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Abstract 

Malware is one of the main dangers for the present figuring world from the 

number of various sites circulating malicious application is expanding at very fast 

rate. Malware examination and anticipation strategies can be progressively used to 

becoming vital for PC frameworks associated with the Internet. This product tries 

to gain advantage of the framework's weaknesses and security breach to take 

significant data without the client's information, and covertly send it to distant 

servers constrained by assailants. Generally, antimalware items used for marking 

and identifying known malware. In any case, the mark-based strategy doesn't scale 

well in distinguishing muddled and stuffed malware. Taking into account that the 

reason for a issue is regularly best perceived by the concentrating on the primary 

parts of a code likewise the mental aides, guidance opcode as well as API Call, and 

so forth In this paper, we have researched the pertinence of the highlights of 

unloaded vindictive with harmless executables like memory helpers, guidance 

opcodes, and API to distinguish a component that characterizes the executable. 

Trials were directed on two datasets utilizing AI and profound learning approaches 

like Random Forest (RF), KNN, Logistic Regression, Naïve Bayes, Decision Tree. 

The learning strategies and showed a tweaked profound neural organization that 

brought about a accuracy of 99.72% and 99.37% on UCI Malware and Virus Share 

Dataset, individually. 

 

1 Introduction 
 

Malware which is a combination of two words Malicious & Software, is one kind of most 

ever-growing security danger as well as the identification and classification of malicious files 

remains a significant space of exploration. In the starting phase in identification is 

investigation. This includes both either dynamic or static investigation of known malicious 

application and is normally can be used disconnected with master human info. Outcomes of 

analysis are refined into a “signature". Other strategy for malware location is the utilization of 

some static marks to inspect programs after they are stacked and just before execution of 

software [1], [2]. Lamentably, this can be crushed by the malware which utilizes jumbling. Due 

to this, dynamic conduct-based location has been proposed [3]. These techniques screen the 

conduct of the framework by utilizing working with framework or hypervisor-based 

instrumentation all together to make difference malevolent conduct. Dynamic and static marks 

can be inferred utilizing either deterministic or measurable methods. Measurable methods 



 

 

dependent on AI like ML and DL Methods are utilized to observe designs comparing to 

malevolent conduct. Interestingly, deterministic marks are regularly developed through human 

master investigation [4], [5]. 

  

 In this Digital Era malware have stroked a huge number of computational devices. 

Computers and Smart Devices can be compromised, some private and confidential information 

can be stolen, private networks can be penetrated some critical infrastructures can be stultified 

with using malicious software or ransomwares.  As per Computer Economics due to various 

malware attacks financial loss has arisen to 13.3 billion in 2006 from 3.3 billion in 1997 [6]. 

Estimation by Cybersecurity Ventures [7] total loss because of malware attack was three 

trillion in 2015 and it is expected to cross six trillion by 2021. 

 

 Norton, McAfee, Kaspersky, AVG, etc. like antivirus software are mainly used for 

defeating malware attacks. Generally, this antivirus software is using signature-based methods 

for detecting malware. A short sequence of bytes which is called signature is used to detect 

malware. Zeus the toolkit for malware generation is used to regenerate millions of different 

variants of the same malware by using various techniques. 

 

 Research analysts and communities for anti-malware have described various DL and 

ML based methods for malware detection as well as analysis designing. Two fundamental steps 

Feature Extraction and Feature reduction have been mainly divided in literature survey. 

Dynamic analysis and static analysis methods are used for generating features for malware 

analysis.  

 

 

Figure 1: Types of Malwares. 

 

In above figure we can see different types of malwares like Spyware, Ransomware, 

Trojan, Worms, Adware etc. These can be a jumbling question to define exact type of malware.  

 

Malvertising: In this type attacker uses advertising for spreading the malware. In legitimate 

advertising network or webpages malicious or malware has been injected. 

 

Spyware: In this type user’s confidential and private information and data is captured and sent 

to attacker without consent or knowledge of user. Different heterogenous types of spyware are 



 

 

used to track and record victim’s internet usage and also change root level settings in user’s 

device. 

 

Backdoor: In this method authentication or encryption can be bypassed using independent 

code or program. Attacker can gain access of user’s confidential and private files using some 

previously installed or manufacturer program. 

 

Cryptojacking: This is most recent types of malwares in which user’s computing resources 

and power are used to mine various cryptocurrency without their knowledge. 

 

Adware: This type of malwares is generated to display different unusual ads in user’s device. 

This is most profitable and least harmful types of malwares. 

 

Ransomware: Your data and computer access can be denied using this type of malware until 

some ransom is paid. User’s data will be encrypted and converted to not readable form. 

 

2 Related Work 
 

Numerous endeavours have effectively been used to identify malware. In various research 

papers a few techniques have been used [8]. There are various sorts of malicious files and 

application recognition and grouping utilizing methods, for example, static, dynamic and half-

breed highlights [9]. Static investigation likewise known as code examination [10] without 

executing malicious application by looking at and noticed for programming code for acquiring 

data of how malicious application capacities are working. In this something else altogether 

without utilizing the codes however as indicated by the runtime conduct by watching its 

framework collaboration, conduct and consequences for have framework called as unique 

examination [11]. Though half breed examination [12] is a mix of dynamic and static 

investigation.  

 

By utilizing API calls in his work, Tian et al. [13] have proposed a double component 

technique for malicious application identification and characterization. In this research article, 

the authors likewise researched the recurrence put together strategies with respect to similar 

information however no overhauling was seen over the twofold portrayal. In comparative 

methodology, Salehi [14] proposed a discovery of malicious files which is dependent on API 

calls and their contentions. The creators utilized this method as a component and broke down 

it’s result for the grouping system. To diminish the quantity of elements, include choice 

calculations are utilized. The outcome from the exploratory assessment defines the exactness of 

98.4% by utilizing arbitrary woodland calculation. 

 

M. Singh [15] porjected a new strategy for dependent on social examination on AI that 

zeroed in on grouping and bunching of malwares. In their research test, they utilized a novel 

two sorts of classifiers which are Logic Model tree and K-Means calculations. The outcome 

has displayed that 82% expected for ruining in the PC framework or organization assets in 

while the rest 18% of investigated malicious files were implanted with a systems 

administration ability to associate the external world. A. Salim and P.V.Shijo [16] used a 

strategy which gives the proficient robotized grouping of malwares by utilizing both elements 

of malwares by utilizing AI procedure. In their analytical trial, the static highlights are 



 

 

extricated from the parallel code while in most powerful investigation is finished by utilizing 

the device sandbox of cuckoo that zeroed in on framework sequences of calls. The creators 

designed a new examination with utilizing various static, dynamic and incorporated strategy 

with utilizing two different classifiers which are SVM and arbitrary forest (RF). The precision 

discovery shows for coordinated technique in RF 97.68% while 98.71% utilizing SVM 

calculation. 

 

M.Aizaini [17] projected a novel improvement of decision tree-based calculation for 

ordering of malicious and harmless. On double class researchers have accomplished exactness 

94.66% by utilizing an API in component extraction. Liu [18], utilized Neural organization for 

malware recognition. The creators generally utilize the static highlights acquired by against 

aggregation of APK. These static highlights have incorporated string, touchy API, declarations 

and application authorizations. Yang et al [19], proposed a novel high level arbitrary woodland 

calculation for identifying and analysing malware. Santos [20] essentially utilized the static 

element of PE records. In above research paper, author have prescribed another hybrid 

technique to recognize obscure malware families dependent on the recurrence for the presence 

of opcode successions. 

 

C. I. Fun [20], proposed strategies for snaring for following dynamic marks that the 

malicious attempts to stow away by utilizing information mining techniques. This is the 

procedure which can be used to distinguished various practices of malware and they contrast it 

and the harmless information. By utilizing 80 credits, we found the discovery rate was 95% 

which makes the procedure of utilized expanded location rate with the diminishing intricacy. 

M. Belaoued [21] proposed a constant PE malware location framework dependent on the 

examination of the data to put away in the PE-discretionary header fields. For highlights 

choice, the essayists utilized Phi coefficient and chi square with chosen highlights Rotation 

woods classifier was prepared and tried.  
 
Below table is provided for drawback and used approaches in Table 1.  
 

Table 1:  Existing Technique Comparison 

Author Used Approach Drawback 
   

M. Christodorescu [23] 

Mining the unknown and malicious 
behaviour which is present in well-
known malware. 

The quality of mined malware 
behaviour was not known due to 
impact of test program choices 

   

 W.Wang [26] 

A novel framework defined for 
detecting malicious and benign 
applications. 

For training their models they 
require feature extracted dataset. 

   

M. K. Alzaylaee [24]  

Stateful input generation based dynamic 
analysis is used to detect android 
application which are malicious. 

Recent intrusion detection system 
investigation was not used. 
 

   

L. Nataraj [27] 

Image processing techniques has been 
used for classification and visualization 
of malware. 

This border spectrum path is not 
fully explored  
 

   

G. Canfora [25] 

Various sequence of system calls is 
used for detecting malware in android 
application. 

Only based on assumptions that 
specific system calls used for 
implementing malware behaviour. 

   



 

 

 

3 Research Methodology 
 

Various machine learning algorithms have been used in this research. Mainly there are two 

types of Supervised and Unsupervised techniques have been used for detection and 

classification of malicious application. 

 

In this research we have used below five different techniques of machine learning on two 

different datasets. 

3.1 Logistic Regression 

This method is used for binary classification either 0 or 1. Like linear regression the 

goal is to finding the values for coefficients as each input variable have weight and 

unlike linear regression the output is being transformed using logistic function for 

prediction of the output. 

 

3.2  Decision Trees 

 A Decision tree expands upon iteratively posing inquiries to segment information. It is 

a simpler to conceptualize the dividing information with a visual portrayal of a choice 

tree. This addresses a choice tree to anticipate client agitate. First split depends on 

month-to-month charges sum. Then, at that point, the calculation continues to pose 

inquiries to isolate class marks. The inquiries get more explicit as the tree gets further.  

 

The point of the choice tree calculation is to build the prescience however much as 

could be expected at each parcelling so the model continues to acquire data about the 

dataset 

3.3  Random Forest 

Random Forest is a gathering of numerous choice trees. Random Forest are constructed 

utilizing a strategy called sacking in which choice trees are utilized as equal assessors. 

Whenever utilized for a grouping issue, the outcome depends on greater part vote of the 

outcomes got from every choice tree. For relapse, the expectation of a leaf hub is the 

mean worth of the objective qualities in that leaf. Arbitrary woods relapse takes mean 

worth of the outcomes from choice trees. 

3.4  Naive Bayes 

This is a type of regulated learning calculation utilized for characterization errands. 

Henceforth, it is additionally called Naive Bayes Classifier. Naive bayes expects that 

highlights are autonomous of one another and there is no connection be tween’s 

elements. Be that as it may, this isn't true, all things considered. This innocent 

presumption of elements being uncorrelated is the justification for why this calculation 

is classified "Naive". 

3.5  K-Nearest Neighbors (kNN) 

 K-closest neighbors (kNN) is a type of managed learning calculation that can be 

mainly utilized to address both arrangement and relapse assignments. The principle can 

be thought as behind kNN is that the worth or class of an information point is controlled 

by the information focuses around it. kNN classifier decides the class of an information 

point by larger part casting a ballot guideline.  

 



 

 

A significant variable to the accomplishment of this task is the curation of a dataset that 

intently takes after the sort of harmless and malevolent doubles as of now available for use. 

Having such a dataset is fundamental in building AI models that can effectively sum up.  We 

get an underlying dataset of harmless examples from the pairs found on our Windows PCs.  

These contain some outsider programming yet are overwhelmingly Windows 10 framework 

les. These are enhanced with doubles taken from Windows Server 2000 and 2012, Windows 

XP, and Windows 7 establishments. To change up the harmless examples, an extra 

arrangement of doubles is gotten by introducing the 300 most famous bundles from a Windows 

bundle director.  In the wake of joining the harmless examples and eliminating copies utilizing 

the Linux utility fdupes for checking MD5 hashes, we are left with 41,323 special pairs. 

 

Vindictive examples are sourced from the malware store VirusShare [28]. Tests transferred 

to the website inside the most recent two years are downloaded in mass. The Windows pairs 

are then, at that point, idented and questioned for their Virus Total report which gives the 

consequence of outputs by 60/70 of the main enemy of infection (AV) programming. We apply 

a limit of 30 sweeps distinguishing the twofold as vindictive to come to a set of 96 724 special 

malware tests. So total samples including normal and malicious software 1 38 047 were used 

for training and testing. 

 

 

 
 

Figure 2: Virus share Dataset. 

 

 We have also used our techniques in another dataset of UCI which was taken from 

Kaggel. In that dataset for different features, we have used factorization methods and total 369 

samples of malicious and benign software were used. 

 

 
 

Figure 3: UCI Dataset. 

 

 

 

 



 

 

4 Design Specification 
 

The proposed approach for detection of malware is shown in the below flowchart in Figure 4. 

A malware test was examined utilizing static examination. Static investigation prompts the 

features of elements. In this analysis, we inspected malicious and normal file records. This 

Malicious executable records data then, at that point, will be utilized as an element. All the data 

elements will then, at that point, be separated to choose ideal elements that are applicable for 

grouping task. The last cycle will be finished by assessing the most elevated exactness 

identification utilizing three kinds of calculations which are Logistic regression, Random 

Forest, K-Nearest Neighbour (KNN), Naïve byes and Decision tree (DT).  
 

 
 

Figure 4: Proposed Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

5 Implementation 
 

For Implementation we have used google colab platform which is freely available and 

providing computing resource for implementing various deep learning and machine learning 

algorithms. We have first uploaded our two datasets in google drive and then drive is mounted 

using google authenticator. 

 

 

 
 

Figure 5: Reading Virus Share Dataset 

 

In above figure we can see that we have created a dataframe in which we have added our 

virusshare dataset. 

 

 
 

Figure 6: Data Cleaning  

In above figure we have checked for any null values in our features so we can clean dataset and 

we found there are no null values in any feature. If null values or data cleaning will not done 

than some data overfitting and underfitting issues may reside. In our dataset there were total 58 

features and all are checked against null values. 

 

 

 

 



 

 

 

Figure 7: Feature correlation  

Correlation is a proportion of the straight relationship of at least 2 factors. Through 

relationship, we can foresee one variable from the other. The rationale behind utilizing 

relationship for include choice is that the acceptable factors are profoundly corresponded with 

the objective. Moreover, factors ought to be corresponded with the objective yet ought to be 

uncorrelated among themselves. If two factors are associated, we can foresee one from the 

other. Along these lines, if two highlights are connected, the model just actually needs one of 

them, as the subsequent one doesn't add extra data. We have utilized the Pearson Correlation 

here. 

  

 In above figure we have mapped all features using pearson correlation and checked 

whether any partial distribution of data occurs or not. 

 

 

 

 

 

 

 

       ['Name', 'md5', 'Machine', 'SizeOfOptionalHeader', 'Characteristics', 

       'MajorLinkerVersion', 'MinorLinkerVersion', 'SizeOfCode', 

       'SizeOfInitializedData', 'SizeOfUninitializedData', 

       'AddressOfEntryPoint', 'BaseOfCode', 'BaseOfData', 'ImageBase', 

       'SectionAlignment', 'FileAlignment', 'MajorOperatingSystemVersion', 

       'MinorOperatingSystemVersion', 'MajorImageVersion', 'MinorImageVersion', 

       'MajorSubsystemVersion', 'MinorSubsystemVersion', 'SizeOfImage', 



 

 

       'SizeOfHeaders', 'CheckSum', 'Subsystem', 'DllCharacteristics', 

       'SizeOfStackReserve', 'SizeOfStackCommit', 'SizeOfHeapReserve', 

       'SizeOfHeapCommit', 'LoaderFlags', 'NumberOfRvaAndSizes', 'SectionsNb', 

       'SectionsMeanEntropy', 'SectionsMinEntropy', 'SectionsMaxEntropy', 

       'SectionsMeanRawsize', 'SectionsMinRawsize', 'SectionMaxRawsize', 

       'SectionsMeanVirtualsize', 'SectionsMinVirtualsize', 

       'SectionMaxVirtualsize', 'ImportsNbDLL', 'ImportsNb', 

       'ImportsNbOrdinal', 'ExportNb', 'ResourcesNb', 'ResourcesMeanEntropy', 

       'ResourcesMinEntropy', 'ResourcesMaxEntropy', 'ResourcesMeanSize', 

       'ResourcesMinSize', 'ResourcesMaxSize', 'LoadConfigurationSize', 

       'VersionInformationSize', 'legitimate'] 

 

The above list is 58 features of our virusshare dataset has been displayed from these 

features we will select only relevant and important features for training and testing of our 

models.  

 

 Feature extraction can be used to characterized as changing the huge, ambiguous 

assortment of contributions to the arrangement of highlights. Progressed identification mainly 

depends on highlighting of  extraction of the malicious files being examined. Feature could 

contain various plaintext strings found in the dismantled documents, the size of the malware, n-

gram byte arrangements, framework asset data like the arrangement of DLLs, and so forth by 

utilizing AI calculation, these highlights are given as sources of info.  

 

 

Figure 7: Feature Selection  

 

We have used coefficient to find important features and used the features in which coefficient 

is grater than 0.2 for training and testing and other features were not used as only important 

features have been selected. From this method we have identified 14 important features out of 

58 features. In below figure we have checked the distribution of values in 14 important 

features. 



 

 

 
 

Figure 8: Values distribution of important features   

 

 
Figure 9: Training and Testing Data Split  

In above figure we have split the data for training and testing in 70/30 using sklearn library 

function. Here we found we have 966632 samples for training and 41415 random samples for 

testing.  

 

We have used scikit leran library function for LogisticRegression, DecisionTreeClassifier, 

RandomForestClassifier, GaussianNB and KNeighborsClassifier. First these models are trained 

using model evaluate function and we have used ML-Ensemble library. 

 

 

  

 

 

 



 

 

6 Evaluation 
 

We have trained five different machine learning models and checked the performance and 

testing accuracy of each model on virus share and UCI dataset. The result gained from each 

model have been displayed here. 

 

6.1 Virus Share Dataset  

 

       

                    Figure 10: CF Matrix of LR                                Figure 11: CF Matrix of DT 

 

           
              

     Figure 12: CF Matrix of NB        Figure 13: CF Matrix of RF 

 

 
                                            Figure 12: CF Matrix of KNN  



 

 

In above figures confusion matrix of each model are displayed and based on True Positive, 

True Negative, False Positive and False Negative confusion matrix resulted from which 

accuracy, precision, recall can be calculated. 

 

Table 2:  ML Model Result Comparison 

 

 
 

In above table best score in accuracy, recall and F1 Score has been achived in Random Forest. 

Only Precision is good in Naïve Bayes. Random Forest provides best result in accuracy and F1 

Score in terms of different dataset. 

 

In figure 13 we can see that testing accuracy of Random forest model remains high than all 

other ML models and provides good testing results. 

 

 
                            Figure 13: Accuracy of Testing of ML Models 

 

Probablistic predictions of binary classification can be compared by calibration curves. For 

binned predictions, calibration curve used to plot true frequency of true lable on its predicted 

probability. In below figure we have given calibration plot of all five ML models. In which 

random forest gives highest fraction of positives values. 

 
 
 



 

 

 
Figure 13: Calibration Curve of ML Models 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

6.2 UCI Dataset  

 

       

                    Figure 14: CF Matrix of LR                                Figure 15: CF Matrix of DT 

 

           
              

     Figure 16: CF Matrix of NB        Figure 17: CF Matrix of RF 

 

 
                                                  Figure 18: CF Matrix of KNN  

 

 



 

 

In above figure we have displayed different confusion matrix of all five ML models on UCI 

malware dataset which is taken from Kaggle, we can see that in this dataset Naïve Bayes 

provide lowest rate of False Positive and false negative and KNN provide highest rate of false 

positive and false negative. 

 

Table 3:  ML Model Result Comparison (UCI Malware Dataset) 

 

 
 

In above table best score in accuracy, precision,recall and F1 Score has been achived in Naïve 

bayes. Naïve bayes provides good result than random forest in this dataset. 

 

In figure 19 we can see that testing accuracy of naïve bayes model remains high than all other 

ML models and provides good testing results. 

 

 
                            Figure 19: Accuracy of Testing of ML Models 

 

 

 

 

 

 

 

 

 



 

 

In figure 20 we have displayed calibration plots of all five models on UCI dataset. 
 
 

 
Figure 20: Calibration Curve of ML Models 

 

From above figure we can see that on uci dataset only Naive Bayes is perfectly calibrated. 

Calibration curves are used to evaluate how calibrated a classifier is i.e., how the probabilities 

of predicting each class label differ. The x-axis represents the average predicted probability in 

each bin. The y-axis is the ratio of positives (the proportion of positive predictions). The curve 

of the ideal calibrated model is a linear straight line from (0, 0) moving linearly. 

We have compared Probablistic predictions of binary classification of UCI dataset. Probablistic 

predictions of binary classification can be compared by calibration curves. For binned 

predictions, calibration curve used to plot true frequency of true lable on its predicted 

probability. In above figure we have given calibration plot of all five ML models. In which 

Naïve Bayes gives highest fraction of positives values. In Virus-Share dataset (Figure 13) we 

got highest fraction of positives values in Random Forest. 

 



 

 

6.3 Discussion  

 

Previous literature research on malware detection demonstrate that categorization may be done 

successfully with the aid of machine learning approaches, although several challenges remain 

unresolved. Zero-day attacks are those that occur on a day when no new malware is released. 

It is the primary goal of all malware researchers. Some concerns and obstacles with malware 

detection remain and have yet to be overcome. When it comes to reality, one challenge is that 

real or manual verification of categorization findings becomes more difficult. Another 

difficulty is how to progress strategies for more active learning. More recent developments in 

machine learning, ensemble learning, deep learning, and other domains are expected. Zero-day 

attacks necessitate the use of the most modern tactics. One of the problems is dealing with huge 

datasets. These sophisticated strategies are required in the decrease of dimensionality.  

 

 

This study focused on malware detection and evaluated the false-positive rate of detection 

using supervised and un-supervised machine learning algorithms. In former model [14] 

proposed a discovery of malicious files which is dependent on API calls and their contentions. 

In other work [15] they utilized a novel two sorts of classifiers which are Logic Model tree and 

K-Means calculations. Further [18] The creators generally utilize the static highlights acquired 

by against aggregation of APK. These static highlights have incorporated string, touchy API, 

declarations and application authorizations. Later [27] Image processing techniques has been 

used for classification and visualization of malware. 

 

In contrast to comparable research, our model detected Malware with a 99.1% recall score, 

whereas [14] found 98.4% and [15] discovered 97.68%. The primary model might produce a 

list of the most significant API, Permission, and Network properties. These chosen significant 

qualities are comparable to those chosen by [14], [15], [16], [18], and [27]. However, there are 

modest discrepancies that might be attributed to the quantity of samples used in research. 
 
 
 
 
 
 
 

7 Conclusion and Future Work 
 

We trained and tested several machine learning models on two datasets and all models 

provide very reasonable results. On Virus share dataset Random Forest provides highest 

accuracy 99.37% and naïve bayes provides 91.30% accuracy in this dataset. On UCI dataset 

naïve bayes provides highest accuracy 99.72%. We can also apply deep learning models on this 

dataset and gain some more accuracy. Future work we will try to build new dataset from recent 

malware and try to provide some application to check whether the files are malicious or not. 

Here we have used 14 important features based on pearson corelation coefficient and trained 

and tested the model. We will also try to use optuna hypervisor for identifying best parameters 

in ML models so we can improve the accuracy. 
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