

1

Zero Day Malware Detection using Machine Learning Algorithms

Configuration Manual

MSc Internship

Cybersecurity

School of Computing

National College of Ireland

National College of Ireland

Year: 2021

2

MSc Project Submission Sheet

School of Computing

- StudentMohammed Mustafa RazaName:Choudhry
- **Student ID:** X20119607
- Program: MSC. Cyber Security
- Module: Intership
- Lecturer: Dr. Imran Khan
- Submission 28th January 2022
- **Project Title:** Zero Day Malware Detection using supervised and unsupervised Machine learning Algorithms

Word Count:1919Page Count: 22

I hereby certify that the information contained in this (my submission) is research information I conducted for this project. All information other than my contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project. <u>ALL</u> internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the National College of Ireland's Institutional Repository for consultation.

Signature: Mohammed Mustafa Raza Choudhry

Date: 14-12-2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on the computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only	
Signature:	
Date:	
Penalty Applied (if applicable):	

Zero Day Malware Detection using Machine Learning Algorithms

INTRODUCTION

The configuration manual contains comprehensive guidance about how the research program is designed and executed, this involves system requirements and coding requirements. For developing the algorithms, Python coding language is used as it supports many machine learning libraries. 2 datasets one is UCI and Virus Share are considered for evaluation of performance metrics likeaccuracy, recall, F1 score, precision based on the actual number of malware and normal samples in the dataset with the output sample produced which is a true positive or a false positive. The lesserthe value of false positive, the greater is the accuracy of the algorithm. First, the dataset considered is passed through a pre-processing algorithm wherein only relevant features having importance according to the statistics are extracted from the whole sample which helps in optimizing our training set. This set is tested with unsupervised and supervised algorithms likeLogistic Regression, Decision Tree, Naïve Bayes, KNN, Random Forest, and the output determines whether the application is malicious or harmless. Among which Random forest gives highest accuracy.

INITIAL SETUP

- RAM: 8GB
- DISK SPACE REQUIRED: 16GB
- OS: WINDOWS 10
- Softwares Used: Google Collab, ANACONDA, JUPYTER NOTEBOOK, SPYDER
- The prototype is tested on localhost

Anaconda [1]

The version of anaconda we have installed is 4.10.1. This will be used to manage all our environments created in python.

Anaconda Powershell Prompt (anaconda3)
(base) PS C:\Users\JT> conda -V
conda 4.10.1

The version of python we have installed is 3.7.8. Python is installed from within Anaconda Navigator.

Fig. 3. Anaconda GUI

Jupyter is used for coding and managing our algorithms.

For Dataset we have used panda library function to read dataset and used dataframe in which our dataset will be inserted. Here we have created DATA_PATH Variable which will used in loading and reading of Data.

Fig. 4. DATA_PATH for Dataset.

For the pre-processing of data and also for the whole experiment we will require a few essential Python libraries which will ease the whole process of this study. Few popularly used Machine Learning libraries are used. Libraries along with their basic functions are listed in the figure below. [5]

	nost:8888/notebooks/Malware_Detection.ipynb	∑€	j i	દ∕≡
🖯 Jupyter	Malware_Detection Last Checkpoint: 5 minutes ago (autosaved)	6	• [Logo
File Edit	View Insert Cell Kernel Widgets Help	Trusted	Pyt	thon 3
• *				
	<pre># Flatten function from pandas.core.common allows you to flatten an array easily. # This method is pre-included in the Pandas library import random # this is used for random generation random.seed(1234) from sklearn.model_selection import KFold # K-Folds cross-validator # Provides train/test indices to split data in train/test sets. # plit dataset into k consecutive folds (without shuffling by default). from sklearn import metrics # sklearn.metrics import classification_report # this is used for classification_report creation</pre>	utations.		
Page - Select or	<pre>from sklearn.metrics import roc_curve, accuracy_score, confusion_matrix, recall_score, precision_score, fi_score, au from sklearn.model_selection import train_test_split, GridSearchCV # this function is used for splitting dataset in training and testing set. # Our algorithms, by from the easiest to the hardest to intepret. from sklearn.linear_model import logisticRegression create ar X</pre>	c, roc_au	sco	re
i loc	alhost:8888/notebooks/Malware_Detection.ipynb	â	õ	€≜
💭 Jupyte	Pr Malware_Detection Last Checkpoint: 6 minutes ago (autosaved)	Ć) [Logo
File Edit	View Insert Cell Kernel Widgets Help	Trusted	Py	thon 3
8 + %				

After importing all the libraries, our environment is ready for developing the algorithms. So now at first, we will feed our dataset to the pre-processing stage wherein all the data samples are analyzed and optimized before going through the algorithms to improve the efficiency of machine learning algorithms and also to greatly reduce the time taken for algorithms to generate output.

In this pre-processing stage, the data in the samples is

- First, eliminates duplicate and not null values,
- Calculating coefficient
- Identifying important features
- Model Training
- Creating Super Learne

	df =pd.read_c print(df.shap df.head()	f =pd.read_csv(r"F:\Project work\Malware Detection ML\D_Malware\uci_malware_detection.csv") rint(df.shape) f.head()																			
	(373, 532)																				
Out[15]:	Label	F_1	F_2	F_3	F_4	F_5	F_6	F_7	F_8	F_9		F_522	F_523	F_524	F_525	F_526	F_527	F_528	F_529	F_530	F_531
	0 non-malicious	1	0	1	0	1	0	1	0	1		0	0	0	0	0	0	0	0	0	0
	1 non-malicious	1	0	1	0	1	0	1	0	1		0	0	0	0	0	0	0	0	0	0
	2 non-malicious	1	0	1	0	1	0	1	0	1		0	0	0	0	0	0	0	0	0	0
	3 non-malicious	1	0	1	0	1	0	1	0	1		0	0	0	0	0	0	0	0	0	0
	4 non-malicious	1	0	1	0	1	0	1	0	1		0	0	0	0	0	0	0	0	0	0

In above figure we can see that we have created data frame with using our UCI dataset .

Fig. 7. Data Labeling

In this step we have labelled our dataset for malicious and non-malicious files using 0 and 1.

(i) localho	st:8888/notebooks/Malware_Detection.ipynb	τõ	£^≡
Jupyter	Malware_Detection Last Checkpoint: 16 minutes ago (autosaved)	2	Logo
ile Edit	View Insert Cell Kernel Widgets Help Trusted	F	ython 3
+ % 4			
	4 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0		
	5 rows × 532 columns		
In [17]:	# Remove Duplicate Data		
	df = df.drop_duplicates(keep=False) print(df.shape)		
	(369, 532)		
In [19]:	# Get X, y (Feature and Target)		
	y = df["Label"] X = df.drop("Label", axis=1)		
In [20]:	<pre>print("Target Attribute distribution \n") print(df.Label.value_counts(),"\n")</pre>		
	<pre>fig,ax= plt.subplots() fig.set_size_inches(20,5) sns.countplot(x= "Label",data=df,ax= ax) plt.show()</pre>		
	Target Attribute distribution		
	0 301 1 68		

Fig. 8. Data Cleaning and Target distribution

In above figure we have removed duplicate data and defined feature and target attributes and checked the distribution of data. In this dataset we have 369 total entries including malicious and harmless files out of which we found there are 68 harmless and 301 malicious files data contained in our Dataset.

9

After our new and optimized dataset is ready, we will split our dataset into proportions of 30% - 70% as test dataset and training dataset. Here we found dataset is randomly splitted in training and testing dataset and we have 295 samples for training and remaining 74 samples used for testing of our models.

In [21]: # Training and Testing Split Data 80-20 from sklearn.model selection import train test split X_train, X_test, y_train, y_test= train_test_split(X,y, test_size=0.2, random_state=42) print(X_train.shape, y_train.shape) print(X_test.shape, y_test.shape) (295, 531) (295,) (74, 531) (74,) Splitting of Data Fig. 9. In [22]: #Display binary confusion matrix using Seaborn heatmap def confusion_plot(matrix, labels=None): labels = labels if labels else ['Negative (0)', 'Positive (1)'] return fig

Fig. 10. Function for Confusion matrix

In above figure we have created function for displaying confusion matrix of our models which will be used after the training of dataset.

ome Page - Select or create a 🗉 🗙 🧧 Malware_Detection - Jupyter Not 🗴 🔥 sklearn.model_selection import 🕅 🗙 🕇		-
C 🕕 localhost:8888/notebooks/Malware_Detection.ipynb	τe	5 € @
CJUPYTET Malware_Detection Last Checkpoint: 25 minutes ago (autosaved)	ę	Logout
File Edit View Insert Cell Kernel Widgets Help	Trusted	Python 3 O
E + ≫ @ E ↑ ↓ ► Run ■ C ₩ Code v ptt.snow()		
<pre>In [24]: # Function to print cross validation score scoring = {'recall' : make_scorer(recall_score)} def cross_validation_metrics(log_reg, X, y): log_reg_score = cross_val_score(log_reg, X,y,cv=5,scoring='recall') print('logistic Regression Cross Validation Score(Recall): ', round(log_reg_score.mean() * 100, 2) .astype(str) + '%')</pre>		

Fig. 10. Function for Cross Validation

In above figure we have created function for displaying cross validate score of our models which will be used after the training of dataset.

Fig. 10. Model Creation and adding models in ensemble.

Here we have created five models using skilit learn library function and add into ensemble so all model can be trained and tested in single function.

Fig. 10. Model evaluate function

The more is the accuracy of an algorithm, the greater is the probability of a sample being ham.

Figure 11: CF Matrix of LR

Figure 12: CF Matrix of DT

Figure 14: CF Matrix of RF

In above figure we have displayed different confusion matrix of all five ML models on UCI malware dataset which is taken from Kaggle, we can see that in this dataset Naïve Bayes provide lowest rate of False Positive and false negative and KNN provide highest rate of false positive and false negative

Table 1:	ML	Model	Result	Comparison	(UCI	Malware	Dataset)
----------	----	-------	--------	------------	------	---------	----------

	Logistic Regression	Decision Tree	Random Forest	Naive Bayes	KNN	Best Score
Accuracy	0.994595	0.989152	0.991892	0.997297	0.981044	Naive Bayes
Precision	0.985714	0.985714	0.985714	0.986667	0.983333	Naive Bayes
Recall	0.985714	0.957143	0.971429	1.000000	0.913187	Naive Bayes
F1 Score	0.985714	0.969801	0.978307	0.993103	0.945846	Naive Bayes

In above table best score in accuracy, precision, recall and F1 Score has been achived in Naïve

bayes. Naïve bayes provides good result than random forest in this dataset.

In figure 16 we can see that testing accuracy of naïve bayes model remains high than all other ML models and provides good testing results.

In figure 16 we have displayed calibration plots of all five models on UCI dataset.

Virus Share Dataset

As virus share dataset is very large so we have used google colab platform as machine learning algorithms require lots of processing so google is providing **Google Colaboratory** is a free online cloud-based Jupyter notebook environment that allows us to train our machine learning and deep learning models on CPUs, GPUs, and TPUs.

		i olu - ooogie search	N Ose Out	ugie colabitor pee	h realition	www.tutoriaispc	JIII.COIII .
colab.research.goc	ogle.com/drive/1xqyq()vTOkjdCRpvrzLYFzF	gWt82z6SY1?authuse	r=1			ର୍ 💯
: <mark>tion-2.ipynb ☆</mark> untime Tools Help <u>Last er</u>	dited on July 30						
ve for Data mport drive nt/drive')	Examples	Recent	Google Drive	GitH	ub	Upload	
ed at /content/drive; t	Filter notebooks		Ŧ				
ve /drive/My Drive/PhishMa	Title			Last opened 🔺	First opened 👻	÷.	
<pre>/My Drive/PhishMail2" phishing3.mbox-export.</pre>	🔥 Phishing Mail Dete	ection-2.ipynb		11:37 AM	July 30		
ibraries	Alware_Detectio	n.ipynb		10:31 AM	October 22		
le import RandomForestC selection import train_ metrics #Import scikit	CO Welcome To Colat	poratory		10:31 AM	Dec 7, 2020	ß	
cessing import LabelEnc als.six import StringIO	💧 Malware_Detectio	n1.ipynb		November 10	October 26	a 2	

Figure 17: Google Colab

Google Colab Runtimes – Choosing the GPU or TPU Option

The ability to choose different types of runtimes is what makes Colab so popular and powerful.

Here are the steps to change the runtime of your notebook:

Step 1: Click 'Runtime' on the top menu and select 'Change Runtime Type':

	File	Edit View Insert	Runtime Tools Help	All changes sav	ed
:=	+ Cod	le + Text	Run all	Ctrl+F9	
-			Run before	Ctrl+F8	
\diamond	0	import pandas a	Run the focused cell	Ctrl+Enter	
			Run selection	Ctrl+Shift+Enter	ł
	0	df=pd.read_csv(Run after	Ctrl+F10	9
	1.1	df.to_csv('driv			5
		print('Dataset			
	C*	Dataset Exporte			
			Factory reset runtime		
	1 1	%tensorflow_ver	Change runtime type		
		print("Tensorfl	Conside comme die		
		Train Gase assessed	Manage sessions		
		try:			

Figure 18: Google Colab Runtime Type

Step 2: Here you can change the runtime according to your need:

Notebook settings

Figure 19: Google Colab Runtime Type

For Implementation we have used google colab platform which is freely available and providing computing resource for implementing various deep learning and machine learning algorithms. We have first uploaded our two datasets in google drive and then drive is mounted using google authenticator.

Read	ing Data									
[]	df = pd.read_cs	v(DATA_PATH+"MalwareData.csv",sep	=" ")							
0	df.head()									
₽	Name	md5	Machine	SizeOfOptionalHeader	Characteristics	MajorLinkerVersion	MinorLinkerVersion	SizeOfCode	SizeOfInitializedData	SizeOfUnin
	0 memtest.exe	631ea355665f28d4707448e442fbf5b8	332	224	258	9	0	361984	115712	
	1 ose.exe	9d10f99a6712e28f8acd5641e3a7ea6b	332	224	3330	9	0	130560	19968	
	2 setup.exe	4d92f518527353c0db88a70fddcfd390	332	224	3330	9	0	517120	621568	
	3 DW20.EXE	a41e524f8d45f0074fd07805ff0c9b12	332	224	258	9	0	585728	369152	
	4 dwtrig20.exe	c87e561258f2f8650cef999bf643a731	332	224	258	9	0	294912	247296	
	•									•

In above figure we can see that we have created a dataframe in which we have added our virusshare dataset.

0	0								
ď		# Th df.i	is method prints information nfo()	about a	DataFrame	including	the	index	dtyp
÷	C•	<cla Rang Data</cla 	ss 'pandas.core.frame.DataFra eIndex: 138047 entries, 0 to columns (total 58 columns):	me'> 138046					
_		#	Column	Non-Nul	ll Count	Dtype			
		0	index	138047	non-null	int64			
		1	Name	138047	non-null	object			
		2	md 5	138047	non-null	object			
		з	Machine	138047	non-null	int64			
		4	SizeOfOptionalHeader	138047	non-null	int64			
		5	Characteristics	138047	non-null	int64			
		6	MajorLinkerVersion	138047	non-null	int64			
		7	MinorLinkerVersion	138047	non-null	int64			
		8	SizeOfCode	138047	non-null	int64			
		9	SizeOfInitializedData	138047	non-null	int64			
		10	SizeOfUninitializedData	138047	non-null	int64			
		11	AddressOfEntryPoint	138047	non-null	int64			
		12	BaseOfCode	138047	non-null	int64			
		13	BaseOfData	138047	non-null	int64			
		14	ImageBase	138047	non-null	float64			
		15	SectionAlignment	138047	non-null	int64			
		16	FileAlignment	138047	non-null	int64			
		17	MajorOperatingSystemVersion	138047	non-null	int64			
		18	MinorOperatingSystemVersion	138047	non-null	int64			
		19	MajorImageVersion	138047	non-null	int64			
		20	MinorImageVersion	138047	non-null	int64			
		21	MajorSubsystemVersion	138047	non-null	int64			
		22	MinorSubsystemVersion	138047	non-null	int64			
		23	SizeOfImage	138047	non-null	int64			
		24	SizeOfHeaders	138047	non-null	int64			
		25	CheckSum	138047	non-null	int64			
		26	Subsystem	138047	non-null	int64			
		27	DllCharacteristics	138047	non-null	int64			
		28	SizeOfStackReserve	138047	non-null	int64			
- iii		29	SizeOfStackCommit	138047	non-null	int64			
_		30	SizeOfHeapReserve	138047	non-null	int64			
		22	ci-color-re-mit	100017	11	2.46.6			

Figure 21: Data Cleaning

In above figure we have checked for any null values in our features so we can clean dataset and we found there are no null values in any feature. If null values or data cleaning will not done than some data overfitting and underfitting issues may reside. In our dataset there were total 58 features and all are checked against null values.

Figure 22: Feature correlation

Correlation is a proportion of the straight relationship of at least 2 factors. Through relationship, we can foresee one variable from the other. The rationale behind utilizing relationship for include choice is that the acceptable factors are profoundly corresponded with the objective. Moreover, factors ought to be corresponded with the objective yet ought to be uncorrelated among themselves. If two factors are associated, we can foresee one from the other. Along these lines, if two highlights are connected, the model just actually needs one of them, as the subsequent one doesn't add extra data. We have utilized the Pearson Correlation here.

Feature extraction can be used to characterized as changing the huge, ambiguous assortment of contributions to the arrangement of highlights. Progressed identification mainly depends on highlighting of extraction of the malicious files being examined. Feature could contain various plaintext strings found in the dismantled documents, the size of the malware, n-gram byte arrangements, framework asset data like the arrangement of DLLs, and so forth by utilizing Al calculation, these highlights are given as sources of info.

Q,	-					
0	0	Eselecting highly correlated features relevant_features = corr_target[corr_target>0.2] relevant_features df1 = relevant_features.sort_values() df1				
	D	ResourcesReanEntropy SectionsNe Characteristics ResourcesRinEntropy VersionEnformationGlue NajorSubsystemVersion ResourcesReaEntropy Subsystem SizeOfSizckReserve SizeOfOptionalHeader Nachine SectionJkzEntropy DilCharacteristics legitimate Name: legitimate, stype:	0.202432 0.207782 0.221956 0.229912 0.343033 0.392046 0.392055 0.514352 0.514352 0.514452 0.544825 0.544825 0.544825 0.54885 0.5485 0.54885 0.54885 0.5485 0.54855 0.5455 0.548555 0.5485555 0.5485555 0.5485555 0.5485555555 0.54855555555555555555555555555555555555			

Figure 23: Feature Selection

We have used coefficient to find important features and used the features in which coefficient is grater than 0.2 for training and testing and other features were not used as only important features have been selected. From this method we have identified 14 important features out of 58 features. In below figure we have checked the distribution of values in 14 important features.

Figure 24: Values distribution of important features

Figure 25: Training and Testing Data Split

In above figure we have split the data for training and testing in 70/30 using sklearn library function. Here we found we have 966632 samples for training and 41415 random samples for testing.

25

Confusion Matrix

28908

3592

Negative (0)

Negative (0)

Positive (1)

ACTUAL

PREDICTED

Figure 13: CF Matrix of RF

In above figures confusion matrix of each model are displayed and based on True Positive, True Negative, False Positive and False Negative confusion matrix resulted from which accuracy, precision, recall can be calculated.

	Logistic Regression	Decision Tree	Random Forest	Naive Bayes	KNN	Best Score
Accuracy	0.937079	0.990170	0.993741	0.913508	0.991076	Random Forest
Precision	0.975584	0.982637	0.987870	0.996787	0.982756	Naive Bayes
Recall	0.810855	0.984561	0.991264	0.713356	0.987513	Random Forest
F1 Score	0.884753	0.983596	0.989564	0.831573	0.985128	Random Forest

Table 2: ML Model Result Comparison

In above table best score in accuracy, recall and F1 Score has been achived in Random Forest. Only Precision is good in Naïve Bayes. Random Forest provides best result in accuracy and F1 Score in terms of different dataset.

In figure 13 we can see that testing accuracy of Random forest model remains high than all other ML models and provides good testing results.

REFERENCES

- [1] "Anaconda | Individual Edition." Anaconda, https://www.anaconda.com/products/individual.
- [2] https://colab.research.google.com/?utm_source=scs-index
- [3] <u>https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/</u>
- [4] https://www.tutorialspoint.com/google_colab/google_colab_tutorial.pdf
- [5] https://scikit-learn.org/stable/modules/ensemble.html#forest