
1

Detection of Zero-day Malware Using Hybrid

Supervised and Un-supervised Machine Learning

Algorithms

MSc Research Project

Cyber Security

Mohammed Mustafa Raza Choudhry

Student ID: X20119607

School of Computing

National College of Ireland

Supervisor: Dr. Imran Khan

2

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:

Mohammed Mustafa Raza Choudhry

Student ID:

X20119607

Program:

Msc. Cybersecurity

Year:

January 2021

Module:

INTERSHIP

Supervisor:

Dr. Imran Khan

Submission Due Date:
31st January 2022 (Final Submission)

Project Title:

Detection of Zero-day Malware Using Hybrid
Supervised and Un-supervised Machine

Learning Algorithms

Word Count: 5154

Page Count: 20

I hereby certify that the information contained in this (my submission) is information

pertaining to research I conducted for this project. All information other than my own

contribution will be fully referenced and listed in the relevant bibliography section at the

rear of the project.

ALL internet material must be referenced in the bibliography section. Students are

required to use the Referencing Standard specified in the report template. To use other

author's written or electronic work is illegal (plagiarism) and may result in disciplinary

action.

Signature:

Mohammed Mustafa Raza Choudhry

Date:

28th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project
(including multiple copies)

□

Attach a Moodle submission receipt of the online

project submission, to each project (including multiple
copies).

□

You must ensure that you retain a HARD COPY of the
project, both for your own reference and in case a project is

lost or mislaid. It is not sufficient to keep a copy on
computer.

□

3

Assignments that are submitted to the Programme Coordinator Office

must be placed into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if
applicable):

Detection of Zero-day Malware Using Hybrid

Supervised and Un-supervised Machine Learning

Algorithms

Mohammed Mustafa Raza Choudhry

X20119607

Abstract

Malware is one of the main dangers for the present figuring world from the

number of various sites circulating malicious application is expanding at very fast

rate. Malware examination and anticipation strategies can be progressively used to

becoming vital for PC frameworks associated with the Internet. This product tries

to gain advantage of the framework's weaknesses and security breach to take

significant data without the client's information, and covertly send it to distant

servers constrained by assailants. Generally, antimalware items used for marking

and identifying known malware. In any case, the mark-based strategy doesn't scale

well in distinguishing muddled and stuffed malware. Taking into account that the

reason for a issue is regularly best perceived by the concentrating on the primary

parts of a code likewise the mental aides, guidance opcode as well as API Call, and

so forth In this paper, we have researched the pertinence of the highlights of

unloaded vindictive with harmless executables like memory helpers, guidance

opcodes, and API to distinguish a component that characterizes the executable.

Trials were directed on two datasets utilizing AI and profound learning approaches

like Random Forest (RF), KNN, Logistic Regression, Naïve Bayes, Decision Tree.

The learning strategies and showed a tweaked profound neural organization that

brought about a accuracy of 99.72% and 99.37% on UCI Malware and Virus Share

Dataset, individually.

1 Introduction

Malware which is a combination of two words Malicious & Software, is one kind of most

ever-growing security danger as well as the identification and classification of malicious files

remains a significant space of exploration. In the starting phase in identification is

investigation. This includes both either dynamic or static investigation of known malicious

application and is normally can be used disconnected with master human info. Outcomes of

analysis are refined into a “signature". Other strategy for malware location is the utilization of

some static marks to inspect programs after they are stacked and just before execution of

software [1], [2]. Lamentably, this can be crushed by the malware which utilizes jumbling. Due

to this, dynamic conduct-based location has been proposed [3]. These techniques screen the

conduct of the framework by utilizing working with framework or hypervisor-based

instrumentation all together to make difference malevolent conduct. Dynamic and static marks

can be inferred utilizing either deterministic or measurable methods. Measurable methods

dependent on AI like ML and DL Methods are utilized to observe designs comparing to

malevolent conduct. Interestingly, deterministic marks are regularly developed through human

master investigation [4], [5].

 In this Digital Era malware have stroked a huge number of computational devices.

Computers and Smart Devices can be compromised, some private and confidential information

can be stolen, private networks can be penetrated some critical infrastructures can be stultified

with using malicious software or ransomwares. As per Computer Economics due to various

malware attacks financial loss has arisen to 13.3 billion in 2006 from 3.3 billion in 1997 [6].

Estimation by Cybersecurity Ventures [7] total loss because of malware attack was three

trillion in 2015 and it is expected to cross six trillion by 2021.

 Norton, McAfee, Kaspersky, AVG, etc. like antivirus software are mainly used for

defeating malware attacks. Generally, this antivirus software is using signature-based methods

for detecting malware. A short sequence of bytes which is called signature is used to detect

malware. Zeus the toolkit for malware generation is used to regenerate millions of different

variants of the same malware by using various techniques.

 Research analysts and communities for anti-malware have described various DL and

ML based methods for malware detection as well as analysis designing. Two fundamental steps

Feature Extraction and Feature reduction have been mainly divided in literature survey.

Dynamic analysis and static analysis methods are used for generating features for malware

analysis.

Figure 1: Types of Malwares.

In above figure we can see different types of malwares like Spyware, Ransomware,

Trojan, Worms, Adware etc. These can be a jumbling question to define exact type of malware.

Malvertising: In this type attacker uses advertising for spreading the malware. In legitimate

advertising network or webpages malicious or malware has been injected.

Spyware: In this type user’s confidential and private information and data is captured and sent

to attacker without consent or knowledge of user. Different heterogenous types of spyware are

used to track and record victim’s internet usage and also change root level settings in user’s

device.

Backdoor: In this method authentication or encryption can be bypassed using independent

code or program. Attacker can gain access of user’s confidential and private files using some

previously installed or manufacturer program.

Cryptojacking: This is most recent types of malwares in which user’s computing resources

and power are used to mine various cryptocurrency without their knowledge.

Adware: This type of malwares is generated to display different unusual ads in user’s device.

This is most profitable and least harmful types of malwares.

Ransomware: Your data and computer access can be denied using this type of malware until

some ransom is paid. User’s data will be encrypted and converted to not readable form.

2 Related Work

Numerous endeavours have effectively been used to identify malware. In various research

papers a few techniques have been used [8]. There are various sorts of malicious files and

application recognition and grouping utilizing methods, for example, static, dynamic and half-

breed highlights [9]. Static investigation likewise known as code examination [10] without

executing malicious application by looking at and noticed for programming code for acquiring

data of how malicious application capacities are working. In this something else altogether

without utilizing the codes however as indicated by the runtime conduct by watching its

framework collaboration, conduct and consequences for have framework called as unique

examination [11]. Though half breed examination [12] is a mix of dynamic and static

investigation.

By utilizing API calls in his work, Tian et al. [13] have proposed a double component

technique for malicious application identification and characterization. In this research article,

the authors likewise researched the recurrence put together strategies with respect to similar

information however no overhauling was seen over the twofold portrayal. In comparative

methodology, Salehi [14] proposed a discovery of malicious files which is dependent on API

calls and their contentions. The creators utilized this method as a component and broke down

it’s result for the grouping system. To diminish the quantity of elements, include choice

calculations are utilized. The outcome from the exploratory assessment defines the exactness of

98.4% by utilizing arbitrary woodland calculation.

M. Singh [15] porjected a new strategy for dependent on social examination on AI that

zeroed in on grouping and bunching of malwares. In their research test, they utilized a novel

two sorts of classifiers which are Logic Model tree and K-Means calculations. The outcome

has displayed that 82% expected for ruining in the PC framework or organization assets in

while the rest 18% of investigated malicious files were implanted with a systems

administration ability to associate the external world. A. Salim and P.V.Shijo [16] used a

strategy which gives the proficient robotized grouping of malwares by utilizing both elements

of malwares by utilizing AI procedure. In their analytical trial, the static highlights are

extricated from the parallel code while in most powerful investigation is finished by utilizing

the device sandbox of cuckoo that zeroed in on framework sequences of calls. The creators

designed a new examination with utilizing various static, dynamic and incorporated strategy

with utilizing two different classifiers which are SVM and arbitrary forest (RF). The precision

discovery shows for coordinated technique in RF 97.68% while 98.71% utilizing SVM

calculation.

M.Aizaini [17] projected a novel improvement of decision tree-based calculation for

ordering of malicious and harmless. On double class researchers have accomplished exactness

94.66% by utilizing an API in component extraction. Liu [18], utilized Neural organization for

malware recognition. The creators generally utilize the static highlights acquired by against

aggregation of APK. These static highlights have incorporated string, touchy API, declarations

and application authorizations. Yang et al [19], proposed a novel high level arbitrary woodland

calculation for identifying and analysing malware. Santos [20] essentially utilized the static

element of PE records. In above research paper, author have prescribed another hybrid

technique to recognize obscure malware families dependent on the recurrence for the presence

of opcode successions.

C. I. Fun [20], proposed strategies for snaring for following dynamic marks that the

malicious attempts to stow away by utilizing information mining techniques. This is the

procedure which can be used to distinguished various practices of malware and they contrast it

and the harmless information. By utilizing 80 credits, we found the discovery rate was 95%

which makes the procedure of utilized expanded location rate with the diminishing intricacy.

M. Belaoued [21] proposed a constant PE malware location framework dependent on the

examination of the data to put away in the PE-discretionary header fields. For highlights

choice, the essayists utilized Phi coefficient and chi square with chosen highlights Rotation

woods classifier was prepared and tried.

Below table is provided for drawback and used approaches in Table 1.

Table 1: Existing Technique Comparison

Author Used Approach Drawback

M. Christodorescu [23]

Mining the unknown and malicious
behaviour which is present in well-
known malware.

The quality of mined malware
behaviour was not known due to
impact of test program choices

 W.Wang [26]

A novel framework defined for
detecting malicious and benign
applications.

For training their models they
require feature extracted dataset.

M. K. Alzaylaee [24]

Stateful input generation based dynamic
analysis is used to detect android
application which are malicious.

Recent intrusion detection system
investigation was not used.

L. Nataraj [27]

Image processing techniques has been
used for classification and visualization
of malware.

This border spectrum path is not
fully explored

G. Canfora [25]

Various sequence of system calls is
used for detecting malware in android
application.

Only based on assumptions that
specific system calls used for
implementing malware behaviour.

3 Research Methodology

Various machine learning algorithms have been used in this research. Mainly there are two

types of Supervised and Unsupervised techniques have been used for detection and

classification of malicious application.

In this research we have used below five different techniques of machine learning on two

different datasets.

3.1 Logistic Regression

This method is used for binary classification either 0 or 1. Like linear regression the

goal is to finding the values for coefficients as each input variable have weight and

unlike linear regression the output is being transformed using logistic function for

prediction of the output.

3.2 Decision Trees

 A Decision tree expands upon iteratively posing inquiries to segment information. It is

a simpler to conceptualize the dividing information with a visual portrayal of a choice

tree. This addresses a choice tree to anticipate client agitate. First split depends on

month-to-month charges sum. Then, at that point, the calculation continues to pose

inquiries to isolate class marks. The inquiries get more explicit as the tree gets further.

The point of the choice tree calculation is to build the prescience however much as

could be expected at each parcelling so the model continues to acquire data about the

dataset

3.3 Random Forest

Random Forest is a gathering of numerous choice trees. Random Forest are constructed

utilizing a strategy called sacking in which choice trees are utilized as equal assessors.

Whenever utilized for a grouping issue, the outcome depends on greater part vote of the

outcomes got from every choice tree. For relapse, the expectation of a leaf hub is the

mean worth of the objective qualities in that leaf. Arbitrary woods relapse takes mean

worth of the outcomes from choice trees.

3.4 Naive Bayes

This is a type of regulated learning calculation utilized for characterization errands.

Henceforth, it is additionally called Naive Bayes Classifier. Naive bayes expects that

highlights are autonomous of one another and there is no connection be tween’s

elements. Be that as it may, this isn't true, all things considered. This innocent

presumption of elements being uncorrelated is the justification for why this calculation

is classified "Naive".

3.5 K-Nearest Neighbors (kNN)

 K-closest neighbors (kNN) is a type of managed learning calculation that can be

mainly utilized to address both arrangement and relapse assignments. The principle can

be thought as behind kNN is that the worth or class of an information point is controlled

by the information focuses around it. kNN classifier decides the class of an information

point by larger part casting a ballot guideline.

A significant variable to the accomplishment of this task is the curation of a dataset that

intently takes after the sort of harmless and malevolent doubles as of now available for use.

Having such a dataset is fundamental in building AI models that can effectively sum up. We

get an underlying dataset of harmless examples from the pairs found on our Windows PCs.

These contain some outsider programming yet are overwhelmingly Windows 10 framework

les. These are enhanced with doubles taken from Windows Server 2000 and 2012, Windows

XP, and Windows 7 establishments. To change up the harmless examples, an extra

arrangement of doubles is gotten by introducing the 300 most famous bundles from a Windows

bundle director. In the wake of joining the harmless examples and eliminating copies utilizing

the Linux utility fdupes for checking MD5 hashes, we are left with 41,323 special pairs.

Vindictive examples are sourced from the malware store VirusShare [28]. Tests transferred

to the website inside the most recent two years are downloaded in mass. The Windows pairs

are then, at that point, idented and questioned for their Virus Total report which gives the

consequence of outputs by 60/70 of the main enemy of infection (AV) programming. We apply

a limit of 30 sweeps distinguishing the twofold as vindictive to come to a set of 96 724 special

malware tests. So total samples including normal and malicious software 1 38 047 were used

for training and testing.

Figure 2: Virus share Dataset.

 We have also used our techniques in another dataset of UCI which was taken from

Kaggel. In that dataset for different features, we have used factorization methods and total 369

samples of malicious and benign software were used.

Figure 3: UCI Dataset.

4 Design Specification

The proposed approach for detection of malware is shown in the below flowchart in Figure 4.

A malware test was examined utilizing static examination. Static investigation prompts the

features of elements. In this analysis, we inspected malicious and normal file records. This

Malicious executable records data then, at that point, will be utilized as an element. All the data

elements will then, at that point, be separated to choose ideal elements that are applicable for

grouping task. The last cycle will be finished by assessing the most elevated exactness

identification utilizing three kinds of calculations which are Logistic regression, Random

Forest, K-Nearest Neighbour (KNN), Naïve byes and Decision tree (DT).

Figure 4: Proposed Method

5 Implementation

For Implementation we have used google colab platform which is freely available and

providing computing resource for implementing various deep learning and machine learning

algorithms. We have first uploaded our two datasets in google drive and then drive is mounted

using google authenticator.

Figure 5: Reading Virus Share Dataset

In above figure we can see that we have created a dataframe in which we have added our

virusshare dataset.

Figure 6: Data Cleaning

In above figure we have checked for any null values in our features so we can clean dataset and

we found there are no null values in any feature. If null values or data cleaning will not done

than some data overfitting and underfitting issues may reside. In our dataset there were total 58

features and all are checked against null values.

Figure 7: Feature correlation

Correlation is a proportion of the straight relationship of at least 2 factors. Through

relationship, we can foresee one variable from the other. The rationale behind utilizing

relationship for include choice is that the acceptable factors are profoundly corresponded with

the objective. Moreover, factors ought to be corresponded with the objective yet ought to be

uncorrelated among themselves. If two factors are associated, we can foresee one from the

other. Along these lines, if two highlights are connected, the model just actually needs one of

them, as the subsequent one doesn't add extra data. We have utilized the Pearson Correlation

here.

 In above figure we have mapped all features using pearson correlation and checked

whether any partial distribution of data occurs or not.

 ['Name', 'md5', 'Machine', 'SizeOfOptionalHeader', 'Characteristics',

 'MajorLinkerVersion', 'MinorLinkerVersion', 'SizeOfCode',

 'SizeOfInitializedData', 'SizeOfUninitializedData',

 'AddressOfEntryPoint', 'BaseOfCode', 'BaseOfData', 'ImageBase',

 'SectionAlignment', 'FileAlignment', 'MajorOperatingSystemVersion',

 'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion',

 'MajorSubsystemVersion', 'MinorSubsystemVersion', 'SizeOfImage',

 'SizeOfHeaders', 'CheckSum', 'Subsystem', 'DllCharacteristics',

 'SizeOfStackReserve', 'SizeOfStackCommit', 'SizeOfHeapReserve',

 'SizeOfHeapCommit', 'LoaderFlags', 'NumberOfRvaAndSizes', 'SectionsNb',

 'SectionsMeanEntropy', 'SectionsMinEntropy', 'SectionsMaxEntropy',

 'SectionsMeanRawsize', 'SectionsMinRawsize', 'SectionMaxRawsize',

 'SectionsMeanVirtualsize', 'SectionsMinVirtualsize',

 'SectionMaxVirtualsize', 'ImportsNbDLL', 'ImportsNb',

 'ImportsNbOrdinal', 'ExportNb', 'ResourcesNb', 'ResourcesMeanEntropy',

 'ResourcesMinEntropy', 'ResourcesMaxEntropy', 'ResourcesMeanSize',

 'ResourcesMinSize', 'ResourcesMaxSize', 'LoadConfigurationSize',

 'VersionInformationSize', 'legitimate']

The above list is 58 features of our virusshare dataset has been displayed from these

features we will select only relevant and important features for training and testing of our

models.

 Feature extraction can be used to characterized as changing the huge, ambiguous

assortment of contributions to the arrangement of highlights. Progressed identification mainly

depends on highlighting of extraction of the malicious files being examined. Feature could

contain various plaintext strings found in the dismantled documents, the size of the malware, n-

gram byte arrangements, framework asset data like the arrangement of DLLs, and so forth by

utilizing AI calculation, these highlights are given as sources of info.

Figure 7: Feature Selection

We have used coefficient to find important features and used the features in which coefficient

is grater than 0.2 for training and testing and other features were not used as only important

features have been selected. From this method we have identified 14 important features out of

58 features. In below figure we have checked the distribution of values in 14 important

features.

Figure 8: Values distribution of important features

Figure 9: Training and Testing Data Split

In above figure we have split the data for training and testing in 70/30 using sklearn library

function. Here we found we have 966632 samples for training and 41415 random samples for

testing.

We have used scikit leran library function for LogisticRegression, DecisionTreeClassifier,

RandomForestClassifier, GaussianNB and KNeighborsClassifier. First these models are trained

using model evaluate function and we have used ML-Ensemble library.

6 Evaluation

We have trained five different machine learning models and checked the performance and

testing accuracy of each model on virus share and UCI dataset. The result gained from each

model have been displayed here.

6.1 Virus Share Dataset

 Figure 10: CF Matrix of LR Figure 11: CF Matrix of DT

 Figure 12: CF Matrix of NB Figure 13: CF Matrix of RF

 Figure 12: CF Matrix of KNN

In above figures confusion matrix of each model are displayed and based on True Positive,

True Negative, False Positive and False Negative confusion matrix resulted from which

accuracy, precision, recall can be calculated.

Table 2: ML Model Result Comparison

In above table best score in accuracy, recall and F1 Score has been achived in Random Forest.

Only Precision is good in Naïve Bayes. Random Forest provides best result in accuracy and F1

Score in terms of different dataset.

In figure 13 we can see that testing accuracy of Random forest model remains high than all

other ML models and provides good testing results.

 Figure 13: Accuracy of Testing of ML Models

Probablistic predictions of binary classification can be compared by calibration curves. For

binned predictions, calibration curve used to plot true frequency of true lable on its predicted

probability. In below figure we have given calibration plot of all five ML models. In which

random forest gives highest fraction of positives values.

Figure 13: Calibration Curve of ML Models

6.2 UCI Dataset

 Figure 14: CF Matrix of LR Figure 15: CF Matrix of DT

 Figure 16: CF Matrix of NB Figure 17: CF Matrix of RF

 Figure 18: CF Matrix of KNN

In above figure we have displayed different confusion matrix of all five ML models on UCI

malware dataset which is taken from Kaggle, we can see that in this dataset Naïve Bayes

provide lowest rate of False Positive and false negative and KNN provide highest rate of false

positive and false negative.

Table 3: ML Model Result Comparison (UCI Malware Dataset)

In above table best score in accuracy, precision,recall and F1 Score has been achived in Naïve

bayes. Naïve bayes provides good result than random forest in this dataset.

In figure 19 we can see that testing accuracy of naïve bayes model remains high than all other

ML models and provides good testing results.

 Figure 19: Accuracy of Testing of ML Models

In figure 20 we have displayed calibration plots of all five models on UCI dataset.

Figure 20: Calibration Curve of ML Models

From above figure we can see that on uci dataset only Naive Bayes is perfectly calibrated.

Calibration curves are used to evaluate how calibrated a classifier is i.e., how the probabilities

of predicting each class label differ. The x-axis represents the average predicted probability in

each bin. The y-axis is the ratio of positives (the proportion of positive predictions). The curve

of the ideal calibrated model is a linear straight line from (0, 0) moving linearly.

We have compared Probablistic predictions of binary classification of UCI dataset. Probablistic

predictions of binary classification can be compared by calibration curves. For binned

predictions, calibration curve used to plot true frequency of true lable on its predicted

probability. In above figure we have given calibration plot of all five ML models. In which

Naïve Bayes gives highest fraction of positives values. In Virus-Share dataset (Figure 13) we

got highest fraction of positives values in Random Forest.

6.3 Discussion

Previous literature research on malware detection demonstrate that categorization may be done

successfully with the aid of machine learning approaches, although several challenges remain

unresolved. Zero-day attacks are those that occur on a day when no new malware is released.

It is the primary goal of all malware researchers. Some concerns and obstacles with malware

detection remain and have yet to be overcome. When it comes to reality, one challenge is that

real or manual verification of categorization findings becomes more difficult. Another

difficulty is how to progress strategies for more active learning. More recent developments in

machine learning, ensemble learning, deep learning, and other domains are expected. Zero-day

attacks necessitate the use of the most modern tactics. One of the problems is dealing with huge

datasets. These sophisticated strategies are required in the decrease of dimensionality.

This study focused on malware detection and evaluated the false-positive rate of detection

using supervised and un-supervised machine learning algorithms. In former model [14]

proposed a discovery of malicious files which is dependent on API calls and their contentions.

In other work [15] they utilized a novel two sorts of classifiers which are Logic Model tree and

K-Means calculations. Further [18] The creators generally utilize the static highlights acquired

by against aggregation of APK. These static highlights have incorporated string, touchy API,

declarations and application authorizations. Later [27] Image processing techniques has been

used for classification and visualization of malware.

In contrast to comparable research, our model detected Malware with a 99.1% recall score,

whereas [14] found 98.4% and [15] discovered 97.68%. The primary model might produce a

list of the most significant API, Permission, and Network properties. These chosen significant

qualities are comparable to those chosen by [14], [15], [16], [18], and [27]. However, there are

modest discrepancies that might be attributed to the quantity of samples used in research.

7 Conclusion and Future Work

We trained and tested several machine learning models on two datasets and all models

provide very reasonable results. On Virus share dataset Random Forest provides highest

accuracy 99.37% and naïve bayes provides 91.30% accuracy in this dataset. On UCI dataset

naïve bayes provides highest accuracy 99.72%. We can also apply deep learning models on this

dataset and gain some more accuracy. Future work we will try to build new dataset from recent

malware and try to provide some application to check whether the files are malicious or not.

Here we have used 14 important features based on pearson corelation coefficient and trained

and tested the model. We will also try to use optuna hypervisor for identifying best parameters

in ML models so we can improve the accuracy.

8 References

[1] Apvrille, “Digsig: Run-time authentication of binaries at kernel level,” Proceedings of

LISA, Jan. 2004, Accessed: Dec. 13, 2021. [Online]. Available:

https://www.academia.edu/17245897/Digsig_Run_time_authentication_of_binaries_at_

kernel_level.
[2] “Limits of Static Analysis for Malware Detection | SE,” se.fbk.eu.

https://se.fbk.eu/events/limits-static-analysis-malware-detection (accessed Dec. 13,
2021).

[3] G. Jacob, H. Debar, and E. Filiol, “Behavioral detection of malware: from a survey
towards an established taxonomy,” Journal in Computer Virology, vol. 4, no. 3, pp.
251–266, Feb. 2008, doi: 10.1007/s11416-008-0086-0.

[4] D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia, “A behavioral approach to
worm detection,” Proceedings of the 2004 ACM workshop on Rapid malcode - WORM
’04, 2004, doi: 10.1145/1029618.1029625.

[5] P. A. Porras and R. A. Kemmerer, “Penetration state transition analysis: A rule-based
intrusion detection approach,” IEEE Xplore, Nov. 01, 1992.
https://ieeexplore.ieee.org/document/228217 (accessed Dec. 13, 2021).

[6] “Annual Worldwide Economic Damages from Malware Exceed $13 Billion | Computer
Economics -- for IT metrics, ratios, benchmarks, and research advisories for IT
management,” Computereconomics.com, 2019.
https://www.computereconomics.com/article.cfm?id=1225.

[7] “Cybercrime To Cost The World $10.5 Trillion Annually By 2025,” Cybercrime
Magazine, Feb. 21, 2018. https://cybersecurityventures.com/hackerpocalypse-
cybercrime-report-2016. (accessed Dec. 13, 2021).

[8] Mohammad DK, Mohd TS, Rafia A, Mahenoor S,& Sonalii S” Malware detection

using Machine Learning Algorithms” IJARCCE, Vol. 6, Issue 9, September (2017),

available online: https://ijarcce.com/upload/2017/september17/IJARCCE%2035.pdf.
[9] M. IMRAN, M. T. AFZAL, and M. A. QADIR, “A comparison of feature extraction

techniques for malware analysis,” TURKISH JOURNAL OF ELECTRICAL ENGINEERING &
COMPUTER SCIENCES, vol. 25, pp. 1173–1183, 2017, doi: 10.3906/elk-1601-189.

[10] J. Landage and P. M. P. Wankhade, “Malware and Malware Detection
Techniques : A Survey,” International Journal of Engineering Research & Technology,
vol. 2, no. 12, Dec. 2013, Accessed: Dec. 13, 2021. [Online]. Available:
https://www.ijert.org/malware-and-malware-detection-techniques-a-survey-2.

[11] S. Najari, “Malware Detection Using Data Mining Techniques,” International
Journal of Intelligent Information Systems, vol. 3, no. 6, p. 33, 2014, doi:
10.11648/j.ijiis.s.2014030601.16.

[12] N. Hande and nbspProf V. Rao, “A comparative study of static, dynamic and
hybrid analysis techniques for android malware detection,” undefined, 2017,
Accessed: Dec. 13, 2021. [Online]. Available:
https://www.semanticscholar.org/paper/A-comparative-study-of-static%2C-dynamic-
and-hybrid-Hande-Rao/dd1ef3cd014499ede460d90f109ac93cd694c726.

[13] R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware from
cleanware using behavioural analysis,” IEEE Xplore, Oct. 01, 2010.
https://ieeexplore.ieee.org/document/5665796 (accessed Dec. 13, 2021).

[14] Z. Salehi, M. Ghiasi, and A. Sami, “A miner for malware detection based on API
function calls and their arguments,” IEEE Xplore, May 01, 2012.
https://ieeexplore.ieee.org/document/6313810 (accessed Dec. 13, 2021).

https://www.academia.edu/17245897/Digsig_Run_time_authentication_of_binaries_at_kernel_level
https://www.academia.edu/17245897/Digsig_Run_time_authentication_of_binaries_at_kernel_level
https://ijarcce.com/upload/2017/september17/IJARCCE%2035.pdf

[15] A. Dhammi and M. Singh, “Behavior analysis of malware using machine
learning,” IEEE Xplore, Aug. 01, 2015. https://ieeexplore.ieee.org/document/7346730.

[16] P. V. Shijo and A. Salim, “Integrated Static and Dynamic Analysis for Malware
Detection,” Procedia Computer Science, vol. 46, pp. 804–811, 2015, doi:
10.1016/j.procs.2015.02.149.

[17] M. Shaiful, A. Bin, M. Sari, M. Maarof, and T. Malaysia, “Classification of
Malware Family Using Decision Tree Algorithm.” Accessed: Dec. 13, 2021. [Online].
Available: https://engineering.utm.my/computing/proceeding/wp-
content/uploads/sites/114/2018/04/Classification-of-Malware-Family-Using-Decision-
Tree-Algorithm.pdf.

[18] L. Yang, “Employing The Algorithms Of Random Forest And Neural Networks
For The Detection And Analysis Of Malicious Code Of Android Applications,” Beijing
Jiaotong University, 2015.

[19] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, “Opcode sequences as
representation of executables for data-mining-based unknown malware detection,”
Information Sciences, vol. 231, pp. 64–82, May 2013, doi: 10.1016/j.ins.2011.08.020.

[20] C.-I. Fan, H.-W. Hsiao, C.-H. Chou, and Y.-F. Tseng, “Malware Detection Systems
Based on API Log Data Mining,” 2015 IEEE 39th Annual Computer Software and
Applications Conference, Jul. 2015, doi: 10.1109/compsac.2015.241.

[21] M. Belaoued and S. Mazouzi, “A Real-Time PE-Malware Detection System
Based on CHI-Square Test and PE-File Features,” IFIP Advances in Information and
Communication Technology, pp. 416–425, 2015, doi: 10.1007/978-3-319-19578-0_34.

[22] M. Hassen, M. M. Carvalho, and P. K. Chan, “Malware classification using static
analysis based features,” IEEE Xplore, Nov. 01, 2017.
https://ieeexplore.ieee.org/abstract/document/8285426 (accessed Dec. 13, 2021).

[23] M. Christodorescu, S. Jha, and C. Kruegel, “Mining specifications of malicious
behavior,” Proceedings of the the 6th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The foundations of
software engineering - ESEC-FSE ’07, 2007, doi: 10.1145/1287624.1287628.

[24] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: Deep learning based
android malware detection using real devices,” Computers & Security, vol. 89, p.
101663, Feb. 2020, doi: 10.1016/j.cose.2019.101663.

[25] G. Canfora, E. Medvet, F. Mercaldo, and C. A. Visaggio, “Detecting Android
malware using sequences of system calls,” Proceedings of the 3rd International
Workshop on Software Development Lifecycle for Mobile, Aug. 2015, doi:
10.1145/2804345.2804349.

[26] W. Wang, Y. Li, X. Wang, J. Liu, and X. Zhang, “Detecting Android malicious
apps and categorizing benign apps with ensemble of classifiers,” Future Generation
Computer Systems, vol. 78, pp. 987–994, Jan. 2018, doi: 10.1016/j.future.2017.01.019.

[27] L. Nataraj, S. Karthikeyan, G. Jacob, and B. S. Manjunath, “Malware images,”
Proceedings of the 8th International Symposium on Visualization for Cyber Security -
VizSec ’11, 2011, doi: 10.1145/2016904.2016908.

[28] Corvus Forensics. VirusShare. url: https://virusshare.com. Accessed:

01.02.2021.

