
1

1

Zero Day Malware Detection using

Machine Learning Algorithms

Configuration Manual

MSc Internship

Cybersecurity

School of Computing

National College of Ireland

2

2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student

Name:

Mohammed Mustafa Raza
Choudhry

Student ID:

X20119607

Program:

MSC. Cyber Security

Year:

2021

Module:

Intership

Lecturer:

Dr. Imran Khan

Submission

Due Date:
28th January 2022

Project Title:

Zero Day Malware Detection using supervised and

unsupervised Machine learning Algorithms

Word Count:

1919

Page Count: 22

I hereby certify that the information contained in this (my submission) is research

information I conducted for this project. All information other than my contribution will

be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

I agree to an electronic copy of my thesis being made publicly available on NORMA the

National College of Ireland’s Institutional Repository for consultation.

3

3

Signature: Mohammed Mustafa
Raza Choudhry

Date: 14-12-2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including

multiple copies)

□

Attach a Moodle submission receipt of the online project

submission, to each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the

project, both for your reference and in case a project is lost or

mislaid. It is not sufficient to keep a copy on the computer.

□

Assignments that are submitted to the Programme Coordinator Office must be

placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if

applicable):

4

4

Zero Day Malware Detection using Machine
Learning Algorithms

INTRODUCTION
The configuration manual contains comprehensive guidance about how the research program

is designed and executed, this involves system requirements and coding requirements. For

developing the algorithms, Python coding language is used as it supports many machine

learning libraries. 2 datasets one is UCI and Virus Share are considered for evaluation of

performance metrics like accuracy, recall, F1 score, precision based on the actual number of

malware and normal samples in the dataset with the output sample produced which is a true

positive or a false positive. The lesser the value of false positive, the greater is the accuracy of

the algorithm. First, the dataset considered is passed through a pre-processing algorithm

wherein only relevant features having importance according to the statistics are extracted

from the whole sample which helps in optimizing our training set. This set is tested with

unsupervised and supervised algorithms like Logistic Regression, Decision Tree, Naïve Bayes,

KNN, Random Forest, and the output determines whether the application is malicious or

harmless. Among which Random forest gives highest accuracy.

INITIAL SETUP

• RAM: 8GB

• DISK SPACE REQUIRED: 16GB

• OS: WINDOWS 10

• Softwares Used: Google Collab, ANACONDA, JUPYTER NOTEBOOK, SPYDER

• The prototype is tested on localhost

Anaconda [1]

The version of anaconda we have installed is 4.10.1. This will be used to manage all our

environments created in python.

Fig. 1. Conda version

5

5

The version of python we have installed is 3.7.8. Python is installed from within Anaconda

Navigator.

Fig. 2. Python version

Fig. 3. Anaconda GUI

Jupyter is used for coding and managing our algorithms.

Fig. 3. Jupyter Notebook Version

6

6

For Dataset we have used panda library function to read dataset and used dataframe in which

our dataset will be inserted. Here we have created DATA_PATH Variable which will used in

loading and reading of Data.

Fig. 4. DATA_PATH for Dataset.

For the pre-processing of data and also for the whole experiment we will require a few

essential Python libraries which will ease the whole process of this study. Few popularly used

Machine Learning libraries are used. Libraries along with their basic functions are listed in the

figure below. [5]

7

7

Fig. 5. Installed Libraries with their use commented

8

8

After importing all the libraries, our environment is ready for developing the algorithms. So

now at first, we will feed our dataset to the pre-processing stage wherein all the data samples

are analyzed and optimized before going through the algorithms to improve the efficiency of

machine learning algorithms and also to greatly reduce the time taken for algorithms to

generate output.

In this pre-processing stage, the data in the samples is

• First, eliminates duplicate and not null values,

• Calculating coefficient

• Identifying important features

• Model Training

• Creating Super Learne

Fig. 6. Data Reading

In above figure we can see that we have created data frame with using our UCI dataset .

Fig. 7. Data Labeling

In this step we have labelled our dataset for malicious and non-malicious files using 0 and 1.

9

9

Fig. 8. Data Cleaning and Target distribution

In above figure we have removed duplicate data and defined feature and target attributes

and checked the distribution of data. In this dataset we have 369 total entries including

malicious and harmless files out of which we found there are 68 harmless and 301 malicious

files data contained in our Dataset.

Fig. 9. Distribution of Data

10

10

After our new and optimized dataset is ready, we will split our dataset into proportions of

30% - 70% as test dataset and training dataset. Here we found dataset is randomly splitted

in training and testing dataset and we have 295 samples for training and remaining 74 samples

used for testing of our models.

Fig. 9. Splitting of Data

Fig. 10. Function for Confusion matrix

In above figure we have created function for displaying confusion matrix of our models which
will be used after the training of dataset.

Fig. 10. Function for Cross Validation

In above figure we have created function for displaying cross validate score of our models
which will be used after the training of dataset.

11

11

Fig. 10. Model Creation and adding models in ensemble.

Here we have created five models using skilit learn library function and add into ensemble

so all model can be trained and tested in single function.

12

12

Fig. 10. Model evaluate function

The more is the accuracy of an algorithm, the greater is the probability of a sample being ham.

 Figure 11: CF Matrix of LR Figure 12: CF Matrix of DT

13

13

 Figure 13: CF Matrix of NB Figure 14: CF Matrix of RF

 Figure 15: CF Matrix of KNN

In above figure we have displayed different confusion matrix of all five ML models on UCI

malware dataset which is taken from Kaggle, we can see that in this dataset Naïve Bayes provide

lowest rate of False Positive and false negative and KNN provide highest rate of false positive

and false negative

Table 1: ML Model Result Comparison (UCI Malware Dataset)

In above table best score in accuracy, precision,recall and F1 Score has been achived in Naïve

14

14

bayes. Naïve bayes provides good result than random forest in this dataset.

In figure 16 we can see that testing accuracy of naïve bayes model remains high than all other

ML models and provides good testing results.

Figure 16: Accuracy of Testing of ML Models

In figure 16 we have displayed calibration plots of all five models on UCI dataset.

15

15

Virus Share Dataset

As virus share dataset is very large so we have used google colab platform as machine learning
algorithms require lots of processing so google is providing Google Colaboratory is a free
online cloud-based Jupyter notebook environment that allows us to train our machine learning

and deep learning models on CPUs, GPUs, and TPUs.

Figure 17: Google Colab

Google Colab Runtimes – Choosing the GPU or TPU Option

The ability to choose different types of runtimes is what makes Colab so popular and powerful.

Here are the steps to change the runtime of your notebook:

Step 1: Click ‘Runtime’ on the top menu and select ‘Change Runtime Type’:

16

16

Figure 18: Google Colab Runtime Type

Step 2: Here you can change the runtime according to your need:

Figure 19: Google Colab Runtime Type

https://cdn.analyticsvidhya.com/wp-content/uploads/2020/03/uc14.png
https://cdn.analyticsvidhya.com/wp-content/uploads/2020/03/uc4.png

17

17

For Implementation we have used google colab platform which is freely available and providing
computing resource for implementing various deep learning and machine learning algorithms.
We have first uploaded our two datasets in google drive and then drive is mounted using google
authenticator.

Figure 20: Reading Virus Share Dataset

In above figure we can see that we have created a dataframe in which we have added our
virusshare dataset.

Figure 21: Data Cleaning

In above figure we have checked for any null values in our features so we can clean dataset and
we found there are no null values in any feature. If null values or data cleaning will not done
than some data overfitting and underfitting issues may reside. In our dataset there were total
58 features and all are checked against null values.

18

18

Figure 22: Feature correlation

Correlation is a proportion of the straight relationship of at least 2 factors. Through relationship,
we can foresee one variable from the other. The rationale behind utilizing relationship for
include choice is that the acceptable factors are profoundly corresponded with the objective.
Moreover, factors ought to be corresponded with the objective yet ought to be uncorrelated
among themselves. If two factors are associated, we can foresee one from the other. Along these
lines, if two highlights are connected, the model just actually needs one of them, as the
subsequent one doesn't add extra data. We have utilized the Pearson Correlation here.

Feature extraction can be used to characterized as changing the huge, ambiguous assortment of
contributions to the arrangement of highlights. Progressed identification mainly depends on
highlighting of extraction of the malicious files being examined. Feature could contain various
plaintext strings found in the dismantled documents, the size of the malware, n-gram byte
arrangements, framework asset data like the arrangement of DLLs, and so forth by utilizing AI
calculation, these highlights are given as sources of info.

19

19

Figure 23: Feature Selection

We have used coefficient to find important features and used the features in which coefficient
is grater than 0.2 for training and testing and other features were not used as only important
features have been selected. From this method we have identified 14 important features out of
58 features. In below figure we have checked the distribution of values in 14 important features.

Figure 24: Values distribution of important features

20

20

Figure 25: Training and Testing Data Split

In above figure we have split the data for training and testing in 70/30 using sklearn library
function. Here we found we have 966632 samples for training and 41415 random samples for
testing.

 Figure 10: CF Matrix of LR Figure 11: CF Matrix of DT

 Figure 12: CF Matrix of NB Figure 13: CF Matrix of RF

21

21

 Figure 12: CF Matrix of KNN

In above figures confusion matrix of each model are displayed and based on True Positive,

True Negative, False Positive and False Negative confusion matrix resulted from which accuracy,

precision, recall can be calculated.

Table 2: ML Model Result Comparison

In above table best score in accuracy, recall and F1 Score has been achived in Random Forest.

Only Precision is good in Naïve Bayes. Random Forest provides best result in accuracy and F1

Score in terms of different dataset.

In figure 13 we can see that testing accuracy of Random forest model remains high than all

other ML models and provides good testing results.

Figure 13: Accuracy of Testing of ML Model

22

22

REFERENCES
[1] “Anaconda | Individual Edition.” Anaconda,

https://www.anaconda.com/products/individual.

[2] https://colab.research.google.com/?utm_source=scs-index

[3] https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-

deep-learning/

[4] https://www.tutorialspoint.com/google_colab/google_colab_tutorial.pdf

[5] https://scikit-learn.org/stable/modules/ensemble.html#forest

https://www.anaconda.com/products/individual
https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
https://www.analyticsvidhya.com/blog/2020/03/google-colab-machine-learning-deep-learning/
https://www.tutorialspoint.com/google_colab/google_colab_tutorial.pdf
https://scikit-learn.org/stable/modules/ensemble.html#forest

