

Combined Genetic Algorithm and Gradient
Descent Algorithm to Optimize Server
Selection in Mobile Edge Computing

MSc Research Project
Masters in Cloud Computing

Tamaraebi Besife Pibowei
Student ID: x20217871

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Tamaraebi Besife Pibowei

Student ID:

x20217871

Programme:

Master of Science in Cloud Computing

Year:

2021

Module:

……………Research Project…….………

Supervisor:

Sean Heeney

Submission Due
Date:

…………………16th December 2021………….………

Project Title:

Combined Genetic Algorithm and Gradient Descent Algorithm to
Optimize Server Selection in Mobile Edge Computing

Word Count:

7635 Page Count: 22

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

……………………Tamaraebi Besife Pibowei………………………

Date:

…………………09th December 2021…………………

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple
copies)

□

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project,
both for your own reference and in case a project is lost or mislaid. It is
not sufficient to keep a copy on computer.

□

Assignments that are submitted to the Programme Coordinator Office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:
Date:
Penalty Applied (if applicable):

1

Combined Genetic Algorithm and Gradient Descent
Algorithm to Optimize Server Selection in Mobile

Edge Computing

Tamaraebi Besife Pibowei
x20217871

Abstract
MEC has become the new frontier in minimizing latency in data transmission for mobile
devices that are limited in resources. Firstly, the constraints of an edge server in terms of
processing capacity and distance that can be covered result in only a limited number of
users being able to have their requests completed at the same time. Secondly, because of
the varied geographical locations of user mobility pathways in MEC, edge user mobility
is significantly connected to data transmission rate and influences edge server latency.
Furthermore, when multiple users in an edge server covered region require the same
resources at the same time, they interfere with each other and may reduce the experience
of service if an effective strategy for requests distribution to different capable edge servers
is not in place. Therefore, to reduce latency and computational overhead, we consider the
above constraints and propose a novel approach that combines genetic algorithm (GA) and
gradient descent (GD) to find an approximately solution to the edge server selection
optimization problem. We validate our model by conducting experiment on the EUA
dataset. The outcome of the experiments conducted demonstrates that, our model
significantly outperforms the baseline approaches.

1 Introduction

Swift advancements in mobile developments and its applications in our daily business
interaction activities such as natural language processing, facial recognition, internet of things
and interactive online entertainment and have garnered interests from both academia and
industry experts. This paradigm shift in cloud computing and mobile networks has turned
computing from being managed on-site to virtually hosted hardware and software services
(Zhang et al., 2012). Cloud computing is a consolidation of hardware and software
components; thus, a significant amount of computing functionality is offloaded to distributed
cloud frameworks such as fog and mobile edge computing (MEC) to the accessibility of end
users which translates to the reduction of latency and computational limitations mobile devices
and centralized cloud architecture (Yuan, Guo and Wang, 2021). While the capability of mobile
devices could be considerably scaled up by such offloading events, communication latency
becomes unavoidable since the remote cloud infrastructure are usually far away from the
mobile users. For applications that are time-sensitive, long transmission duration can
noticeably reduce the user’s quality of experience (Tan et al., 2017).
MEC, as an extension of centralized computing aims to bring computing resources closer to
mobile users by adding edge servers to the edge of the network, it still faces the fundamental
issue of limited edge server resources. While a user might want to connect to the edge servers

2

to fulfil certain service requests made, the edge servers might not have enough computing
resources to satisfy the requests made (Zhang et al., 2021). This problem is further reinforced
with users’ mobility and multiple users request, therefore, selecting the optimal edge server
from the solution space. Each edge server is usually delegated to provide coverage to a
dedicated geo-location and users can connect to them when they are withing the range of
coverage. Given a user’s mobility, when a user migrates from the coverage of the original edge
server with uncompleted tasks, the user’s connection to another edge server needs to be
established where the computation task will be offloaded to guarantee service continuity
(Xenakis et al., 2013). This demonstrates that, if a user continues to utilize the initial edge
server for data transmission through other nodes, more computational resources will inevitably
be consumed, leading to increase in latency as a result of other nodes’ resources being
occupied. Therefore, the best policy for selecting the optimal edge server for service migration
should be implemented, the policy should include a decision for if a service should be migrated
and where it should be migrated to. Between the user and the MEC, there is a bater between
the cost of service migration and cost of transmission (communication latency and network
overhead respectively). Determining the best selection is difficult because of the
unpredictability in user mobility as well as the likely non-linearity of migration and
transmission costs (Wang et al., 2015).
To mitigate these issues, the edge server a user would migrate to should be selected in advance.
As mobile users move, several edge servers must be selected in order for the user to receive
resources. To improve the quality of experience, the servers with the widest coverage and more
resources should be selected (Yin et al., 2016). The figure

Figure 1: System Model Architecture.

3

In this paper, we look at how to choose the optimal edge servers for mobile users in order to
reduce the user's overhead. The overhead of mobile users will be influenced by elements
frequency of service migration, scarce edge server resources, energy constraint of mobile
devices (Wang et al., 2018; Shah-Mansouri and Wong, 2018; Tianze et al., 2017). In this
research, we present the combined genetic algorithm and simulated annealing algorithm for
edge Server Selection approach to overcome the aforementioned challenges., the proposed
approach can, in polynomial time, pick edge servers for the mobile user. The following are the
key contributions:
1. We simulate the job completion probability of edge servers and examine the user's
computation cost in non-migration scenario of edge server selection.
2. In order to reduce user overhead in terms of time delay in mobile environments, we
present the Combined genetic gradient descent (CGGD) algorithm, which picks the best edge
server in a large solution space for users with known paths.
3. To evaluate the performance of our CGGD framework, we perform comprehensive
simulations based on a real-world data. The outcome of the experiments demonstrates that
CGGD can effectively minimize the user's overhead.

The rest of the paper is organized as follows: in section II we discuss the most recent research
done and their approach. In section III, we give details of our approach, the experiment design,
details of the algorithm and implementation. Then, in section IV, we discuss the experiment
setup and outcome obtained. We then discuss the result obtained and give a summation of our
research.

In this section you introduce the topic of the paper, motivate why it needs to be studied
(appropriate citations are best for this), presents the research question(s) and research
objectives, and/or hypothesis or hypotheses. Briefly summarise the contribution to the scientific
literature your work entails. Finish this section by outlining the structure of the report.

2 Related Work

A lot of solutions to edge server selection problems have been proffered by many scholars
(Zhang et al., 2019) introduced a Multi-user Edge server Selection method based on Particle
swarm optimization (MESP). The model selects edge servers ahead of time for mobile users
within polynomial time. Although the approach can effectively reduce the total waiting period,
however, the approach only performs well when the path of the mobile users is known. (Zou
et al., 2021) proposed a genetic algorithm-based model, GASISMEC. The model is built
around three factors – complexity of crossover, response time-aware mutation operation and
fitness calculation. The model performs service instance selection in polynomial time by firstly,
generating a random group of allocation strategies and evaluating the response time during
which the response time-aware mutation operation is initiated. In their study, (X. Chen et al.,
2018) proposed a deep Q-network-based offloading policy modelled as a Markov decision
process to reduce the long-term cost an offloading decision between a mobile user and multiple
base stations. The model proposes to learn the best policy without having previous knowledge

4

of the dynamic data such as the quality of the channel. However, the model does not account
for multiple users and the numerical calculation shows 56% increase in performance. (Zhao et
al., 2019) proposed A cross-edge computation offloading (CCO) framework based on
Lyapunov optimization algorithm (Chen, Wang and Li, 2019) without prior knowledge to
determine the edge server selection for partitionable applications. The framework proposed can
achieve asymptotical optimality with battery capacity of mobile devices. (Alchalabi et al.,
2021) proposed a Quadruple Q-Learning model that minimizes the variance of latency by using
geo-distance between the users and the edge server. The model uses Reinforcement Learning
(RL) method to reduce the action space which emphasizes fairness in edge server selection.
The framework adopted a modified version of Action Elimination Network (AEN) for linear
vector rather than neural network for a tabular case.
A MEC server selection policy which is reliant on the MEC server’s resources and link
parameters was introduced by (Dilanka et al., 2021). The Mobile Edge Orchestrator determines
which server is selected based on the MEC server infrastructure, linked bandwidth, and
distance between end-user and MEC server. The requests are handled based on a queue
structure, however, priority on more important requests is not considered in the execution
order.
An online secretary framework is proposed by (Lee, Saad and Bennis, 2017) to minimize the
maximum computational latency for a fog network. In this framework, the initial fog node
cooperates with other neighbouring fog nodes and the cloud data centre to build a fog network
and distribute tasks. In the midst of uncertainty, any fog node can dynamically create a fog-
network by choosing the most appropriate set of fog node neighbours where tasks will be
distributed among the fog nodes and the cloud without prior knowledge of future incoming fog
nodes or their performance capacity. Similarly, (Shah-Mansouri and Wong, 2018) proposed a
model to efficiently allocate the sparse processing power of fog nodes in IoT environment
where each user can strive to improve its own quality of experience in a computation offloading
game. Each user task can be executed locally or offloaded to computing servers which
comprises a set of fog nodes and cloud servers. Each user is greedy and therefore, the fog nodes
cannot emphasize applications of an IoT user over other IoT users. In contrast, they propose a
Nash Equilibrium (NE) algorithm to obtain the equilibrium. To reduce the time complexity of
achieving the Nash Equilibrium, they proposed the adoption of near–optimal resource
allocation algorithm. (Chen, Liang and Dong, 2017) proposed a three-step algorithm to
collectively optimize the offloading decisions of all users’ tasks while allocating computation
and communication resources in a bid to decrease the total cost of power, computation, and
latency for all users in a mobile cloud environment. The steps which are semidefinite relaxation
(SDR), alternating optimization (AO), and sequential tuning (ST) can optimize the process
independent of one another. However, they opined that when combined, the optimization is
more efficient. A computing task caching policy (Edge-CoCaCo) was introduced by (M. Chen
et al., 2018) which uses computing task caching placement and task offloading decision
optimization to curb latency in task processing and improve users’ quality of experience. The
framework proposed a combined optimization of computation, caching and communication on
the edge cloud. Popular tasks, are cached on the edge cloud and is not required to be offloaded
by the mobile user. Local processing is done for tasks that have large data size but require a lot
of data transmissions and small computing resources. However, for tasks with fewer data

5

transmissions requirements but computation-demanding resources, such tasks can be offloaded
to the edge cloud for processing using a branch and bound algorithm.
To address service interruption caused by vehicle mobility and the inadequate edge coverage,
(Tang et al., 2021) proposed a pre-allocation algorithm for vehicle tasks. Their study
demonstrates how network selection can be adaptive and efficient by breaking huge tasks into
smaller sets and offloading computational tasks to the newly added cells to the edge server in
a vehicular edge computing environment. A technique that shares subtle similarities in
computation offloading proposed by (M. Chen et al., 2018).
A heuristic approach was adopted by (Guidara et al., 2015) to choose the best possible
combination of services to deal with the temporal properties that impact QoS. The proposed
approach is based on clustering achieved via k-means algorithm, constraints decomposition
techniques and local selection.

Given the time-consuming characteristics of randomly searching through a large pool of
possible solutions, (Kasi et al., 2021) proposed a heuristic approach using genetic and hill-
climbing combined with annealing algorithms to find the best solution against the multi-
objective constraint optimization problem in the least number of possible solutions available
for edge server placement.
(Zeng et al., 2019) proposed greedy techniques that routinely chooses nodes that can connect
as many other nodes as possible under multiple constraints that pertains to the delay, degree
and cluster size and also to lessen the capacity constraint of the edge servers in a wide
metropolitan area network (WMAN). It also aimed at reducing the number of edge nodes on
the network given that too many nodes in a cluster decreases the quality of service while using
an annealing algorithm to globally optimize the model.
(Wu et al., 2019) took a heuristic approach to properly transmit service requests to edge and
cloud servers in order to enhance the quality of service and minimize the latency in service
invocations in MEC systems. The heuristic model combined genetic and annealing algorithm
in mobile edge computing (GAMEC) for efficient service selection.
(Qian et al., 2013) introduced CSS for automatic selection of cloud infrastructure and proposed
a stepwise application placement algorithm to address scalability constraints. Similarly,
(Soltani, Martin and Elgazzar, 2018) developed a framework to automate the selection of the
most suitable requirements and preferences for an application’s features in an IaaS for service
deployment. The model further addressed the issue of total service cost by consolidation to
improve resource utilization.
(Deng et al., 2015) proffered a genetic algorithm (GA) based offloading technique to invoke
multiple mobile services in workflows and makes decision on whether the services of a
workflow should be offloaded to the cloud server to prioritize the optimization of execution
time and energy consumption.
The network and computational capabilities of edge nodes in a video streaming service were
appraised by using a score-based edge service scheduling algorithm proposed by (Scoca et al.,
2018) to achieve the highest scoring mapping between services and resources to improve QoS
delivery.
(Thiruvasagam, Chakraborty and Murthy, 2021) adopted Integer Linear Programming to
proscribe a survivable mapping and latency-aware technique to reduce service provision cost
in and ensure persistence against failure of Virtual Network Functions (VNF) in MEC cloud
facility.

6

Authors / Year Methodology Objective
Lee, Saad and
Bennis, 2017

Online secretary
algorithm

Computational latency reduction for a
fog network

Zhang et al. 2019 Particle Swarm
Optimization (MESP).

Latency reduction in edge server selection

Zou et al., 2021 Genetic Algorithm
(GASISMEC)

Latency reduction in service instance
selection

X. Chen et al., 2018 Deep Reinforcement
Learning

Latency reduction in task offloading
decision

Zhao et al., 2019 Cross-edge
Computation
Offloading (CCO)

Latency reduction in edge server selection

Alchalabi et al., 2021 Deep Reinforcement
Learning

Latency reduction in edge server selection

Dilanka et al., 2021 Mobile Edge
Orchestrator (MEO)

Optimal edge server selection

Shah-Mansouri and
Wong, 2018

Nash Equilibrium Optimal task offloading

Chen, Liang and
Dong, 2017

SDR-AO-ST algorithm Optimization of power, computation,
and latency in task offloading

M. Chen et al., 2018 Edge CoCaCo Optimization of task offloading decision
and task caching placement

Tang et al., 2021 Adaptive task offloading
algorithm

Optimization of task offloading in
dynamic environment

Guidara et al., 2015 K-means algorithm Optimization of service selection
Kasi et al., 2021 Combined genetic

algorithm and annealing
algorithm

Optimization of edge server placement

Zeng et al., 2019 Greedy algorithm Optimization of edge server placement
Wu et al., 2019 Combined genetic

algorithm and simulated
annealing algorithm
(GAMEC)

Latency reduction in service invocation

Qian et al., 2013 CSS Effective cloud infrastructure selection
Soltani, Martin and
Elgazzar, 2018

Case-based reasoning
and Multi-criteria
Decision Making
(MCDM)

Automated cloud infrastructure selection

Deng et al., 2015 Genetic Algorithm Optimization of task offloading decision
Scoca et al., 2018 Score-based edge

service scheduling
algorithm

Optimization of task scheduling decision

Thiruvasagam,
Chakraborty and
Murthy, 2021

Integer Linear
Programming

Computational cost reduction of virtual
network function

Chen, Wang and Li,
2019

Lyaponuv Optimization Optimization of task offloading for
energy-efficient MEC

Table 1: Summary of Literature Review

7

3 Research Methodology

In this section, we assume that the load of each edge server fits a normal distribution over a
period of time and analyse the task completion probability of edge servers. Then, we compute
the overhead of completion task in cases of a non-migration scenario. Finally, we can obtain
the user’s total overhead.

Computation Probability Model: In this model, as the edge server provides resource to
the user, the server resource is reduced correspondingly. Because of the limited resources of
the edge server, there is little to no guarantee that the edge servers connected by the user can
provide the resources required by the user. Therefore, it is necessary to measure how probable
the task will be completed successfully, denoted by p. Assuming that the load of each edge
server fits a normal distribution over a period of time, we set the probability density function
of the edge server load as

𝑓𝑓(𝑥𝑥) =
1

√2𝜋𝜋
𝑒𝑒−

(𝑥𝑥−𝜇𝜇)2
2 + 𝑏𝑏

In this equation, x denotes the load of the edge server whose classification domain is [0, 2μμ],
while f(x) is the probability when the load is x. Further, the value of μμ is equal to half of the
total resources of the edge server, and we define b as a constant, that is related to the total
amount of resources.

𝑏𝑏 =
∫ 1

√2𝜋𝜋
𝑒𝑒−

𝑥𝑥2
2 + ∫ 1

√2𝜋𝜋
𝑒𝑒−

𝑥𝑥2
2

+∞
2𝜇𝜇

0
−∞

2𝜇𝜇

If the limited resources required by the user are k, the probability that the edge server can
satisfy the resource required by the mobile user equals is

𝑝𝑝 = � 𝑓𝑓(𝑥𝑥)
2𝜇𝜇−𝑘𝑘

0

If the connected edge server cannot satisfy the resource requested by the user, the edge server
will send the request to the remote cloud to get the resource required by the mobile user. The
probability is 1–p. At any time, the user can connect to the remote cloud server, and the remote
cloud server always is able to provide the resource required by the mobile user.

Computation model of user’s overhead: We assume that there are S edge servers in the
system, where (1, …, S) denotes the set of edge servers. The mobile user can connect to these
edge servers to transmit data through the wireless channel during the mobile process. When
the user moves, we further denote the set of all servers available as (0, 1, …, S) where 0
represents the remote cloud server which has enough computing resources. When the edge
server cannot provide enough resource to the user, because the edge server has limited

8

resources, the user can also get resources from the remote cloud server by directly connect to
the remote cloud server.
During the movement, the task can be computed either on the edge server or the remote cloud
server, so we consider it as one of the many tasks to be performed as 𝑇𝑇𝑇𝑇 ≜ (𝐵𝐵𝑇𝑇,𝐷𝐷𝑇𝑇). Here, 𝐵𝐵𝑇𝑇
denotes the size of computation input data (that is, the program codes and input parameters)
involving in the task 𝑇𝑇𝑇𝑇, and 𝐷𝐷𝑇𝑇 denotes the total number of CPU cycles required to accomplish
the computation task 𝑇𝑇𝑇𝑇.

• No service migration: If a task is executed on the edge server, 𝑑𝑑𝑖𝑖.𝑠𝑠 < 𝑅𝑅𝑠𝑠 must be
guaranteed when the user connects to the edge server 𝑠𝑠, where 𝑑𝑑𝑖𝑖,𝑠𝑠 indicates the distance
between the user handheld mobile device and the edge servers, and 𝑅𝑅𝑠𝑠 is the coverage radius
of edge server s. Assuming the mobile user can connect to only one server at any time, the time
the user transfers data to the edge servers is 𝐵𝐵𝑖𝑖/𝑟𝑟𝑇𝑇,𝑠𝑠 for task 𝑇𝑇𝑖𝑖.
Here, 𝐵𝐵𝑖𝑖/𝑟𝑟𝑇𝑇,𝑠𝑠 indicates the data transfer rate between the user and the edge server s, which can
know in advance by the user. The computing power of the edge server s is represented by 𝐹𝐹𝑠𝑠 .
Should the user maintain connection with “s” before the edge server s completes the task 𝑇𝑇𝑖𝑖,
the execution time of task 𝑇𝑇𝑖𝑖 on the edge server is 𝐷𝐷𝑇𝑇 /𝐹𝐹𝑠𝑠. The latency that occurs when the
edge server sends the computation output back to the user is neglected, due to the fact that for
most applications, the size of the output in general is much smaller than the size of the input
data. So, the response time of the task 𝑇𝑇𝑇𝑇 executed on the edge server 𝑠𝑠 can be given as

𝑇𝑇𝑖𝑖,0 =
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠

We can compute the overhead in terms of processing time as

𝐶𝐶𝑖𝑖 = 𝜆𝜆𝑇𝑇 �
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠
�

Here 𝜆𝜆𝑇𝑇 denote the weights of time consumption for the user. We assume that 𝜆𝜆𝑇𝑇 ∈ (0, 1) to
prevent high latency. However, the setting of the parameters is user and application dependent,
such that to minimize latency in a latency-sensitive application, the user might raise the weight
of time latency. It is worth noting that edge servers cannot always satisfy user’s resource
requests because of their limited resources. When the remaining resources of the edge server
cannot meet the requirements, the edge server needs to connect directly to the cloud server and
send the request to the remote cloud. The task upload time, execution time and roundtrip bac
to user’s mobile device is a summation of the latency between user and cloud server.

𝑇𝑇𝑖𝑖,0 =
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜

 + 𝑑𝑑

Where, 𝑟𝑟𝑇𝑇, 𝑜𝑜 and 𝐹𝐹𝑜𝑜 represents the data transmission rate between user and cloud server and
cloud server computing power respectively. In addition, the time latency overhead of task 𝑇𝑇𝑖𝑖
processed in the cloud is expressed as

9

𝑇𝑇𝑖𝑖,0 = 𝜆𝜆𝑇𝑇 �
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜

 + 𝑑𝑑�

When the edge server lacks the required computational capacity minimum to execute the task.
According to the model of task completion probability, the success rate that the edge server 𝑠𝑠
completes the task is 𝑝𝑝. Thus, the overhead computation function that the edge server completes
the task 𝑇𝑇𝑖𝑖,𝑜𝑜 is expressed as

𝑇𝑇𝑖𝑖,0 = 𝑝𝑝 �𝜆𝜆𝑇𝑇 �
𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑠𝑠

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑠𝑠
�� + (1 − 𝑝𝑝)�𝜆𝜆𝑇𝑇 �

𝐵𝐵𝑖𝑖
𝑟𝑟𝑇𝑇, 𝑜𝑜

 +
𝐷𝐷𝑖𝑖
𝐹𝐹𝑜𝑜
��

Mobile user’s total overhead: When an edge server is selected, the computational overhead
for completing a single task can be obtained according to computation model overhead. For
this to happen, many tasks need to be completed for a user over a period of time. Due to user’s
mobility, the mobile user will connect to different edge servers to get resources. Next, we will
go into how the user selects the edge servers in the mobile path.

The Mobile Path: A mobile path is represented by a triple (𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒, 𝐿𝐿,𝑁𝑁), where:
• 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒 is the time span during which the user is moving. It includes a set of continuous
time points;
• 𝐿𝐿 is the set of the user’s locations corresponding to all time points in Time;
• 𝑁𝑁 is a mapping function between the time points and the user’s locations on the path.
𝑁𝑁: 𝑇𝑇𝑇𝑇𝑇𝑇𝑒𝑒→ 𝐿𝐿.
In this definition, 𝐿𝐿 divides the entire moving path into multiple segments. 𝑁𝑁 represents the
connection between time and location, which indicates the variable speed while a user moves.
Specifically, if the time interval is small, it means the user moves with a high speed in that
location; otherwise, the user moves slowly.

Selection of Edge Server: The selection of edge server during user movement is a triple (𝑆𝑆𝑒𝑒,
𝑆𝑆, 𝐺𝐺), where;
• 𝑆𝑆𝑒𝑒 represents the set of many segments, and Path = 𝑠𝑠𝑒𝑒1 ∪ 𝑠𝑠𝑒𝑒2 ∪. (Combining all
segments can compose the user’s mobile path)
• 𝑀𝑀 = (0, 1, …, 𝑆𝑆) represents the set of all the servers that the user can connect to
• 𝐺𝐺 is a function representing the correspondence between the segment and all edge
servers that cover the segment: ∀𝑠𝑠𝑒𝑒𝑇𝑇 ∈ 𝑆𝑆𝑒𝑒,𝐺𝐺: 𝑠𝑠𝑒𝑒𝑇𝑇 → 𝑀𝑀.
Since the user movement path is known in advance, according to the geographical location and
the coverage radius of each edge server, we can get all potential servers that the user can
connect during the moving path: (0, 1, …, 𝑆𝑆). Function 𝐺𝐺 divides the moving path into many
segments 𝑆𝑆𝑒𝑒, and makes each segment be covered by the same severs. When the user moves
to the position of the segment 𝑆𝑆𝑒𝑒𝑇𝑇, one of the 𝑠𝑠 servers that cover the segment is connected to
provide resource for the mobile user.

10

The Total Overhead: By assuming that the user’s movement path, we divide it into n
segments, and all servers that the user can connect are represented as a vector of length 𝑛𝑛: <
𝑠𝑠1, 𝑠𝑠2,  …   , 𝑠𝑠𝑛𝑛  > , 𝑠𝑠𝑇𝑇 ∈ {0, 1,  …   , 𝑆𝑆}.∀1 ≤ 𝑇𝑇 ≤ 𝑛𝑛 − 1 and 𝑠𝑠𝑇𝑇 ≠ 𝑠𝑠𝑇𝑇 + 1, if a task is not
completed before the user leaves the coverage area of the edge server 𝑠𝑠𝑇𝑇, the task needs to be
migrated, otherwise it will not be migrated. Assuming that there are 𝑇𝑇 tasks to be completed,
the user’s total overhead can be obtained according to the above calculation model:
∑ 𝐶𝐶𝑇𝑇𝑚𝑚
𝑖𝑖=1 . Our goal is to minimize the total overhead of the mobile user: 𝑇𝑇𝑇𝑇𝑛𝑛∑ 𝐶𝐶𝑇𝑇𝑚𝑚

𝑖𝑖=1 .

4 Design Specification

4.1 Gradient Descent
Gradient Descent (GD) is the most often used machine learning method. It is not just used to
solve optimization problems, but it is also the most prevalent approach for training any type of
neural network, including deep learning. There are a few implementations of the method, but
they all depend on the gradient theorem. GD is based on a convex function that alters its
parameters iteratively to minimize a given function to its local minimum. These models evolve
over time with the use of training data, and the cost function inside gradient descent functions
as a way of measurement for assessing its correctness with each iteration of parameter changes.

4.2 Genetic Algorithm
The relationship between the GA and edge server selection problems are such that, in genetic
algorithm (GA), achievable solutions are designed by select servers also known as
chromosomes responding to the edge servers in each section. The chromosomes, also
comprises of a set of independent servers called genes to represent the selected servers. During
user movement, the locus of a gene in a chromosome expresses itself as a segment. The energy
consumption, time and latency of the chromosome are implied as low if it has a high fitness
due to the end user.
In GA, new candidates are generated through crossover and mutation. The overhead of the
chromosome is calculated according to the fitness function where the GA algorithm is executed
iteratively and approximate optimal solution is eventually achieved.
At the earlier phase, we updated the algorithm parameters such as population size,
initialization, learning rate, step size, terminating condition, and mutation rate, and etcetera.
The selection process involves a simple process of reserving the superior chromosomes
represented as 0’s or 1’s and randomly removing out a part of the inferior chromosomes while
the remaining chromosomes are now identified as the parent chromosomes.
In the Cross-over process, the parent chromosomes recombine to generate new chromosomes
(child chromosomes). During the process, a point is chosen at random from the chromosomes
directly, after which a randomly selected parent chromosome parent loses the genes after that
point and another randomly selected parent chromosome parent loses the genes before that
point, hence a new child chromosome child is generated by combining the two parent
chromosomes.

11

4.3 Combined CGGD

The ability of the genetic algorithm, as one of two commonly used heuristic algorithms lies in
powerful global searching while the gradient descent is an optimization method used to find
the local minima of a given function. This heuristic algorithm is called Combined Genetic
Gradient Descent (CGGD) algorithms for edge server selection. It can inherit the powerful
searching ability of the genetic algorithm, and the ability to avoid being trapped in saddle point
during the early stages by decreasing the converge speed or increasing it to improve its
efficiency. This algorithm is a combination of the two algorithms which works to achieve a
derivative function from the genetic algorithm and optimize it using gradient descent. This
proposed algorithm can select edge servers for the mobile user to get an approximate and
optimal solution within a set amount of time from a population of several candidates. In this
section, we will detail how CGGD is applied to our edge server selection process.

Firstly, we use GA to generate the fittest chromosomes from the records from the base stations.
The fittest chromosome is then used as the 𝑥𝑥 value which is the independent variable. The 𝑥𝑥
value is then used to define the corresponding 𝑦𝑦 value which is the dependent variable for the
equation where anywhere the 𝑦𝑦 value = 1, the distance between the user and the edge server is
saved in the 𝑦𝑦 column. Using the standard definition and the derivative function of the gradient
descent, the slope and the intercept for the line equation is defined. Given the definition, slope
and gradient is substituted into the line equation and used to retrieve the index of the fittest
chromosomes based on the relationship between the 𝑥𝑥 and 𝑦𝑦 variables, and find the minimum
of the predicted values. The index is used to retrieve the edge server from the base station.

Figure 2: System Model Flowchart.

12

Algorithm 1: Genetic Algorithm for Server Selection in MEC

Input: SISP(Um, List(BaseStations), Pfunc, Ffunc, Sfunc, COfunc, Mfunc, gl, fl)
Output: Chromosome with the highest fitness

population <= Pfunc()
 for i in range(gl)
 # evaluate the fitness of every member of the population
 population <= sort(Ffunc())

 Wf <= Ffunc(population[0])
 if Wf >= fl
 break

 next_gen <= population[0:2]

 # Select parent for the next generation and mate selected parent to product offspring
 for j in range(len(population/2))
 # Select parents from the current population
 parents <= Sfunc(population, Ffunc)
 # Mate parent to product children
 children <= COfunc(parents[0], parents[1])
 # invoke mutation function on the children produce from mating parents
 Mfunc(children)
 # Add children to the next generation
 next_gen += [children]

 population = next_gen

 # evaluate the fitness of every member of the population
 population <= sort(Ffunc())

 SISP_GD(population[0], List(BaseStations))

Table 2: Genetic Algorithm

Algorithm 2: Gradient Descent Algorithm for Server Selection in MEC

Input: SISP_GD(Chromosome, List(BaseStations))
Output: base_station_instance: BaseStations

#create a linear relationship between Chromosome and List(BaseStation)
x <= List(Chromosome)
y <= List(compute_distance_relationship(List(BaseStation)))

define linear relationship between y and x variables
y <= mx + c

for i range(1000)
 # compute predicted y using y = mx +c

13

 y_pred = cur_m * x + cur_c

 compute cost
 compute dev_m
 compute dev_c
 update cur_m
 update cur_c

 if different in cost compare to previous cost is insignificant
 break out of loop

 # Predict optimal solution from List(BaseStation)
 For i, station in List(BaseStation)
 If Chromosome[i] equals 1
 Check for the BaseStation with the minimum distance value
 Store the index with the minimum value in selected_index

return BaseStation[selected_index]

Table 3: Gradient Descent Algorithm

5 Implementation

In this section, we carry out experiments to evaluate the performance of CGAGD and compare
the results with a variety of settings in the algorithm. All experiments were conducted on a
Linux operating system, fitted with intel core i7 at 3.6 GHz, 16 GB of RAM and implemented
with Python v3.6.
Extensive tests are carried out on the publicly available EUA benchmark dataset (Zou et al.,
2021) that is widely used in edge computing, including, to confirm the efficacy and efficiency
of our technique. The EUA dataset contains data from real world sources. The dataset holds
information about the user
s addresses and edge servers’ locations and so on. In the experiment, we generated one dataset
for the edge servers where they converge. The mobile path can be determined by plotting
against longitudinal and latitudinal lines of the edge servers from the information provided in
the edge server dataset. So, we can access all the base stations within a mobile user’s path. We
assume that the mobile user is connected to an edge server over Wi-Fi interface with an average
data transmission rate of 3.01 mb/s. Given the average transmission rate over Wi-Fi, we assume
that the transmission rate ranges between [2.01, 4.01] mb/s. Furthermore, we assume that the
processing power of each edge server varies; ranging between [2,3] GHz. We also consider
that the number of CPU of the edge server is randomly distributed between [7,18]. In this study,
we do not consider the cloud server resources, given that it has ample computing resources and
that there is no service migration. However, we assume that the data transmission rate from
edge server to cloud server is 5.01 mb/s.

6 Evaluation

14

In the experiment we conducted, for each iteration, the number of users increased exponentially
to a maximum of 816 users. The ratio of user requests to the edge servers is 0.05 as well as the
users being drawn at random from the associated dataset's user set. To demonstrate the efficacy
of the proposed algorithm, we compare the direct impact of gradient descent on genetic
algorithm and against GASISMEC algorithm. The tasks to be completed are chosen at random.
In order to eliminate the impact of iterations, the number of iterations for all approaches is
maintained. Table 2 describes the experimental findings on EUA datasets with increased
number of users.

Algorithm Total Average Response
Time

GA 26.61%
GASISMEC 22.10%
CGGD 15.51%

Table 2: Experimental results on EUA datasets.

Algorithm Average CPU Usage
GA 35.93%
GASISMEC 87.96%
CGGD 80.83%

Table 3: Experimental results on EUA datasets.

6.1 Experiment on latency
The result demonstrates that the average response time on the EUA dataset with normal user
distribution is significantly shorter than the competing baseline algorithms. It is caused by the
using normal distributions of BSs in the dataset. While GA without GD performs the worst
with an average response time of 25.18%, CGGD performs best when compared with another
hybrid GA algorithm which records 15.51% and 22.10% respectively. Correspondingly, as the
number of users grow, so does the computation requirements for processing user requests.
Figure 3 below shows the average response time relative to the number of users connected to
the BS.

15

Figure 3: Performance of computational time on EUA dataset.

6.2 Experiment on total overhead

To further validate our heuristic approach to edge server selection, we calculate the total
overhead. The result depicts that the average CPU usage of CGGD scales accordingly as the
demand for computational resources increase. The outcome show that the 80.83% recorded
by CGGD outperforms GASISMEC’s 87.96%. However, GA shows to demand the least
computation resource with 35.93%. Figure 4 below shows the average CPU usage relative to
the number of user requests generated.

16

Figure 4: Performance of CGGD with respect to CPU usage on EUA dataset.

6.3 Discussion

In the experiment we conducted on optimization of edge server selection technique, we
implemented model that combines GA and GD (CGGD). In the results demonstrated above,
we find that heuristic ML approaches perform efficiently in reducing latency and maximizes
computational resources significantly. While we obtain super results compared to the baseline
algorithms, several factors may affect our results. These factors include but are not limited to
the randomisation effect of user distribution, input data upload and download rate. The
challenges to the validity of our work's applicability include whether our technique can be
applied to other real-world scenarios in mobile edge computing. There is currently no dataset
that has user distribution, user mobility path, and edge server distribution all at the same time.
To minimize application risks, we examined CGGD over varying parameters such as user and
base station distributions, and the proportion of output data size to input data size, in order to
mimic as many application situations as feasible. Furthermore, we consider the randomness of
different variables in each iteration of experiments to advance the achievability of CGGD in
real life.

7 Conclusion and Future Work

Resource scarcity is a major hindrance that plagues mobile edge computing. The fact that
mobile users are greedy makes solving the issue even the more difficult. The temporal and
computational demands of mobile users is high and requires enough resources to fulfil user
requests. A lot of research has been carried out on the optimization of selection of edge servers
in mobile edge computing using machine learning. Given the large solution space, selecting
the optimal server to run serve applications to mobile user is essential to reducing latency and
overhead and improving the user’s quality of experience. Several optimization methods have
been proposed using GA and other optimization techniques in edge server selection. Recent
research shows the efficacy of heuristic methods in providing efficient ways in selecting the
optimal edge server.
In this study we conducted on edge sever selection optimization experiment by implementing
a hybrid technique of using two widely used techniques - genetic algorithm and gradient
descent algorithm. Firstly, we measured the probability of a task request getting completed.
Given that we assume a normal distribution, we can obtain the average response time. To
minimize latency and computation overhead, we propose CGGD algorithm that can select
servers in advance for the user by providing good quality of service. The outcome demonstrates
that CGGD algorithm performs better than traditional algorithms both in terms of latency and
CPU usage.
We propose the application of CGGD in dynamically offloading tasks to edge servers in the
context of service migration for mobile users. By introducing other elements and specifications,
we will aim to handle user requests at the edge of the network. In summary, this study has
shown that using heuristic machine learning can evidently optimize edge server selection.

17

Acknowledgement

My Sincere appreciation goes to my supervisor Sean Heeney, for his guidance, support,
patience and prompt response to my queries in the cause of project implementation. My heart
appreciation and vote of thanks goes to my family Mrs. Pibowei Omamofe Taiwo (Mother),
Mr. Peter Solari Pibowei(Father) and Mr. Oyindeinbofa Pibowei(Brother) for their support,
encouragement and contributions to the actualization of this work, many thanks to YOU.

References

Yuan, B., Guo, S., & Wang, Q. (2021). Joint Service Placement and Request Routing in
Mobile Edge Computing Networks. 2021 13th International Conference on Advanced
Computational Intelligence, ICACI 2021, 26–33.
https://doi.org/10.1109/ICACI52617.2021.9435886

Thiruvasagam, P. K., Chakraborty, A., & Murthy, C. S. R. (2021). Latency-aware and
Survivable Mapping of VNFs in 5G Network Edge Cloud. 2021 17th International
Conference on the Design of Reliable Communication Networks, DRCN 2021.
https://doi.org/10.1109/DRCN51631.2021.9477372

Hadžić, I., Abe, Y., & Woithe, H. C. (2019). Server Placement and Selection for Edge
Computing in the ePC. IEEE Transactions on Services Computing, 12(5), 671–684.
https://doi.org/10.1109/TSC.2018.2850327

Zhao, H., Deng, S., Zhang, C., Du, W., He, Q., & Yin, J. (2019). A mobility-aware cross-
edge computation offloading framework for partitionable applications. Proceedings -
2019 IEEE International Conference on Web Services, ICWS 2019 - Part of the 2019
IEEE World Congress on Services, 193–200. https://doi.org/10.1109/ICWS.2019.00041

Wang, S., Urgaonkar, R., Zafer, M., He, T., Chan, K., & Leung, K. K. (n.d.). Dynamic
Service Migration in Mobile Edge-Clouds.

Guidara, I., Guermouche, N., Chaari, T., Tazi, S., & Jmaiel, M. (2014). Pruning based service
selection approach under QoS and temporal constraints. Proceedings - 2014 IEEE
International Conference on Web Services, ICWS 2014, 9–16.
https://doi.org/10.1109/ICWS.2014.15

Tan, H., Han, Z., Li, X. Y., & Lau, F. C. M. (2017). Online job dispatching and scheduling in
edge-clouds. Proceedings - IEEE INFOCOM.
https://doi.org/10.1109/INFOCOM.2017.8057116

Charyyev, B., Arslan, E., & Gunes, M. H. (2020). Latency Comparison of Cloud Datacenters
and Edge Servers. 2020 IEEE Global Communications Conference, GLOBECOM 2020 -
Proceedings, 0–5. https://doi.org/10.1109/GLOBECOM42002.2020.9322406

Lin, H., Xu, X., Zhao, J., & Wang, X. (2020). Dynamic service migration in ultra-dense
multi-access edge computing network for high-mobility scenarios. EURASIP Journal on
Wireless Communications and Networking, 2020(1), 191.
https://doi.org/10.1186/s13638-020-01805-2

18

Wei, H., Luo, H., & Sun, Y. (2020). Mobility-aware service caching in mobile edge
computing for internet of things. Sensors (Switzerland), 20(3).
https://doi.org/10.3390/s20030610

Deng, S., Huang, L., Taheri, J., & Zomaya, A. Y. (2015). Computation Offloading for
Service Workflow in Mobile Cloud Computing. IEEE Transactions on Parallel and
Distributed Systems, 26(12), 3317–3329. https://doi.org/10.1109/TPDS.2014.2381640

Selection, N. L. N. (2016). QoS Prediction for Web Service Recommendation with. 26(4),
611–632. https://doi.org/10.1142/S0218194016400040

Alchalabi, A. E., Shirmohammadi, S., Mohammed, S., Stoian, S., & Vijayasuganthan, K.
(2021). Fair Server Selection in Edge Computing with Q-Value-Normalized Action-
Suppressed Quadruple Q-Learning. IEEE Transactions on Artificial Intelligence, PP(0),
1–1. https://doi.org/10.1109/tai.2021.3105087

Wang, S., Xu, J., Zhang, N., & Liu, Y. (2018). A Survey on Service Migration in Mobile
Edge Computing. IEEE Access, 6(c), 23511–23528.
https://doi.org/10.1109/ACCESS.2018.2828102

Xenakis, D., Passas, N., Merakos, L., & Verikoukis, C. (2013). Mobility Management for
Femtocells in LTE-Advanced : Key Aspects and Survey of Handover Decision
Algorithms. 1–28.

Chen, M., Hao, Y., Hu, L., Hossain, M. S., & Ghoneim, A. (2018). Edge-CoCaCo: Toward
Joint Optimization of Computation, Caching, and Communication on Edge Cloud. IEEE
Wireless Communications, 25(3), 21–27. https://doi.org/10.1109/MWC.2018.1700308

Zou, G., Qin, Z., Deng, S., Li, K. C., Gan, Y., & Zhang, B. (2021). Towards the optimality of
service instance selection in mobile edge computing. Knowledge-Based Systems, 217,
106831. https://doi.org/10.1016/j.knosys.2021.106831

Dilanka, G., Viranga, L., Pamudith, R., Gamage, T. D., & Ranaweera, P. S. (2021). A Novel
Server Selection Strategy for Multi-access Edge Computing. December.

Zhang, Y., Zhang, W., Peng, K., Yan, D., & Wu, Q. (2021). A novel edge server selection
method based on combined genetic algorithm and simulated annealing algorithm.
https://doi.org/10.1080/00051144.2020.1837499

Chen, W., Wang, D., & Li, K. (2019). Multi-User Multi-Task Computation Offloading in
Green Mobile Edge Cloud Computing. IEEE Transactions on Services Computing,
12(5), 726–738. https://doi.org/10.1109/TSC.2018.2826544

Scoca, V., Aral, A., Brandic, I., De Nicola, R., & Uriarte, R. B. (2018). Scheduling latency-
sensitive applications in edge computing. CLOSER 2018 - Proceedings of the 8th
International Conference on Cloud Computing and Services Science, 2018-
Janua(Closer 2018), 158–168. https://doi.org/10.5220/0006706201580168

19

Zhang, W., Zhang, Y., Wu, Q., & Peng, K. (2019). Mobility-enabled edge server selection for
multi-user composite services. Future Internet, 11(9), 1–17.
https://doi.org/10.3390/fi11090184

Soltani, S., Martin, P., & Elgazzar, K. (2018). A hybrid approach to automatic IaaS service
selection. Journal of Cloud Computing, 7(1). https://doi.org/10.1186/s13677-018-0113-8

Wu, H., Deng, S., Li, W., Yin, J., Li, X., Feng, Z., & Zomaya, A. Y. (2019). Mobility-aware
service selection in mobile edge computing systems. Proceedings - 2019 IEEE
International Conference on Web Services, ICWS 2019 - Part of the 2019 IEEE World
Congress on Services, 201–208. https://doi.org/10.1109/ICWS.2019.00042

Guidara, I., Guermouche, N., Chaari, T., Tazi, S., & Jmaiel, M. (2015). Heuristic Based
Time-Aware Service Selection Approach. Proceedings - 2015 IEEE International
Conference on Web Services, ICWS 2015, 65–72. https://doi.org/10.1109/ICWS.2015.19

Tianze, L., Muqing, W., Min, Z., & Wenxing, L. (2017). An Overhead-Optimizing Task
Scheduling Strategy for Ad-hoc Based Mobile Edge Computing. IEEE Access, 5(c),
5609–5622. https://doi.org/10.1109/ACCESS.2017.2678102

Zeng, F., Ren, Y., Deng, X., & Li, W. (2019). Cost-effective edge server placement in
wireless metropolitan area networks. Sensors (Switzerland), 19(1), 1–21.
https://doi.org/10.3390/s19010032

Kasi, S. K., Kasi, M. K., Ali, K., Raza, M., Afzal, H., Lasebae, A., Naeem, B., Islam, S. U.,
& Rodrigues, J. J. P. C. (2021). Heuristic Edge Server Placement in Industrial Internet of
Things and Cellular Networks. IEEE Internet of Things Journal, 8(13), 10308–10317.
https://doi.org/10.1109/JIOT.2020.3041805

Qian, H., Zu, H., Cao, C., & Wang, Q. (2013). CSS: Facilitate the cloud service selection in
IaaS platforms. Proceedings of the 2013 International Conference on Collaboration
Technologies and Systems, CTS 2013, 347–354.
https://doi.org/10.1109/CTS.2013.6567253

Tang, L., Tang, B., Zhang, L., Guo, F., & He, H. (2021). Joint optimization of network
selection and task offloading for vehicular edge computing. Journal of Cloud
Computing, 10(1). https://doi.org/10.1186/s13677-021-00240-y

Chen, M. H., Liang, B., & Dong, M. (2017). Joint offloading and resource allocation for
computation and communication in mobile cloud with computing access point.
Proceedings - IEEE INFOCOM. https://doi.org/10.1109/INFOCOM.2017.8057150

Shah-Mansouri, H., & Wong, V. W. S. (2018). Hierarchical fog-cloud computing for IoT
systems: A computation offloading game. IEEE Internet of Things Journal, 5(4), 3246–
3257. https://doi.org/10.1109/JIOT.2018.2838022

Chen, X., Zhang, H., Wu, C., Mao, S., Ji, Y., & Bennis, M. (2018). Performance
Optimization in Mobile-Edge Computing via Deep Reinforcement Learning. IEEE
Vehicular Technology Conference, 2018-Augus, 1–6.
https://doi.org/10.1109/VTCFall.2018.8690980

20

Lee, G., Saad, W., & Bennis, M. (2017). An online secretary framework for fog network
formation with minimal latency. IEEE International Conference on Communications, 1–
6. https://doi.org/10.1109/ICC.2017.7996574

Zhang, M., Ranjan, R., Haller, A., Georgakopoulos, D., & Strazdins, P. (2012). Investigating
decision support techniques for automating Cloud service selection. CloudCom 2012 -
Proceedings: 2012 4th IEEE International Conference on Cloud Computing Technology
and Science, 759–764. https://doi.org/10.1109/CloudCom.2012.6427501

Lai, P., He, Q., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., & Yang, Y. (2018).
Optimal edge user allocation in edge computing with variable sized vector bin packing.
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 11236 LNCS, 230–245.
https://doi.org/10.1007/978-3-030-03596-9_15

	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Design Specification
	4.1 Gradient Descent
	4.2 Genetic Algorithm
	4.3 Combined CGGD

	5 Implementation
	6 Evaluation
	6.1 Experiment on latency
	6.2 Experiment on total overhead
	6.3 Discussion

	7 Conclusion and Future Work
	Acknowledgement
	References

