
Configuration Manual

MSc Research Project

Cloud Computing

Akash Parapurath Govindarajan
Student ID:x20122101

School of Computing

National College of Ireland

Supervisor: Divya Elango

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Akash Parapurath Govindarajan

Student ID: x20122101

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Divya Elango

Submission Due Date: 16/12/2021

Project Title: Configuration Manual

Word Count: 1400

Page Count: 8

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Akash Parapurath Govindarajan

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Configuration Manual

Akash Parapurath Govindarajan
x20122101

1 Introduction

The configuration manual provides us with the complement implementation of our in-
tegrated Masked Face Identification model web application. This project is done with
Deep learning and MLOps. In this documentation, we will have a clear view of how the
application files are handled in our project.

2 System Configuration

2.1 Hardware Requirements For Local Machine

The implementation is done in Local for primarily training the algorithm results. For
evaluating, we need a huge computational GPU system to run these Deep Learning
algorithms. The system consists of the following configuration:

Operating System: Windows 10 x64

Processor: Intel Core i5-9300H @ 2.4 GHz

RAM: 16 GB

Hard drive: 215 GB SSD

GPU: GEFORCE GTX 1650 Ti

2.2 Hardware Requiremnets For Cloud Instance

This heading explains the requirements for our application to run in the Azure Cloud.
Here this compute helps to run the deep learning model in the cloud and can be accessed
by REST API generated by the cloud. We use the free standard GPU computation
provided by Azure. Here we have a computation of 6 cores, 56GB RAM, 380 GB Disk,
and GPU of NVIDIA Tesla K80. Figure 1 shows the computational setup we have in our
cloud.

1



Figure 1: Computational Requirements in Azure Cloud

2.3 Software Requirements

This complete project is implemented in Python 3.6 for building the deep learning model
and it is completely used in the back-end. The Masked Face Identification model is im-
plemented using Custom CNN and Inception V3 deep learning models. These algorithms
are adapted from previous research. We also use HTML, CSS, JavaScript for the front-
end to develop the UI for our application. We use Azure Cloud Service to implement the
MLOps concept in our application. This also helps to deploy our application live. The
following are the software and packages used to build our project.
1. Python 3.6
2. HTML
3. CSS
4. JavaScript
5. Azureml
6. Jupyter Notebook
7. VS Code IDE
8. TensorFlow
9. Keras
10. pandas
11. matplotlib
12. os
13. urllib
14. json
15. tqdm
16. opencv

2



3 Dataset Description

The data set for our project is manually generated by OpenCV. This data set is stored
in the Azure Blob storage and Google drive that can be accessed to perform the model
building process. The figure shows the data sets stored in the Azure Cloud that are used
to do the model building with Azure Machine Learning.

Figure 2: Azure Blob Storage

4 Environment Setup

The environment setup is done in Cloud as well as Local. The cloud performs the model
building with Deep Learning Neural Network for the masked face recognition. And we
perform web application development in our Local Machine with Flask, HTML, CSS,
JavaScript. Firstly, we use the Jupyter Notebook to Train, Test, and Build our model.
Figure 4 shows the environment setup made in Azure Machine Learning. Azure Machine
Learning, it provides us to create a workspace with GPU computation which is discussed
in the previous heading. Azure ML also provides an MLOps(Machine Learning Oper-
ation) feature for our deep Learning Model with the Azure Machine Learning Pipeline
option on the left. Secondly, the web development environment for our application is set
up in our local machine with the help of Virtual Studio Code(VS Code). By running ”pip
install -r requirements.txt” all the required packages that need for our model building will
be installed. This VS Code also supports the Azure Cloud Service with an extension that
can be connected with this IDE. Figure 3 shows the folder structure that is created for our
Integrated Model web application. The web application is built with HTML, CSS, and
JavaScript that is listed under the templates and static folder. The app.py is the main
file that handles all the integration of the model with the application and also this file
is used to start the Service. Let’s see the complete running of our code in the upcoming
heading.

3



Figure 3: Folder Structure Created For the Web Application in VS Code IDE

Figure 4: Folder Structure Jupyter Notebook in Azure Machine Learning Workspace

4



5 Training and Implementation of Model with Cloud

This training and Implementation heading gives an overall flow of how to handle all
the files that are used to implement our Masked Face Recognition model with MLOps.
Here Firstly, we will see the cloud setup which we have made for our Model building
and MLOps. Figure 5 shows the model running and identification of a person in the
Azure Machine Learning workspace. This is a workspace we can build the model by
creating Jupyter Notebooks. Here we train this ”Face Recognition.ipynb” file that
is used to train the model for our Masked Face Recognition. If we run This program the
model will start train based on the code. The figures 6,7,8 shows the pipeline creation
for this MLOps process. The Azure Machine Learning has the inbuilt feature of MLOps
(Machine Learning Operation) that can be accessed by the options Azure ML Pipeline.
The Pipeline can be accessed by the trained model with the library ”azure ml” package in
our code. The running pipeline is shown clearly in the second and third figures that are
clicked to view the experiment outputs and also if the code is changed in the workspace
and if you run all the model building pipeline will trigger to create the new endpoint that
can be accessed by the web application to implement the model in web application.

Figure 5: Model Running in Azure Machine Learning Workspace

Figure 6: Build model is running in Azure Container

Figure 7: ML Pipeline For MLOps

5



Figure 8: ML Pipeline For MLOps

The Completely trained model will generate a REST API, Through this REST API,
you can easily access the model to test and validate. This model-trained end-point API
can be accessed with the flask in the back end to easily Validate the authentication process
of a Masked Face person. Figure 9 shows the end-point that is generated for our model
and is integrated with the web application.

Figure 9: The Rest API end-point for accessing the model output

Finally, we will discuss the model integration part with the web application. Previous
figures show the implementation and model building with Azure Cloud Service. The
model was built and integrated with the MLOps part with the help of the Azure Machine
Learning service. Now we see how to run the developed web application model with flask.
From the figure 3, we see the environment setup we made in our local machine to run the
web application. From the image 10, we see the ”app.py” which is the heart of the project.
This is the file that uses the flask framework and triggers all UI to communicate with the
back-end developed model. After running the main file app.py the server started that
server is communicated with the model that is deployed in the Azure Container. This
interaction of recognizing the person is identified by REST API which is generated as an
end-point that we discussed in the previous paragraph.

The next figure 11 shows the process of Recognizing the masked face with the help
of a flask. Generally, the flask is a web framework, that performs web actions like GET,
POST, PUT, DELET methods. Here in that figure, we create a post method function

6



Figure 10: Running Server with Flask

Figure 11: Flask which Handles the Captured image from the Front-End for authentica-
tion

Figure 12: Running Implemented Web Application

7



that handles the image which is captured by the camera in the front-end and the image is
passed to the model for authentication. Finally, this figure 12 shows the implementation of
the demo. The authentication is performed in this web application. If we run this program
all previously mention scenarios will perform in sequential order. By this configuration
manual, we will get a proper way to handle this End-To-End Masked Face Recognition
application using Deep Learning and MLOps.

8


	Introduction
	System Configuration
	Hardware Requirements For Local Machine
	Hardware Requiremnets For Cloud Instance
	Software Requirements

	Dataset Description
	Environment Setup
	Training and Implementation of Model with Cloud

