*‘
\ National

Collegeof
[reland

Zero Day Malware Detection using
Machine Learning Algorithms

Configuration Manual

MSc Internship

Cybersecurity

School of Computing

National College of Ireland

Student
Name:

Student ID:

Program:

Module:

Lecturer:

Submission
Due Date:

Project Title:

Word Count:
1919

\——
\ National

National College of Ireland Coll“ege of
Ireland
MSc Project Submission Sheet

School of Computing

Mohammed Mustafa Raza
Choudhry

X20119607

MSC. Cyber Security Year: 2021

Intership
Dr. Imran Khan

28t January 2022

Zero Day Malware Detection using supervised and
unsupervised Machine learning Algorithms

Page Count: 22

I hereby certify that the information contained in this (my submission) is research
information I conducted for this project. All information other than my contribution will
be fully referenced and listed in the relevant bibliography section at the rear of the project.
ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the
National College of Ireland’s Institutional Repository for consultation.

Signature: Mohammed Mustafa
Raza Choudhry

Date: 14-12-2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including
multiple copies)

O

Attach a Moodle submission receipt of the online project
submission, to each project (including multiple copies).

You must ensure that you retain a HARD COPY of the
project, both for your reference and in case a project is lost or
mislaid. It is not sufficient to keep a copy on the computer.

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Zero Day Malware Detection using Machine
Learning Algorithms

INTRODUCTION

The configuration manual contains comprehensive guidance about how the research program
is designed and executed, this involves system requirements and coding requirements. For
developing the algorithms, Python coding language is used as it supports many machine
learning libraries. 2 datasets one is UCI and Virus Share are considered for evaluation of
performance metrics likeaccuracy, recall, F1 score, precision based on the actual number of
malware and normal samples in the dataset with the output sample produced which is a true
positive or a false positive. The lesserthe value of false positive, the greater is the accuracy of
the algorithm. First, the dataset considered is passed through a pre-processing algorithm
wherein only relevant features havingimportance according to the statistics are extracted
from the whole sample which helps in optimizing our training set. This set is tested with
unsupervised and supervised algorithms likeLogistic Regression, Decision Tree, Naive Bayes,
KNN, Random Forest, and the output determines whether the application is malicious or
harmless. Among which Random forest gives highest accuracy.

INITIAL SETUP
e RAM: 8GB
e DISK SPACE REQUIRED: 16GB
e OS: WINDOWS 10
e Softwares Used: Google Collab, ANACONDA, JUPYTER NOTEBOOK, SPYDER
e The prototype is tested on localhost

Anaconda [1]

The version of anaconda we have installed is 4.10.1. This will be used to manage all our
environments created in python.

B Anaconda Powershell Prompt (anaconda3)

conda 4.10.

Fig. 1. Conda version

The version of python we have installed is 3.7.8. Python is installed from within Anaconda

Navigator.

B Anaconda Powershell Prompt (anaconda3)

PS C:\Users\JT> python

Python 3.8.8

o]
£ ANACONDA NAVIGATOR

@ Environments
.
W Learning

&% Community CMD.exe Prompt

014
Run a cmd exe terminal with your current
environment from Navigator activated

ANACONDA

Back up your

environments in
Nucleus for free

Easily back up, port, and o o
restore any environment ©—_—
Jupyter
Documentation .
MNotebook
Anaconds Blog 630

Web-based, interactive computing
netebeok environment. Edit and run
human-readable docs while describing the

Fig. 2.

Fig. 3.

Channels

a8

Datalore

Online Data Analysis Tool with smart
coding assistance by JetBrains. Edit and run
your Python notebooks in the cloud and

share them with your team

Powershell Prompt
0.0.1

Run a Powershell terminal with your
current environment From Navigator

activated

Python version

IBM Watson Studio Cloud

IBM Watson Studio Cloud provides you the
tools to anzlyze and visuslize dats, to
cleanse and shape data, to create and train
machine learning models. Prepare data and
build models, using open source dats
science tools or visual modeling

(o]
)

Qt Console
503
PyQE GUI that supports inline figures,
proper multiline editing with syntax
highlighting, graphical calltips, and more.

Anaconda GUI

Jupyter is used for coding and managing our algorithms.

an Community

AMNACONDA,

Back up your

environments in
Mucleus for free

Easily back up, port, and
restore any environment

Documentation

Fig. 3.

. &

—
Jupyter
;‘-"'
Motebook
6.3.0

Refresh

JupyterLab
3.0.14
An extensible environment for interactive
and reproducible computing, based on the
Jupyter Notebook and Architecture.

Spyder
Aazs
Scientific P'vthon Development
EnviRonment. Pewerful Pythen IDE with
advanced editing, interactive testing,

o 5
NG 7m0

Web-based, interactive computing
notebook environment. Edit and run
human-readable docs while describing the

data analysis.

Jupyter Notebook Version

(]

For Dataset we have used panda library function to read dataset and used dataframe in which
our dataset will be inserted. Here we have created DATA_PATH Variable which will used in
loading and reading of Data.

In |l6): FLOGG LATG FrOM UrLve
DATA_PATH= "F:\Project work\Malware Detection ML\D Malware"

In [11]: pip install mlens

Requirement already satisfied: mlens in c:\users\jt\anaconda3\lib\site-packages (8.2.3)

Requirement already satisfied: scipy»=8.17 in c:\users\jt\anaconda3d\lib\site-packages (from mlens) (1.6.2)
Requirement already satisfied: numpy»=1.11 in c:\users\jt\anaconda3\lib\site-packages (from mlens) (1.28.1)
llote: you may need to restart the kernel to use updated packages.

Fig. 4. DATA_PATH for Dataset.

For the pre-processing of data and also for the whole experiment we will require a few
essential Python libraries which will ease the whole process of this study. Few popularly used
Machine Learning libraries are used. Libraries along with their basic functions are listed in the
figure below. [5]

ie Page - Select or createa 1 X Malware_Detection - Jupyter No X I3 sklearn.model_selection import © X | +
&} (D localhost:8888/notebooks/Malware_Detection.ipynb 8 7=
: jupyter Malware_Detection Last Checkpoint: 4 minutes ago (unsaved changes) F Logo
File Edit View Insert Cell Kemnel Widgets Help Trusted ‘ Python 3
B+ 5 & B 4+ 4 »Run B C MW Code v @
WULE. yUu mEy DETU LU TESLEN L LHT AT NS4 LU USE UPLGLEU PoLRGESI.

In [12]: # Import Libraries

import numpy as np

this Library used for working with arrays

NumPy offers comprehensive mathematicol functions, random number generators, Llinear algebra routines,
Fourier transforms, and more

import scipy.sparse
5ciPy has @ module, scipy.sparse that provides functions to deal with sparse data.
There are primarily two types of sparse matrices that we use: CSC - Compressed Sparse Column

import warnings
import pandas as pd
#used for dota analysis

warnings.filterwarnings("ignore", category=FutureWarning)
import matplotlib.pyplot as plt

matplotlib.pyplot is a state-bgsed interface to matplotlib. It provides a MATLAB-Llike way of pletting.
pyplot is mainly intended for interactive plots and simple cases of programmatic plot generation:

import seaborn as sns
Seaborn is a Python data visualization Library built on top of Matplotlib

#matplotlib inline
from IPython.display import Image

from numpy import hstack
this is subpackage of numpy

age-Selectorcreatear X | & Malware Detection - Jupyter Noo X I3 sklearn.model_selection import | X | +
(@ localhost:8888/notebooks/Malware_Detection.ipynb 8 o=
: Ju pyter Malware_Detection Last Checkpoint 5 minutes aga (autosaved) ﬂ Logout

File Edit View Insert Cell Kernel Widgets Help

‘Python?»l
1) 4+ 32| B 4 ¥ | »PRun B | C P Code v B2

from pandas.core.common import flatten
Flatten function from pandas.core.common allows you to flatten an array easily.
This method is pre-included in the Pandas Llibrary

import random
this is used for random generation
random.seed(1234)

from sklearn.model selection import KFold
K-Folds cross-validator

Provides train/test indices to split data in train/test sets.
plit dataset into k consecutive folds (without shuffling by default).

from sklearn import metrics

sklearn.metrics module includes score functions, performance metrics and pairwise metrics and distance computations.

from sklearn.metrics import classification_report
this is used for classification_report creation

from sklearn.metrics import roc_curve,accuracy_score,confusion_matrix,recall_score,precision_score,fl_score, auc, roc_auc_score
from sklearn.model_selection import train_test_split, GridSearchCv
this function is used for splitting dataset in training and testing set.

Our algorithms, by from the easiest to the hardest to intepret.
from sklearn.linear_model import LogisticRegression

T S N S e S S e R - O

:Page - Select orcreatear X & Malware_Detection - Jupyter No© X I; sklearn.model_selection import | X | Jr

=) (O localhost:8888/notebooks/Malware_Detection.ipynb 6 =
- Jupyter Malware_Detection Last Checkpoint: 6 minut tosaved e Lagou
~ | point: 6 minutes ago (autosaved) ogou

File Edit View Insert Cell Kermnel Widgets Help

|Python3
B+ s @& DB 4+ ¥+ PR B C P Code MR

Our algorithms, by from the easiest to the hardest to intepret.
from sklearn.linear_model import LogisticRegression
this is used for LR Model training and testing

from sklearn.tree import DecisionTreeClassifier
this is used for Decision Tree Classsifier Model.

from sklearn.ensemble import RandomForestClassifier
this is used for Random Forest Model.

from sklearn.naive_bayes import GaussianNB
This is used for Naive Bayes Model training and Testing

from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.neighbors import KNeighborsClassifier
This is used for KNN Model.

from mlens.ensemble import SuperLearner

this is used to Create Super Learner Model

from sklearn.metrics import roc_auc_score, log_loss, accuracy_score,roc_curve, \
confusion_matrix, recall_score, precision_score, \
precision_recall_curve,classification_report, f1_score, make scorer

from sklearn.model_selection import cross_val_score, cross_validate

This is used for Cross Validate Function and Confusion Matrix Value

import os

Fig. 5. Installed Libraries with their use commented

After importing all the libraries, our environment is ready for developing the algorithms. So
now at first, we will feed our dataset to the pre-processing stage wherein all the data samples
are analyzed and optimized before going through the algorithms to improve the efficiency of
machine learning algorithms and also to greatly reduce the time taken for algorithms to
generate output.

In this pre-processing stage, the data in the samples is

e First, eliminates duplicate and not null values,
e Calculating coefficient

e |dentifying important features

e Model Training

o Creating Super Learne

In [15]: # Read Data

df =pd.read_csv(r"F:\Project work\Malware Detection ML\D Malware\uci_malware_detection.csv")
print(df.shape)
df.head()
(373, 532)
ut[15

Label F1 F2 F3 F4 F5 F6 FT7 FB8 F9 .. F 522 F 525 F 524 F 525 F 526 F 527 F_ 528 F_ 529 F 530 F_531
0 non-malicious 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
1 non-malicious 1 0 1 o 1 0 1 0 1. Q 0 0 0 0 0 0 0 0 0
2 non-malicious 1 0 1 o 1 0 1 0 1 0 [t} 0 0 0 0 0 0 0 0
3 non-malicious 1 0 1 o 1 0 1 0 1 Q 0 0 0 0 0 0 0 0 0
4 non-malicious 1 0 1 o 1 0 1 0 1 0 [t} 0 0 0 0 0 0 0 0
5 rows x 532 columns

Fig. 6. Data Reading

In above figure we can see that we have created data frame with using our UCI dataset .

In [16]: # Labeling Malicious and Non Malicious

df['Label’'] = df["Label’].map({ non-malicious’': 1, 'malicious': 8})
print({df.shape)

df.head()
(373, 532)
ut[16

Label F1 F2 F3 F4 F5 F6 F7 FB8 F9 .. F522 F523 F 524 F 525 F 526 F_527 F_528 F_529 F_530 F_531
0 11 0 1 0 1 0 1 0 A 0 0 0 0 0 0 0 0 0 0
1 11 0 1 0o 1 0 1 0 1 . 0 0 0 0 0 0 0 0 0 0
2 11 0 1 0 1 0 1 0 A 0 0 0 0 0 0 0 0 0 0
3 11 0 1 0o 1 0 1 0 A1 0 0 0 0 0 0 0 0 0 0
4 11 0 1 0 1 0 1 0 A 0 0 0 0 0 0 0 0 0 0
5 rows x 532 columns

Fig. 7. Data Labeling

In this step we have labelled our dataset for malicious and non-malicious files using 0 and 1.

yme Page - Selectorcreatear X | & Malware Detection - Jupyter Now X

@] (@ localhost:3888/notebooks/Malware_Detection.ipynb

I sklearn.model selection import | X | =+

: Ju pyter Malware_Detection Last Checkpeint: 16 minutes age (autosaved)

File Edit View Insert Cell Kemel Widgets Help
+ = @B B 4+ ¥ PR B C M Code v =
4 1 1 0 1 0 1 0 1 0 1 . 0 0 0 0 0 0 0

5 rows x 532 columns

In [17]: # Remove Duplicate Data

df = df.drop_duplicates(keep=False)
print{df.shape)

(369, 532)

In [19]: |# Get X, y (Feature and Target)

y = df["Label”]
X = df.drop(”Label"”, axis=1)

In [28]: print(“Target Attribute distribution \n")
print(df.Label.value_counts(),"\n")

fig,ax= plt.subplots()
fig.set_size_inches(2@,5)
sns.countplot(x= "Label”,data=df,ax= ax)
plt.shou()

Target Attribute distribution
] 381

1 68
Name: Label, dtype: inté4

Fig. 8.

Data Cleaning and Target distribution

Trusted

78
P

1=
Logout

| Python3 O

In above figure we have removed duplicate data and defined feature and target attributes
and checked the distribution of data. In this dataset we have 369 total entries including
malicious and harmless files out of which we found there are 68 harmless and 301 malicious

files data contained in our Dataset.

300

250

Fig. 9.

Label

Distribution of Data

1(

After our new and optimized dataset is ready, we will split our dataset into proportions of
30% - 70% as test dataset and training dataset. Here we found dataset is randomly splitted
in training and testing dataset and we have 295 samples for training and remaining 74 samples
used for testing of our models.

In [21]: |# Training and Testing Split Data 80-2@
from sklearn.model_selection import train_test_split
X_train, X_test, y train, y_test- train_test_split(X,y, test_size-9.2, random_state-42)

print(X_train.shape, y_train.shape)
print(X_test.shape, y_test.shape)

(295, 531) (295,)
(74, 531) (74,)

Fig. 9. Splitting of Data

In [22]: |#Display binary confusion matrix using Seaborn heatmap
def confusion_plot(matrix, labels=None):
labels = labels if labels else ['Negative (@)', 'Positive (1)']

fig, ax = plt.subplots(nrows=1, ncols=1)

sns.heatmap(data=matrix, cmap="BuPu', annot=True, fmt="d",
xticklabels=1abels, yticklabels=labels, ax=ax)

ax.set_xlabel ("PREDICTED")

ax.set_ylabel ("ACTUAL')

ax.set_title('Confusion Matrix')

plt.close()

return fig

Fig. 10. Function for Confusion matrix

In above figure we have created function for displaying confusion matrix of our models which
will be used after the training of dataset.

ome Page - Selector create a1 X Malware_Detection - Jupyter No© X I3 sklearn.model_selection import © X ‘ +
&) (@ localhost:8888/notebooks/Malware_Detection.ipynb 16 = @
— Jupyter Malware_Detection Last Checkpoint: 26 minutes ago {autosaved) P Logout
File Edit View Insert Cell Kemel Widgets Help Trusted ‘ Python3 O
B+ 5 & B 4+ % PR B C P Code v =

pLL.SnoW)

In [24]: |# Function to print cross validation score
scoring = {'recall” : make_scorer(recall_score)}
def cross_validation_metrics(log_reg, X, y):
log reg score = cross_val_score(log reg, X,y,cv=5,scoring="recall’)
print('Logistic Regression Cross Validation Score(Recall): *, round(log_reg score.mean() * 188, 2)
.astype(str) + '%")

Fig. 10. Function for Cross Validation

In above figure we have created function for displaying cross validate score of our models
which will be used after the training of dataset.

1(

11

{ome Page - Selectorcreate a 1 X Malware_Detection - Jupyter No© X U3 sklearn.model selection import | X | 4 =
O (:) localhost:8888/notebooks/Malware_Detection.ipynb ‘0 {‘E
: Jupyter Malware Detection Last Checkpoint: 27 minutes ago (autosaved) ﬁ Logout
File Edit View Insert Cell Kemel Widgets Help Truste | Python3 O

B+ = @B 4+ % PR B C M Code v =

lo&rg&score = Erossi\laliscgr‘e(logireg, X,y¥,cv=5,scoring="recall")
print('Logistic Regression Cross Validation Score(Recall): ', round(log_reg score.mean() * 1e8, 2)
.astype(str) + '%')

In [25]: |# 1. logistic Regression
1r_model = LogisticRegression(max_iter=58@ ,random_state=42)

2. Decision Tree
dt_model = DecisionTresClassifier()

3. Naive Bayes
nb_model = GaussianMB()

4. Random Forest

rf_model = RandomForestClassifier(n_jobs=-1)
5. KNN

knn_model - KNeighborsClassifier(n_jobs=-1)

H HHRRRERREE LIST OF ALL MODELS #¥## i #3
ensemble_clf=[1r_model, dt_model, nb_model, rf_model, knn_model]
#print(ensemble_clf)
print(len(ensemble_clf))
Fig. 10. Model Creation and adding models in ensemble.

Here we have created five models using skilit learn library function and add into ensemble
so all model can be trained and tested in single function.

11

Select or createar X Malware_Detection - Jupyter Mo X I3 sklearn.model_selection import | X | —|—
(D localhost:s otebooks/M S
) Ju pyt er Malware_Detection Last Checkpoint: 30 minutes ago (autosaved) o Logout
File Edit Wiew Inzert Cell Kemel Widgets Help Trusted | Python 3 O
B o+ @A 0B 4+ % PFRn| B C W Cods v =

In [26]: from sklearn.calibration import calibration_curve
Define dictiona h performance metrics
scoring = {'accur ake_scorer(accuracy_score),
‘precision’ :make_scorer{precision_score),
‘recall’ imake_scorer(recall_score),
'f1_score’ imake_scorer{fl score)}

def models_evaluation(X, y, folds):
X : data set features
y : data set target
folds : number of cross-validation folds

Perform cross-validation to each machine Learning classifier

1r = cross_validate(lr model, X, y, cv=folds, scoring=scoring)
dt = cross_validate(dt_model, X, y, cv=folds, scoring=scoring)
nb = cross_validate(nb_model, X, y, cv=folds, scoring=scoring)
rf = cross_validate(rf_model, X, y, cv=folds, scoring=scoring)
knn = cross_validate(knn_model, X, y, cv=folds, scoring=scoring)

Cregte g data frame with the models perfoamnce metrics scores

models_scores_table = pd.DataFrame({'Logistic Regression®:[lr['test_accuracy'].mean(),
1r['test_precision'].mean(),
1r['test_recall'].mean(),
1r['test_f1_score'].mean()],

‘Decision Tree':[dt[test accuracy’].mean(),
_precizion’].mean(),
ecall'].mean(),

1 _score’].mean()],

to search

Fig. 10. Model evaluate function

The more is the accuracy of an algorithm, the greater is the probability of a sample being ham.

Confusion Matrix Confusion Matrix
El -50 =) - 50
" %]
.g 0 =]
ES -40 2 -40
b 2
o 2)
q‘: - =
= 0 =
e ¥
=} -20 = -20
E L]
3 1 16 = - 1 16
= i =) 10
8 10 5
| : -0 . . "
Negative (0) Positive (1) Negative (0) Positive (1)
PREDICTED PREDICTED

Figure 11: CF Matrix of LR Figure 12: CF Matrix of DT

ACTUAL
MNegative (0]

Positive (1)

Confusion Matrix

Negative (0)

PREDICTED

17

Positive (1)

Figure 13: CF Matrix of NB

ACTUAL
Megative (D)

Positive (1)

- 50
g
w
=
- 40 =]
o
i
=
-30 c—(‘
=
e
-20
-10

Confusion Matrix

Megative (D)

Positive (1)

Confusion Matrix

Megative (0)

Positive {1)
PREDICTED

Figure 14: CF Matrix of RF

Pasitive (1)

PREDICTED

Figure 15: CF Matrix of KNN

- 20

-10

-20

-10

In above figure we have displayed different confusion matrix of all five ML models on UCI
malware dataset which is taken from Kaggle, we can see that in this dataset Naive Bayes provide

lowest rate of False Positive and false negative and KNN provide highest rate of false positive
and false negative

Accuracy
Precision
Recall

F1 Score

Table 1: ML Model Result Comparison (UCI Malware Dataset)

Logistic Regression
0.994595
0.985714
0.985714
0.985714

Decision Tree
0.989152
0985714
0.957143
0.969801

Random Forest
0.991892
0.985714
0.971429
0.978307

Naive Bayes
0.997297
0.986667
1.000000
0.993103

KNN
0981044
0.983332
0913187
0945846

Best 5Score
Maive Bayes
Maive Bayes
Maive Bayes

Maive Bayes

In above table best score in accuracy, precision,recall and F1 Score has been achived in Naive

1:

bayes. Naive bayes provides good result than random forest in this dataset.

1<

In figure 16 we can see that testing accuracy of naive bayes model remains high than all other
ML models and provides good testing results.

100 4
099 -
0.98 -
097 1
(.96 4

095 1

In figure 16 we have displayed calibration plots of all five models on UCI dataset.

Accuracy

Decision Tree
Random Foresr
Maive Bayes
KHM

/ — Logistic Regression

o

05 140 15 20 25 3.0 35
Figure 16: Accuracy of Testing of ML Models

40

14

Virus Share Dataset

As virus share dataset is very large so we have used google colab platform as machine learning
algorithms require lots of processing so google is providing Google Colaboratory is a free
online cloud-based Jupyter notebook environment that allows us to train our machine learning

and deep learning models on CPUs, GPUs, and TPUs.

A CIN3INIY IVIGN OLSUUUIITERY T M R PR g s aiin AU UUULGIE LG W1 LAET LG W VL LU IS O LA

8 colab.research.google.com/drive/1xqyqOvTOkjdCRpvrzLYFzRgWtB2265Y 17authuser=1 a, @

Last opened & Firat opened

Phishing Mail Detection-2.ipynb 11:37 &AM July 30

Malware_Detection.ipynb 10:31 AM October 22

Welcome To Calabaratary 10:31 AM Dec 7, 2020

Malware_Detection?.ipynb Novemnber 10 October 26

Figure 17: Google Colab

Google Colab Runtimes — Choosing the GPU or TPU Option
The ability to choose different types of runtimes is what makes Colab so popular and powerful.

Here are the steps to change the runtime of your notebook:

Step 1: Click ‘Runtime’ on the top menu and select ‘Change Runtime Type’:

£ Notebook-1ipynb

i

Flle Edit View Insert Runtime Tools Help All changes savar
o + Code + Text Run 24 trisFo
ok Run before riefB

Run the focused coll

2 © inport pandas a

Run sslection i+ ShifteFnce

o | dfepd.read csv(Run afrer CuisF10 0

| df.to ¢sv('driv s
prant(‘Dataset

C» Dataset Exporte
Faciory reset runtime

| %tensorflow ver - ——

import tensorfl ' Change runtime type |
print(*Tensorfl X
Manage sessions

try:
tpu = tf.dist e
Figure 18: Google Colab Runtime Type

Step 2: Here you can change the runtime according to your need:

Notebook settings

Runtime type

Python 3 -

Hardware accelerator

None None @

|:| Omit code cell output g this notebook
GPU
TPU

CANCEL SAVE

Figure 19: Google Colab Runtime Type

https://cdn.analyticsvidhya.com/wp-content/uploads/2020/03/uc14.png
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/03/uc4.png

17

For Implementation we have used google colab platform which is freely available and providing
computing resource for implementing various deep learning and machine learning algorithms.
We have first uploaded our two datasets in google drive and then drive is mounted using google
authenticator.

Reading Data

[] df = pd.read_csv(DATA_PATH+"MaluareData.csv',sep ="|")
© df.head()
= Name mds Machine SizeOfOptionalHeader Characteristics MajorLinkerVersion MinorLinkerVersion SizeOfCode SizeOfInitializedData SizeOfUnin
0 memtestexe 6310a355665f28d4707448e442fhfshs 332 224 258 9 0 361984 115712
1 oseexe 9d10f99a6712e28fBacd5641e3a7each 332 224 3330 9 0 130560 19968
2 setup.exe 4d92f518527353c0db88a70fddcfd3g0 332 224 3330 9 0 517120 621568
3 DW20EXE a41e524f8d45f0074fd078050cob12 332 224 258 9 0 585728 369152
4 dwirig20.exe CA7e561258f2186500ef999bf643a731 332 224 258 9 0 294912 247296

Figure 20: Reading Virus Share Dataset

In above figure we can see that we have created a dataframe in which we have added our
virusshare dataset.

This method prints information about a DataFrame including the index dtype
df.info()

> «clas

s 'pandas.core.frame.DataFrame’»
RangelIn

Mon-Null Count
138847 non-null
138847 nen-null
138847 nen-null
122847 non-null ints.
122847 non-null i
133847 non-null i
138847 nen-null i
138847 -null

138847 non-null i
138847 nen-null i
138947 non-null i
138847 non-null
133847 non-null

133847 non-null
138847 -null
138847 non-null intsz
138847 nen-null i

sion 138847 non-null i
sion 132847 non-null i
133847 non-null
133847 non-null
138847 non-null i
138847 non-null i
138847 nen-null i
138847 nen-null
Checksum 132847 non-null
Subsystem 138847 nen-null
138647 non-null
138847 i 1
138847 non-null i
138847 nen-null ints

Figure 21: Data Cleaning
In above figure we have checked for any null values in our features so we can clean dataset and
we found there are no null values in any feature. If null values or data cleaning will not done
than some data overfitting and underfitting issues may reside. In our dataset there were total
58 features and all are checked against null values.

17

18

0.15.0.1 0.1

ImportsNbDLL.
ImportsNb
ImportsNbOrdinal

ImportsNbOrdinal

Figure 22: Feature correlation

Correlation is a proportion of the straight relationship of at least 2 factors. Through relationship,
we can foresee one variable from the other. The rationale behind utilizing relationship for
include choice is that the acceptable factors are profoundly corresponded with the objective.
Moreover, factors ought to be corresponded with the objective yet ought to be uncorrelated
among themselves. If two factors are associated, we can foresee one from the other. Along these
lines, if two highlights are connected, the model just actually needs one of them, as the
subsequent one doesn't add extra data. We have utilized the Pearson Correlation here.

Feature extraction can be used to characterized as changing the huge, ambiguous assortment of
contributions to the arrangement of highlights. Progressed identification mainly depends on
highlighting of extraction of the malicious files being examined. Feature could contain various
plaintext strings found in the dismantled documents, the size of the malware, n-gram byte
arrangements, framework asset data like the arrangement of DLLs, and so forth by utilizing Al
calculation, these highlights are given as sources of info.

18

19

Figure 23: Feature Selection

We have used coefficient to find important features and used the features in which coefficient
is grater than 0.2 for training and testing and other features were not used as only important
features have been selected. From this method we have identified 14 important features out of
58 features. In below figure we have checked the distribution of values in 14 important features.

ResourcesMeanEntropy SectionsMb Characteristics ResourcesMinEntropy
40000 80000
80000 60000
30000 &O000
60000 40000
20000
40000 40000
10000 II 20000 I 20000 I 20000 I
p = _-I I--I-I p = I 0 [| 0 I_IIII ||
0 2 4 6 8 0 10 20 30 40 0 20000 40000 0 2 4 6 8
SectionsMeanEntropy VersioninformationSize MajorSubsystemVersion ResourcesMaxEntropy
80000
40000 30000 30000
60000
30000 20000
20000 40000
20000
10000 III 10000 I I 20000 10000
0 _IIlII I - 0 - — I 0 I o = Il- III-.
0 2 4 6 8 0 10 20 z 4 6 8 10 0 2 4 6 8
Subsystem SizeOfStackReserve SizeOfOptionalHeader Machine
125000 125000 125000
100000
100000 100000 100000
80000
c0000 75000 75000 75000
40000 50000 50000 50000
20000 I 25000 25000 25000
0 o Lk o I 0 |
5 10 15 0 1 2 3 250 300 350 0 10000 20000 30000
SizeOfOptionalHeader DilCharacteristics 17
125000
100000 Boooo
75000 60000
50000 40000
25000 20000
0 I 0
250 300 350 0 20000 40000

Figure 24: Values distribution of important features

19

20

Split the data in Training and testing

° from sklearn.model_selection import train_test_split
x_train, x_test, v_train, v_test = train_test_split(x, v, test_size=e.3, random_state=7)
+ Code
[1 x_train.shape, X_test.shape, v_train.shape, v_test.shape

(38632, 14), (41413, 14), (38632,), (41415,))

Figure 25: Training and Testing Data Split
In above figure we have split the data for training and testing in 70/30 using sklearn library

function. Here we found we have 966632 samples for training and 41415 random samples for
testing.

Confusion Matrix

Confusion Matrix

=) - 25000
1] =y -
= 153 'f.’u 25000
-3 — 20000 2 205
2 5 - 20000
g - 15000 2°
E 5 - 15000
= - 10000 E -
o = - 10000
- 2648 0834 % 79 2303
: - 5000 g - 5000
o
Megative (0) Positive (1) Negative (0) Positive (1)
PREDICTED PREDICTED
Figure 10: CF Matrix of LR Figure 11: CF Matrix of DT
Confusion Matrix Confusion Matrix
=) - 25000) - 25000
u u
£ b 2 151
=S - 20000 =S - 20000
L) L)
) o - o
é - 15000 g - 15000
=) ~ 10000 = - 10000
g 3592 8390 :'31 16 12366
in - 5000 i - 5000
o o
Megative (0) Positive (1) Megative (0) Positive (1)
PREDICTED PREDICTED
Figure 12: CF Matrix of NB Figure 13: CF Matrix of RF

20

21

Confusion Matrix

25000

229
20000

Negative (0)

15000

ACTUAL

— 10000
152 12330

— 5000

Positive (1)

Megative (0] Positive (1)
PREDICTED

Figure 12: CF Matrix of KNN

In above figures confusion matrix of each model are displayed and based on True Positive,

True Negative, False Positive and False Negative confusion matrix resulted from which accuracy,
precision, recall can be calculated.

Table 2: ML Model Result Comparison

Logistic Regression Decision Tree Random Forest Naive Bayes KM Best Score

Accuracy 0.937079 0.990170 0.993741 0913508 0991076 Random Forest
Precision 0.975584 0.982637 0.987870 0.996787 0.982736 Maive Bayes
Recall 0810855 0.984561 0.991264 0.713356 0.987513 Random Forest
F1 Score 0884753 0.9835%6 0.989564 0.831573 0985128 Random Forest

In above table best score in accuracy, recall and F1 Score has been achived in Random Forest.

Only Precision is good in Naive Bayes. Random Forest provides best result in accuracy and F1
Score in terms of different dataset.

In figure 13 we can see that testing accuracy of Random forest model remains high than all
other ML models and provides good testing results.

Accuracy

0.938

— | ogistic Regression
0.9& Decision Tree
Random Foresr
—— Maive Bayes
0.94 KM

0.92
n—''_._._'_ﬂ__‘_‘_‘_\—_

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Figure 13: Accuracy of Testing of ML Model
21

REFERENCES

[1] “Anaconda | Individual Edition.” Anaconda,
https://www.anaconda.com/products/individual.

[2] https://colab.research.google.com/?utm_source=scs-index

[3] https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-
deep-learning/

[4] https://www.tutorialspoint.com/google colab/google colab tutorial.pdf

[5] https://scikit-learn.org/stable/modules/ensemble.html#forest

22

22

https://www.anaconda.com/products/individual
https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
https://www.tutorialspoint.com/google_colab/google_colab_tutorial.pdf
https://scikit-learn.org/stable/modules/ensemble.html#forest

