2] 
 
          # Select parent for the next generation and mate selected parent to product offspring 
          for j in range(len(population/2)) 
               # Select parents from the current population 
               parents <= Sfunc(population, Ffunc) 
               # Mate parent to product children 
               children <= COfunc(parents[0], parents[1]) 
               # invoke mutation function on the children produce from mating parents 
               Mfunc(children) 
               # Add children to the next generation 
               next_gen += [children] 
          
           population = next_gen 
 
           # evaluate the fitness of every member of the population 
           population <= sort(Ffunc()) 
 
      SISP_GD(population[0], List(BaseStations)) 
 

 
Table 2: Genetic Algorithm 

 

Algorithm 2: Gradient Descent Algorithm for Server Selection in MEC 

Input: SISP_GD(Chromosome, List(BaseStations)) 
Output: base_station_instance: BaseStations 
 
#create a linear relationship between Chromosome and List(BaseStation) 
x <= List(Chromosome) 
y <= List(compute_distance_relationship(List(BaseStation))) 
 
define linear relationship between y and x variables 
y <= mx + c 
 
for i range(1000) 
     # compute predicted y using y = mx +c 
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       y_pred = cur_m * x + cur_c 
 
       compute cost 
       compute dev_m 
       compute dev_c 
       update cur_m 
       update cur_c 
 
       if different in cost compare to previous cost is insignificant 
              break out of loop 
 
  # Predict optimal solution from List(BaseStation) 
   For i, station in List(BaseStation) 
        If Chromosome[i] equals 1 
            Check for the BaseStation with the minimum distance value 
             Store the index with the minimum value in selected_index 
 
 
return BaseStation[selected_index]  
  

 
Table 3: Gradient Descent Algorithm 

 
5 Implementation 
 
In this section, we carry out experiments to evaluate the performance of CGAGD and compare 
the results with a variety of settings in the algorithm. All experiments were conducted on a 
Linux operating system, fitted with intel core i7 at 3.6 GHz, 16 GB of RAM and implemented 
with Python v3.6. 
Extensive tests are carried out on the publicly available EUA benchmark dataset (Zou et al., 
2021) that is widely used in edge computing, including, to confirm the efficacy and efficiency 
of our technique. The EUA dataset contains data from real world sources. The dataset holds 
information about the user 
s addresses and edge servers’ locations and so on. In the experiment, we generated one dataset 
for the edge servers where they converge. The mobile path can be determined by plotting 
against longitudinal and latitudinal lines of the edge servers from the information provided in 
the edge server dataset. So, we can access all the base stations within a mobile user’s path. We 
assume that the mobile user is connected to an edge server over Wi-Fi interface with an average 
data transmission rate of 3.01 mb/s. Given the average transmission rate over Wi-Fi, we assume 
that the transmission rate ranges between [2.01, 4.01] mb/s. Furthermore, we assume that the 
processing power of each edge server varies; ranging between [2,3] GHz. We also consider 
that the number of CPU of the edge server is randomly distributed between [7,18]. In this study, 
we do not consider the cloud server resources, given that it has ample computing resources and 
that there is no service migration. However, we assume that the data transmission rate from 
edge server to cloud server is 5.01 mb/s. 
 
6 Evaluation 
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In the experiment we conducted, for each iteration, the number of users increased exponentially 
to a maximum of 816 users. The ratio of user requests to the edge servers is 0.05 as well as the 
users being drawn at random from the associated dataset's user set. To demonstrate the efficacy 
of the proposed algorithm, we compare the direct impact of gradient descent on genetic 
algorithm and against GASISMEC algorithm. The tasks to be completed are chosen at random. 
In order to eliminate the impact of iterations, the number of iterations for all approaches is 
maintained. Table 2 describes the experimental findings on EUA datasets with increased 
number of users. 
 

Algorithm Total Average Response 
Time 

GA 26.61% 
GASISMEC 22.10% 
CGGD 15.51% 

Table 2:  Experimental results on EUA datasets.  
 
 
 
 
 
 
 

Algorithm Average CPU Usage 
GA 35.93% 
GASISMEC 87.96% 
CGGD 80.83% 

 

Table 3:  Experimental results on EUA datasets.  
 

6.1 Experiment on latency 
The result demonstrates that the average response time on the EUA dataset with normal user 
distribution is significantly shorter than the competing baseline algorithms. It is caused by the 
using normal distributions of BSs in the dataset. While GA without GD performs the worst 
with an average response time of 25.18%, CGGD performs best when compared with another 
hybrid GA algorithm which records 15.51% and 22.10% respectively. Correspondingly, as the 
number of users grow, so does the computation requirements for processing user requests. 
Figure 3 below shows the average response time relative to the number of users connected to 
the BS. 
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Figure 3: Performance of computational time on EUA dataset. 

 
 

6.2 Experiment on total overhead 
 
To further validate our heuristic approach to edge server selection, we calculate the total 
overhead. The result depicts that the average CPU usage of CGGD scales accordingly as the 
demand for computational resources increase. The outcome show that the 80.83% recorded 
by CGGD outperforms GASISMEC’s 87.96%. However, GA shows to demand the least 
computation resource with 35.93%. Figure 4 below shows the average CPU usage relative to 
the number of user requests generated. 
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Figure 4: Performance of CGGD with respect to CPU usage on EUA dataset. 

 
 

 

6.3 Discussion 
 
In the experiment we conducted on optimization of edge server selection technique, we 
implemented model that combines GA and GD (CGGD). In the results demonstrated above, 
we find that heuristic ML approaches perform efficiently in reducing latency and maximizes 
computational resources significantly. While we obtain super results compared to the baseline 
algorithms, several factors may affect our results. These factors include but are not limited to 
the randomisation effect of user distribution, input data upload and download rate. The 
challenges to the validity of our work's applicability include whether our technique can be 
applied to other real-world scenarios in mobile edge computing. There is currently no dataset 
that has user distribution, user mobility path, and edge server distribution all at the same time. 
To minimize application risks, we examined CGGD over varying parameters such as user and 
base station distributions, and the proportion of output data size to input data size, in order to 
mimic as many application situations as feasible. Furthermore, we consider the randomness of 
different variables in each iteration of experiments to advance the achievability of CGGD in 
real life. 
 
 

7 Conclusion and Future Work 
 
Resource scarcity is a major hindrance that plagues mobile edge computing. The fact that 
mobile users are greedy makes solving the issue even the more difficult. The temporal and 
computational demands of mobile users is high and requires enough resources to fulfil user 
requests. A lot of research has been carried out on the optimization of selection of edge servers 
in mobile edge computing using machine learning. Given the large solution space, selecting 
the optimal server to run serve applications to mobile user is essential to reducing latency and 
overhead and improving the user’s quality of experience. Several optimization methods have 
been proposed using GA and other optimization techniques in edge server selection. Recent 
research shows the efficacy of heuristic methods in providing efficient ways in selecting the 
optimal edge server. 
In this study we conducted on edge sever selection optimization experiment by implementing 
a hybrid technique of using two widely used techniques - genetic algorithm and gradient 
descent algorithm. Firstly, we measured the probability of a task request getting completed. 
Given that we assume a normal distribution, we can obtain the average response time. To 
minimize latency and computation overhead, we propose CGGD algorithm that can select 
servers in advance for the user by providing good quality of service. The outcome demonstrates 
that CGGD algorithm performs better than traditional algorithms both in terms of latency and 
CPU usage. 
We propose the application of CGGD in dynamically offloading tasks to edge servers in the 
context of service migration for mobile users. By introducing other elements and specifications, 
we will aim to handle user requests at the edge of the network. In summary, this study has 
shown that using heuristic machine learning can evidently optimize edge server selection. 
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