“—-
\ National

Configuration Manual

MSc Research Project
Cloud Computing

Akash Parapurath Govindarajan
Student 1D:x20122101

School of Computing
National College of Ireland

Supervisor: Divya Elango

~

College
Ireland

National College of Ireland

National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Akash Parapurath Govindarajan
Student ID: x20122101
Programme: Cloud Computing
Year: 2021
Module: MSc Research Project
Supervisor: Divya Elango
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 1400
Page Count: B

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary

action.
Signature: Akash Parapurath Govindarajan
Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

a copy on computer.

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).

You must ensure that you retain a HARD COPY of the project, both for | O

your own reference and in case a project is lost or mislaid. It is not sufficient to keep

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Configuration Manual

Akash Parapurath Govindarajan
x20122101

1 Introduction

The configuration manual provides us with the complement implementation of our in-
tegrated Masked Face Identification model web application. This project is done with
Deep learning and MLOps. In this documentation, we will have a clear view of how the
application files are handled in our project.

2 System Configuration

2.1 Hardware Requirements For Local Machine

The implementation is done in Local for primarily training the algorithm results. For
evaluating, we need a huge computational GPU system to run these Deep Learning
algorithms. The system consists of the following configuration:

Operating System: Windows 10 x64

Processor: Intel Core 15-9300H @ 2.4 GHz
RAM: 16 GB
Hard drive: 215 GB SSD

GPU: GEFORCE GTX 1650 Ti

2.2 Hardware Requiremnets For Cloud Instance

This heading explains the requirements for our application to run in the Azure Cloud.
Here this compute helps to run the deep learning model in the cloud and can be accessed
by REST API generated by the cloud. We use the free standard GPU computation
provided by Azure. Here we have a computation of 6 cores, 56GB RAM, 380 GB Disk,
and GPU of NVIDIA Tesla K80. Figure [1| shows the computational setup we have in our
cloud.

Home > Compute x201221011

x201221011
Details Runs Monitoring (preview)
() Refresh Connect (&) Start Stop Restart [i] Delete

Resource properties

Status
Q Stopped

Last operation
Stopped at Dec 13, 2021 3:31 AM: Succeeded

Virtual machine size

Standard_NC6 (b cores, 56 GB RAM, 380 GB disk)

Processing unit

GPU - 1 x NVIDIA Tesla K80

Additional data storage

Applications
JupyterLab Jupyter VS Code RStudio Terminal

Created on
12/9/2021, 12:22:48 AM
SSH access

Disabled

Private IP address
[0.004] 1

Figure 1: Computational Requirements in Azure Cloud

2.3 Software Requirements

This complete project is implemented in Python 3.6 for building the deep learning model
and it is completely used in the back-end. The Masked Face Identification model is im-
plemented using Custom CNN and Inception V3 deep learning models. These algorithms
are adapted from previous research. We also use HTML, CSS, JavaScript for the front-
end to develop the UI for our application. We use Azure Cloud Service to implement the
MLOps concept in our application. This also helps to deploy our application live. The
following are the software and packages used to build our project.

Python 3.6

HTML

CSS

JavaScript

Azureml

Jupyter Notebook

VS Code IDE

TensorFlow

Keras

. pandas

. matplotlib

. 08

. urllib

. json

. tqdm

. opencv

©oON O W

—_ =
)

= =
S O =~ W N

3 Dataset Description

The data set for our project is manually generated by OpenCV. This data set is stored
in the Azure Blob storage and Google drive that can be accessed to perform the model
building process. The figure shows the data sets stored in the Azure Cloud that are used
to do the model building with Azure Machine Learning.

S - - - 2 Azure for Students
Microsoft Azure Machine Learning Studio 0@ 2 0 workspace v IR
= Home Datasets Train

New -
Train | \ersion 1 (latest) -

@ Home

Author Details Consume Explore Models

[Notebooks

a [> Newversion ~ () Refresh @ Unregister
£ Automated ML 9

&% Designer Preview
Assets >
B Datasets Number of files: 50 (sampled) .
" 7 Modified Ti = File S —— review
X E1d ~Path EFile Name I Modified Time [Created Time File Size = File Format Dispteying frst 5000000 bytes of source e
29 pipelines 1 JUY/12-13- WIN_20211129.17_00_ 2021-12-1300:55:24 2021-12-1300:55:24 26.92 KiB Jpg
2021_125507_UTC/Dat
@ Models -
2 JUI/12-13- WIN_2021112917_00_ 2021-12-1300:55:24 2021-12-1300:55:24 26.67 KiB jpg
> Endpoints 2021_125507_UTC/Dat
T 3 JU1/12-13- WIN_20211129_17_00_ 2021-12-1300:55:24 2021-12-1300:55:24 27.08 KiB jpg
2021125507_UTC/D... (2)jpg
S Compute § .
4 JUI/12-13- WIN_20211129_17.00_ 2021-12-130055:25 2021-12-1300:55:25 26.27 Ki jpg
B Eenvironments 2021_125507_UTC/Dat
€ Datastores 5 JU/12-13- WIN_20211129_17.00_ 2021-12-1300:55:25 2021-12-1300:55:25 27.25 KiB jpg
2021_125507_UTC/Dat
Data Labeling
6 JUI/12-13- WIN_2021112917_00_ 2021-12-1300:55:25 ~ 2021-12-1300:55:25 27.37 KiB Jpg
o Linked Services 2021_125507_UTC/Dat
7 JUI/12-13- WIN_2021112917_00_ 2021-12-1300:35:25 2021-12-13 00:35:25 26.99 KiB jpg
2021_125507_UTC/Dat
8 JUI/12-13- WIN_20211129_17.00_ 2021-12-1300:55:26 2021-12-1300:55:26 27.06 KiB jpg

2021.125507_UTC/Dat:

Figure 2: Azure Blob Storage

4 Environment Setup

The environment setup is done in Cloud as well as Local. The cloud performs the model
building with Deep Learning Neural Network for the masked face recognition. And we
perform web application development in our Local Machine with Flask, HTML, CSS,
JavaScript. Firstly, we use the Jupyter Notebook to Train, Test, and Build our model.
Figure 4| shows the environment setup made in Azure Machine Learning. Azure Machine
Learning, it provides us to create a workspace with GPU computation which is discussed
in the previous heading. Azure ML also provides an MLOps(Machine Learning Oper-
ation) feature for our deep Learning Model with the Azure Machine Learning Pipeline
option on the left. Secondly, the web development environment for our application is set
up in our local machine with the help of Virtual Studio Code(VS Code). By running “pip
install -r requirements.txt” all the required packages that need for our model building will
be installed. This VS Code also supports the Azure Cloud Service with an extension that
can be connected with this IDE. Figure |3|shows the folder structure that is created for our
Integrated Model web application. The web application is built with HTML, CSS, and
JavaScript that is listed under the templates and static folder. The app.py is the main
file that handles all the integration of the model with the application and also this file
is used to start the Service. Let’s see the complete running of our code in the upcoming
heading.

> ime
v model
= model_dl.h5
v static
v s
main.css
v J'S

J5 main.js

- templates

base.html
index.html
> Test
> Train
amlrun.py
app.py
MaskedFR_Model.ipynb
requirements.txt

train.py

Figure 3: Folder Structure Created For the Web Application in VS Code IDE

Microsoft Azure Machine Learning Studio

= Home 7 Notebooks

New Notebooks Get started

(@ Home
Files Samples

Author —_
[El Notebooks B e O «
% Automated ML e & Users
&2 Designer v & x20122101

Assets > M config
B2 Datasets > M pycache__
L Experiments > M Akash
% Ppipelines > M data
© Models > M models
&> Endpoints O .amlignore

Manage PY amlirun.py
= Compute PY batch_scoring.py
& Environments [§ face_ecognition.ipynb
€ Datastores G face_recognition_model.ipynb
& Data Labeling [newTrainipynb
o Linked Services Bl requirements.txt

PY train.py

Figure 4: Folder Structure Jupyter Notebook in Azure Machine Learning Workspace

5 Training and Implementation of Model with Cloud

This training and Implementation heading gives an overall flow of how to handle all
the files that are used to implement our Masked Face Recognition model with MLOps.
Here Firstly, we will see the cloud setup which we have made for our Model building
and MLOps. Figure 5| shows the model running and identification of a person in the
Azure Machine Learning workspace. This is a workspace we can build the model by
creating Jupyter Notebooks. Here we train this ”Face_Recognition.ipynb” file that
is used to train the model for our Masked Face Recognition. If we run This program the
model will start train based on the code. The figures [6][7][§ shows the pipeline creation
for this MLOps process. The Azure Machine Learning has the inbuilt feature of MLOps
(Machine Learning Operation) that can be accessed by the options Azure ML Pipeline.
The Pipeline can be accessed by the trained model with the library "azure ml” package in
our code. The running pipeline is shown clearly in the second and third figures that are
clicked to view the experiment outputs and also if the code is changed in the workspace
and if you run all the model building pipeline will trigger to create the new endpoint that
can be accessed by the web application to implement the model in web application.

= Home > Notebooks

ed) Notebooks Getstarted [3face_ecognition.ipyr X

@ (e Files Samples = w < B {3 BE =&) Editin VS Code (pr.. @ Compute: | x201221011 - Stopped v b E A []

Author —
[E] Notebooks B ® O « O Yourdoecumentis cumently not connected to 2 compute. To connest, you can run a cell, switch to a runing compute or create a new compute.
£ Automated ML ™ & Users Viewing Last saved a few seconds ago

. 17 if probabilities_formatted =- [100.00%', '0.00%]:

& Designer ~ S x20122101 18 print('The recognized image is Akash')

s N - coniig ;3 plt. inshow(img)
B3 Datasets > M _pycache_ ;
A Experiments > ol Akash j 1 i probasiiiny.)
25 Pipelines > o data i
© Models > @ models [20] v
%> Endpoints O .amlignore WARNING:tensorflow: From <ipython-input-20-8e9868b@2bef>:13: Sequential.predict_proba (from tensorflow.python.keras.engine.sequential) is deprecated and will be remc

) Instructions for updating:

Mz PY' amirun.py Please use “model.predict()” instead.
= Compute BY batch_scoringoy The recognized insge is Akash
B Environments. [& face_ecognition.ipynb
8 Datastores [§ face_recognition_model.ipynb
71 Data Labeling 3 newTrainipynb
P Linked Services B requirements.txt

PY trainpy
0 s 10 150 20
Figure 5: Model Running in Azure Machine Learning Workspace
Name Description Created on Created by Updated on | Compute type
facerecognition The APl will be generated to... Dec 13, 2021 2:53 AM Akash Parapurath Govi... Dec 13, 2021 2:53 AM Container instance
Figure 6: Build model is running in Azure Container
maroon_bee_wlcdptng Masked-Face-Recognition (V] Completed Dec 13, 2021 2:58 AM

Figure 7: ML Pipeline For MLOps

Display name Status Submitted time | Duration Submitted by Compute target

Q maroon_bee_wlcdptng o Completed Dec 13, 2021 2:58 AM 2m 13s Akash Parapurath G...

Figure 8: ML Pipeline For MLOps

The Completely trained model will generate a REST API, Through this REST API,
you can easily access the model to test and validate. This model-trained end-point API
can be accessed with the flask in the back end to easily Validate the authentication process
of a Masked Face person. Figure [shows the end-point that is generated for our model
and is integrated with the web application.

facerecognition

Details Test Consume Deployment logs

Attributes

Service ID
facerecognition

Description
The APl will be generated to run the trained model, with our web application.

Deployment state
Healthy &
Compute type
Container instance

Created by

Akash Parapurath Govindarajan
Model ID
amlstudio-facerecognition:1
Created on

12/13/2021 2:53:18 AM

Last updated on
12/13/2021 2:53:18 AM

Image ID

REST endpoint
‘ hitp://649f3ecT-6cc7-46f5-90ca-f10936620ef3.eastus2 . azurecontainer.io/score oy

Figure 9: The Rest API end-point for accessing the model output

Finally, we will discuss the model integration part with the web application. Previous
figures show the implementation and model building with Azure Cloud Service. The
model was built and integrated with the MLOps part with the help of the Azure Machine
Learning service. Now we see how to run the developed web application model with flask.
From the figure [3, we see the environment setup we made in our local machine to run the
web application. From the image[10| we see the “app.py” which is the heart of the project.
This is the file that uses the flask framework and triggers all UI to communicate with the
back-end developed model. After running the main file app.py the server started that
server is communicated with the model that is deployed in the Azure Container. This
interaction of recognizing the person is identified by REST API which is generated as an
end-point that we discussed in the previous paragraph.

The next figure [11] shows the process of Recognizing the masked face with the help
of a flask. Generally, the flask is a web framework, that performs web actions like GET,
POST, PUT, DELET methods. Here in that figure, we create a post method function

Run type

Pipeline

L.

PS C:\Users\Asus TUF\OneDrive\Desktop\mk Dataset> & "C:/Users/Asus TUF/anaconda3/python.exe™ “c:/Users/Asus TUF/OneDrive/Desktop/mk Dataset/app.py”
2021-12-16 ©2:06:22.884455: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network
Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
Serving Flask app "app™ (lazy loading)
Environment: production

Use a production WSGI server instead.
Debug mode: on
Restarting with windowsapi reloader

2021-12-16 ©2:06:36.780322: I tensorflow/core/platform/cpu feature guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network

Library (oneDNN)to use the following CPU instructions in performance-critical operations: AVX AVX2

To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

* Debugger is active!

* Debugger PIN: 141-827-580

* Running on http://127.0.0.1:5008/ (Press CTRL+C to quit)

Figure 10: Running Server with Flask

@app.route('/"', methods=['GET'])
index():

irn render_template('1 Lhtml*)

@app.route(' /predict’, methods=['GET",

upload():
if request.method ==

f = request.files['f

person=[Ak
print(f)

basepath = os.path.dirname(_ file)

Figure 11: Flask which Handles the Captured image from the Front-End for authentica-
tion

€ > C 0 O 12700.1:5000 & *

I Apps M Gmail @3 YouTube ¥ Maps [3 News By Translate ¢ NCILIBERARY GUID.. &5 NCILIBERARY Other bookmarks

General template for Face Recognition

Upload the image for identifiying the person

m——""—“

Result: You are authorized. The person name is Akash

Figure 12: Running Implemented Web Application

that handles the image which is captured by the camera in the front-end and the image is
passed to the model for authentication. Finally, this figure[12|shows the implementation of
the demo. The authentication is performed in this web application. If we run this program
all previously mention scenarios will perform in sequential order. By this configuration
manual, we will get a proper way to handle this End-To-End Masked Face Recognition
application using Deep Learning and MLOps.

	Introduction
	System Configuration
	Hardware Requirements For Local Machine
	Hardware Requiremnets For Cloud Instance
	Software Requirements

	Dataset Description
	Environment Setup
	Training and Implementation of Model with Cloud

