
Improving the Auto scaling mechanism in
Cloud computing environment using Support

Vector regression and Bi-LSTM

MSc Research Project

Cloud Computing

Jackson Peter
Student ID: x20183305

School of Computing

National College of Ireland

Supervisor: Divyaa Manimaran Elango

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Jackson Peter

Student ID: x20183305

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Divyaa Manimaran Elango

Submission Due Date: 31/01/2022

Project Title: Improving the Auto scaling mechanism in Cloud computing
environment using Support Vector regression and Bi-LSTM

Word Count: 5885

Page Count: 19

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



Improving the Auto scaling mechanism in Cloud
computing environment using Support Vector

regression and Bi-LSTM

Jackson Peter
x20183305

Abstract

The availability, reliability and on-demand feature of the cloud computing sys-
tem has attracted many users to the cloud computing platforms, where the resources
can be dynamically allocated to the instance as per the workload demand. An ef-
ficient auto-scaling mechanism allocates and de-allocates the resources to meet the
performance targets in changing workload conditions. Also, it helps to minimize the
resources cost as well as making the resource availability on time in order to main-
tain the quality of service. In this work, I have developed a cloud-based framework
using Python language and experimented with 3 different machine learning and deep
learning algorithms (Linear regression, Support Vector regression and Bi-directional
LSTM) for implementing the auto-scaling mechanism. After the comparative ana-
lysis, I have obtained better results using support vector regression and Bi-LSTM
algorithms for dynamic and non-linear behaviour in cloud computing environment.

1 Introduction

Over time, the demand for computational resources has escalated due to the shift in
requirements and technological advances. With ever-changing technology, individuals
and entities require a periodic modernization of resources with the requirements; though
the modernization of resources is not at all economically feasible and require an instant
approach for everyone. To overcome these hurdles, availability of the computational re-
sources over the air is a boon in today’s time. This virtual system is generally known as
Cloud Computing. Cloud resources inhibit a solution for extensive computational power
requirements providing higher performance and efficient results. This system includes
applications such as data processing, storage, and service utility. It acts as a virtual
alternative for the requisite resources. In the current era. Cloud Computing plays a
crucial role in technological advancement as it provides various utility variants such as
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Ser-
vice (IaaS). Although this computing system depends on the virtual mode of connectivity,
there should be an optimized scaling platform for the user requests and reduced network
latency to achieve efficient performance.

In the cloud environment, there are two types of scaling policies which are Horizontal
and Vertical resource scaling. In Horizontal Scaling, the virtual machines (VM) are al-
located or de-allocated based on the demand, whereas in Vertical Scaling, it assigns the

1



hardware capacity with respect to the demand. Whenever a user opts for the service
from the service providers, a pact called Service Level Agreement (SLA) is generated.
SLA ensures the users with the minimum serviceability, reliability, performance, pricing,
and time which is ultimately called Quality of Service (QoS). The violation of SLA can
lead to penalties for the service providers. Therefore, the regulators must periodically
monitor the functioning of the services. When the users keep utilization on the least
manner, there is an increased chance of SLA violation due to under-provisioning of the
resources. Similarly, in case of over-provisioning, the chances of failure in allocation and
SLA violation are minimal.

To overcome these challenges, the automatic scaling of resources is implemented. With
the auto-scaling approach, the resource demand can be forecasted with previous utiliza-
tion of the resources. This can efficiently assist the service providers to ensure the QoS
while adhering to the SLA. In the reactive approach, the characteristics such as pro-
cessing capacity, load capacity, and resource request are assessed based on the threshold
rule. On the other hand, the proactive approach assesses the previous traffic for the
load allocation. These approaches are known as the threshold-based mechanisms. In this
research, I have implemented a time-series-based machine learning framework to optim-
ize the auto-scaling technique of the cloud computing resources and further minimized
the latency in the cloud system environment using Machine learning and deep learning
algorithms. I have compared the conventional models such as Linear regression, Support
Vector regression with more-advanced Bi-LSTM. The performance of each auto-scaling
model has been measured in terms of total processed load, idle cycles and delayed load.

1.1 Research Question

• How the Machine learning and Deep Learning Based algorithms can be utilized for
implementing Auto-scaling Mechanism ?

• Which algorithm efficiently allocates the resources for dynamically changing work-
load demand and how the performance of each algorithm has been calculated for
selection of optimal model ?

2 Literature Review

In this section, I have discussed about the various studies by multiple researchers in Cloud
computing and auto-scaling. The section is further divided into Cloud Resource Schedul-
ing, Threshold-Based Auto-Scaling, Pro-Active Scheduling, Machine Learning Frame-
work, Deep Learning Framework and Hybrid Framework.

2.1 Cloud Resource Scheduling

Mehta et al. (2017) mentioned an efficient method for resource scheduling in the cloud
computing system. As resource scheduling performs a crucial role in the enhanced per-
formance of the cloud resources, an appropriate prediction is necessary during the schedul-
ing. Efficient resource scheduling can increase the computing capability of the resource
and thereby control the cost. Therefore, this paper utilized the Hidden Markov Model

2



(HMM) to efficiently dedicate the available resources to the users on-demand. This pro-
posed model would recognize and keep track of unexploited resources. It would then
further classify the counterpart based on workload scenarios such as Less, Medium, and
High. Relying on the demand, the appropriate scheduling algorithm is implemented on
the model under a dedicated workload scenario. Similarly, Islam and Buyya (2018) pro-
posed a method for resource management and scheduling of big data programs in cloud
computing environments. There are various modules of Big Data processing frameworks
which are Batch, Stream and Hybrid. The big data tools utilized and discussed in this
study are Apache Hadoop, Apache Spark, Apache Kafka and many more. For the re-
source managing tool, the programs used are Google Kubernetes, Apache Hadoop Yarn,
etc.

Verma et al. (2016) presented an approach for the dynamic resource prediction and al-
location in multi-tenant utility. Due to the increasing demand for a cloud computing
system, it is mandatory to have an efficient framework for cloud resource management.
Through this system, the users can upscale or downscale the resource anytime on the de-
mand. Furthermore, it also apprehended the latency in the service. Also, the researchers
in this study implemented a best-fit heuristic model to match and allocate the Virtual
Machines (VM) to the user’s physical machine host. Ultimately, this paper showed the
performance of the robust approach for this framework. Singh et al. (2019) researched
the auto-scaling approach in the cloud computing approach for web programs. Due to
the emerging technology of cloud computing, the web application has been considered
for the proposed system. The author of this paper surveyed the challenges that occurred
thoroughly and mapped the trend in cloud computing environments for web programs.
In the final take, the drawback of the systems were discussed and the research areas for
future studies were assessed. On the other hand, Aslanpour et al. (2017) also proposed
a cost-aware approach for the web programs in the cloud computing environment. The
author provided a mechanism to limit the expense through a strategic approach. Here,
the MAPE (Monitoring, Analysis, Planning and Execution) loop approach is implemen-
ted. Furthermore, the model had an aware selection of cloud characteristics and the extra
virtual machine for the utilization in the resource pool. The proposed model inhibited a
reduced cost of renting by 7% and thereby enhancing the performance of SLA adherence
in the service.

2.2 Threshold-Based Auto-Scaling

Patel et al. (2016) explored an advanced approach for adaptive threshold-based dynamic
resource provisioning in cloud systems in the research. This study primarily focused to
overcome the conventional approach of resource scheduling which allocates the virtual
machines to the users over their previous demand. However, the pre-allocation of the
virtual machines can lead to either under-utilization or limitation to the demands of
the user. Therefore, the author in this study, proposed a novel approach by allocat-
ing the resources in real-time and adjusting to the demand dynamically. Oladoja et al.
(2021) also proposed a threshold-based resource allocation approach in Cloud Comput-
ing Environment. Through an efficient prediction, the cloud resources are being allocated
to the users in contrast to the requested demand. But to enhance the performance of
the resources and combat the downtime, an appropriate provisioning algorithm shall be
utilized. Therefore, the author had explored the threshold-based tournament selection

3



probability for virtual machine provisioning. The algorithm utilized in these models was
the Median-based optimized Max-Min algorithm. This approach showcased an improved
performance to the model.

Chen and Bahsoon (2015) provides an additional self-adaptive methodology that can
accomplish automated amplification in a cloud setting. Here, the approach succeeds with
the lower pricing ratio, hence, reducing the incidence of numerous difficulties. In this
study, colony techniques are employed efficiently to regulate and reduce the occurrence
of recurrent trade-off situations. The employment of such techniques results in a precise
and high transfer conclusion. The studies undertaken by Evangelidis et al. (2018) are
an example of a common type of investigation effort that is centred on executing the
auto-scaling procedure utilizing Bayesian networks. In this technique, the cloud-based
autonomous amplification strategies are addressed briefly. Amazon EC2 and Microsoft
Azure were used to test the approach. Another study in the identical topic took a distinct
method relying on auto-scaling performed with threshold-based techniques. Developed
on the exposition of cloud architectures is obtained as a primary outcome and deeply
analyzed couple of approaches for such auto-scaling techniques that were already sugges-
ted.

2.3 Proactive Scheduling

Kaur and Kaur (2017), in the study, surveyed the proactive scheduling approach in a
cloud setting. With the increased demand of cloud computing resources, the perform-
ance of this system must also be regulated. The most common reason for the downtime of
the computational resources is due to failure of the resource scheduling algorithm. There-
fore, an approach proposed of fault aware pattern aligning the autonomous provisioning
of the computing resources in the cloud system environment. In these models, algorithms
such as Round Robin Algorithm, Service Level Agreement (SLA), Facilitated Applica-
tion Specification Technique (FAST) were implemented. This model was also evaluated
in comparison to the traditional approach, where the latter showed an improved per-
formance. Golshani and Ashtiani (2021) conducted investigation to acquire the tools on
spotting the cloud system, the approach of adaptive amplification is used here. In this
study, the problems were seen as a sequenced approach. To consider the various require-
ments and demands of the consumers, a framework of autonomous decision development
is also used there. Convolution neural networks (CNN) are used to evaluate and forecast
the non-linear response of demand. The findings of this study also shown a four percent
enhancement in effectiveness and precision. Likewise, Tang et al. (2015) research takes
that very identical method whenever it pertains to the procedure of auto-scaling. It wss
performed in the virtual architecture utilising pre-trained techniques for increased con-
sistency and reliability. The SRSA approach wss employed well here. In this procedure,
the researcher additionally employed the Markov chain approach. The findings were su-
perior to those obtained using threshold-based techniques. The researcher demonstrates
the various effects associated with the systematic methodology and how helpful it would
be in the cloud platform.

4



2.4 Machine Learning Framework

In the study, Srirama et al. (2020) suggested a heuristic-based paradigm of auto-scaling.
With the perspective of the resource requirements, the supplied systems of technique
transmit the indicated programs on the best-fit light modules with a minimal amount of
setup effort. An additional key concern in the conscious cloud environment wss the com-
mencement influence, which would be addressed in the suggested approach by applying
a benchmark structure for minimizing transmission time and program charges. Further-
more, a distinct technique was meant for delivering programmes to a small number of
physical devices while making efficient use of computational resources. Verma and Bala
(2021) provided the same methods used in the development of IoT applications. The re-
searchers likewise applied the very identical auto-scaling strategy to satisfy the demands
of the clients. Some of the parameters, as well as the necessity for Quality of Service
(QoS) norms, are met in those. The technique of dynamic provisioning was indeed a
critical, and most significant feature of data frameworks that pledged and reloaded the
allotted potent resource in response to the density of requests.

Zhang et al. (2018) proposed a machine learning-based framework for resource allocation
during cloud computing resource auction. The paper stated the existing methodologies
utilized such as Polynomial Time Approximate Scheme (PTAS) and heuristic algorithms
had some major fallacies. These algorithms provided weaker computational performance
with unsatisfactory efficiency and accuracy. Therefore, the author implemented mul-
tiple machine learning algorithms for resource allocation and de-allocation. Two machine
learning regression algorithms were utilized, namely Linear Regression and Logistic Re-
gression. In the primary phase, the model was trained with a minimal sample batch
which was further increased. The novel approach was introduced but the performance
evaluation among the conventional and novel approaches was not assessed in this study.
In another paper, Li (2017) surveyed the cloud computing system provisioning algorithms
relying on the machine learning approach. Various factors of cloud computing including
the advantages and disadvantages were discussed. The main aim was to incorporate an
appropriate resource scheduling algorithm with efficient load balancing without comprom-
ising the performance of each system. Several algorithms were shown and experimented
on resource scheduling algorithms utilizing the machine learning frameworks. In the final
take, the paper exhibited that the implementation of such algorithms will develop an
inefficient performance for the cause and an accurate approach required to overcome the
limitations.

2.5 Deep Learning Framework

Ye et al. (2018) proposed a novel approach for resource scheduling utilizing the deep
reinforcement learning (DRL) framework. Based on the previous conventional approach
of DRL, an online resource scheduling utilizing DRL was implemented and it was called
as Deep RM 2. Furthermore, the identical resource scheduling algorithm offline was
known as Deep RM OFF. After the implementation of these algorithms, the approaches
were evaluated among the conventional ones as well. The proposed model showed a
high-paced performance and accurate resource provisioning when compared in contrast
to some metrics such as average downtime period, task completion period, and rewards.
Che et al. (2020) also proposed a deep reinforcement learning approach to regulate the
task rescheduling in the data centre. As the increasing load on the data centre was on the

5



rise due to higher online transformation, the existing task scheduling framework utilized
a conventional heuristic algorithm was unable to handle the current time demand and
load. Therefore, a novel approach to overcome these challenges and to fulfil the demand,
must be introduced. The researchers in this study proposed a unique model implement-
ing DRL which could optimize the resource utilization efficiency with an appropriate
task scheduling algorithm. This paper revealed that the proposed algorithm performed
efficiently than the traditional algorithms when assessed based on the average delay time
of the tasks, task distribution and congestion. Sun and Li (2020) also proposed a DRL
approach with dynamic resource allocation for Next Generation Cellular Systems. In this
paper, a novel algorithm called contiguous frequency-domain resource allocation (FDRA)
which relied on DRL was implemented. The approach would selectively assign users for
each resource on the system called resource blocks (RBs). The approach for the sched-
uler that implemented was Markov Decision Process. With DRL methods, it recognized
the users for the resource allocation and determines the step-wise allocation of the RBs.
Various parameters of the system were also evaluated. The proposed algorithms when
evaluated had outperformed the conventional counterparts and could easily overcome the
existing challenges. Over the efficient performance, this model had drastically lowered
computational complexity. The author also suggested the future scope of the study by
considering various other features as well.

2.6 Hybrid Framework

Guo et al. (2018) dissertation presents a further integrated investigation framework. The
primary goal of this study was to boost the frequency of terminal servers while decreasing
the volume of additional expenditures associated. The amount of virtualization adapt-
ability frequently resulted in significant inefficiency and increased costs, especially for
programs with rapidly variable demands. The researcher proposed a minimalist approach
to deal with increasing pragmatic flexibility for cloud computing within scientific work
given there. Several hybrid approaches were sometimes used to test the effectiveness of
the auto-scaling procedure. Biswas et al. (2017) research gave a detailed road-map un-
derlying the blended resource provisioning approach. Throughout this study paper, the
researcher combined and employed both proactive and reactive amplification strategies
to get the optimal auto-scaling mechanism. The primary objective of the investigation
was to lower greater costs while meeting all the demands of the client. Experiments were
carried out to test its feasibility. Utilizing the strategy, respectively on request programs
and SLA was maintained under control. The work by Singh et al. (2021) proposed a ro-
bust hybrid auto-scaling (RHAS) technique for web programs in cloud computing. Here,
both the reactive and proactive approach were utilized based on workload prediction of
the demand. In this model, the time-series forecasting approach had been implemen-
ted to predict future workload from the users. Furthermore, in the proposed model a
threshold-based model and a queue model were incorporated. This proposed framework
was validated in two real-time applications and further achieved a reduction by 14% in
cost and some other fallacies.

The comparative analysis for the various studies by different researchers is shown in
Table 1.

6



Paper Title Publish Year Method Advantages Future Scope /
Disadvantages

A Threshold-
based Tourna-
ment Resource
Allocation in
Cloud Comput-
ing Environment

2021 The algorithm
utilized in these
models was the
Median-based op-
timized Max-Min
algorithm

Enhanced the
performance of
the resources
and combat the
downtime

More efficient al-
gorithms can be
utilized

Proactive Auto-
scaling for Cloud
Environments
using Temporal
Convolutional
Neural Networks

2021 Convolutional
neural networks
(CNN) were used
to evaluate and
forecast the non-
linear response of
demand

The findings
of this study
showed a four
percent en-
hancement in
effectiveness and
precision

No disadvant-
ages found

Machine learn-
ing based
resource alloc-
ation of cloud
computing in
auction

2018 Two machine learn-
ing regression al-
gorithms were util-
ized namely Linear
Regression and Lo-
gistic Regression

The novel ap-
proach was in-
troduced

The perform-
ance evaluation
among the
conventional
and novel ap-
proaches was
not assessed in
this study

Deep-
Reinforcement-
Learning-Based
Scheduling with
Contiguous
Resource Alloc-
ation for Next-
Generation
Cellular Systems

2020 A novel algorithm
called contiguous
frequency-domain
resource allocation
(FDRA) which
relied on DRL was
implemented in the
paper

The proposed
algorithms when
evaluated out-
performed the
conventional
algorithms and
could easily
overcome the
existing chal-
lenges

The author also
suggested the fu-
ture scope of the
study by con-
sidering various
other features as
well thereby en-
hancing the per-
formance

Table 1: Comparison of Different Works for this Study

7



3 Methodology

As the user requests in the cloud environment are generated dynamically, allocating the
resources in the dynamic fashion in cloud computing environment is a challenging task.
There are certain set of rule-based methods that has been implemented by many authors
and researchers, which were inefficient to handle the dynamic behaviour of allocation.
In order to solve such challenges, in this research, I have implemented Machine learning
and Deep learning based auto scaling mechanisms, which can allocate and de-allocate
the resources dynamically with more efficiency. The Proposed framework of auto scaling
consists of many components, the working mechanism of overall framework is shown in
Figure 1.

Figure 1: Proposed Framework for Auto-Scaling

3.1 Client/Task Generation

The main responsibility of the client was to generate the tasks. Each client can generate
any number of tasks at any point of time. In order to simulate the real-world scenario, I
have assigned a random load with each task, and the load generated on system by each
task was different from one another as each task required the different time for execution
depending on the load. There can be sometime in a day, when the number of requests are
at peak in the cloud server, also there is a time when requests are comparatively less as
compared to the usual scenario. Considering these aspects, I had generated the random
load in the system using sin wave function. These generated tasks, were later sent to task
queue for processing.

3.2 Task Queue

All the generated tasks required a temporary storage before being processed by the cloud
server, the task queue would fulfil this purpose. Task queue acts like a normal queue of
data, it sends the tasks to processing server in First in First out (FIFO) manner. Task

8



queue also send the information about current number of tasks to the scaling controller,
which helps the scaling controller to analyze the information for better prediction.

3.3 Processing Server

Processing Server is the main entity of the cloud computing environment, which was
responsible for processing all the generated task available in the task Queue. The com-
puting capabilities of processing server is fixed and is directly connected with Flexible
resource pool, which provides the auto scaling capability. The decision of up-scaling and
down scaling the resources will be taken by scaling controller.

3.4 Flexible Resource Pool

Flexible Resource pool is the place from where processing server can acquire or release
the computing capabilities. This component provides the auto-scaling capabilities to the
cloud server, where the amount of resource required to process the upcoming tasks will
be predicted by the scaling controller.

3.5 Scaling Controller

Scaling Controller is the most crucial component of proposed auto-scaling system. It
analyses the current activities of the system and based on the number of tasks available
in the task queue, and predicts the amount of resources required. After predicting the
resource requirements, the scaling controller sends the details to processing server, ac-
cordingly the processing server upgrade or downgrade its computing capabilities. Scaling
controller is a place where the Machine learning and deep learning models are trained
based on the historical load data to predict the next cycles of traffic. In this work, I
have implemented two machine learning and one deep learning regression models that
are Linear regression, Support Vector regression and Bi-directional LSTM respectively.

4 Design Specification

As the load was calculated every cycle, the obtained load was in continuous number,
which will be solved using regression analysis with time series prediction. In this work, I
have implemented the Linear regression and Support Vector regression algorithm, which
are machine learning algorithms. On the other hand, Bi-directional LSTM algorithm was
also utilized and it fell under the deep learning category.

4.1 Linear Regression

Linear regression algorithm is the most basic and common algorithm for regression ana-
lysis. It is mainly used to find the relationship between the two continuous variables.
Among them, one can be independent or dependent variable. In this process of linear
regression, I tried to fit the linear model with coefficient by minimizing sum of square
between the actual and the predicted values. The equation of the linear regression can
be derived by the following formula as shown in Figure 2.

9



Figure 2: Simple Linear Regression Formula

4.2 Support Vector Regression

Support vector machine is the most popular algorithm for classification problem. How-
ever, it can also be utilized for regression problem. It works on the concept of maximum
margin, where margin of tolerance (epsilon) was set to the approximated value for pre-
diction. SVR algorithm identifies the non-linearity in the data and generates the better
prediction. In my work, the algorithm had been utilized to predict the future load on
the system based on the historical load data and number of tasks available in task queue.
After regression analysis, the output of support vector regression can be represented as
follow.

Figure 3: Support Vector Regressor

4.3 Bi-LSTM

When the Learning problem is sequential, the LSTM and Bi-LSTM based on the recurrent
neural network architecture are highly utilized. Bi-LSTM architecture is also called Bi-
directional LSTM where the one LSTM model take the input in forward direction and
other LSTM takes the input in backward direction. In this way, the learning algorithm is
fed with data from starting to end and end to beginning, which help the Bi-LSTM model
to remember more information and thus helps in better prediction. As the generated load

10



data was sequential, in this work, Bi-LSTM was utilized in order to obtain the better
results. The architecture of Bi-LSTM is shown in Figure 4.

Figure 4: Bi-LSTM Architecture

5 Implementations

The implementation of proposed framework for auto-scaling had been developed using
Python programming language. Along with the python, there are several python-libraries
had been used to develop the system. In order to generate the dataset, the sin wave
function had been utilized using the pandas and the math function. The concept of
multi-processing was utilized where each process will utilize a separate core of CPU to
process the multiple tasks. Currently 5000 dataset sample with random load had been
employed over different cycles. In order to visualize the results, the matplotlib library has
been used to generate the line graphs and bar graphs. To perform the matrix calculation,
numpy library has been used. For training the machine learning and deep learning models,
Scikit-learn and tensorflow libraries has been utilized. While implementing the Bi-LSTM
model, the tanh was employed as an activation function and reLu for the dense layer.
Discussing about the overall process, the various clients will generate the load on the
system, where the task temporarily will be stored in the task queue, which will be fetched
by processing server for execution. The processing server can upgrade or downgrade their
capabilities using flexible resource pool. Scaling controller predicts the future load based
on the selected model. Here, I have trained 3 different model such as Linear regression,
Support vector regression and Bi-LSTM for load prediction. As the current system was
implemented using python language, this can run on any operating system. However,
Linux based operating system is more preferred. The system with following specification
is required to implement the system.

• Operating system: Ubuntu(20.04)

• Main Memory (RAM): 8GB

• Hard disk : 10 GB

• Programming Language: Python

• Libraries : Numpy, Matplotlib, multi-processing, sklearn, tensorflow, pandas.

11



6 Evaluation

The main task of the scaling controller is to predict the requirement of load for N+1
seconds or cycles and provide the instructions to the processing server to scale-up or
scale-down the capacity accordingly. There were 3 algorithms that had been implemented
in to the scaling controller, those were Linear regression (LR), Support Vector Regressor
(SVR) and Bi-LSTM. Each of the algorithm will be evaluated in the proposed framework
based on generated load and processed load, idle cycles of machine, total amount of load
processed by the system using a specific algorithm and delayed task. Based on these
metrics, I have analyzed the optimal algorithm for auto-scaling mechanism in the cloud
computing environment. The model with maximum processed load, minimum delayed
load and with minimum idle processing cycles will be considered as an optimal model for
auto scaling mechanism.

6.1 Experiment 1 / Evaluation of Linear Regression

In this experiment, I have implemented the linear regression algorithm for predicting the
future load on the processing server of cloud where the model had trained over the his-
torically generated load. Based on the historical analysis and current number of tasks in
the queue, it makes the prediction for future tasks and arranges the resource accordingly.
After running the cloud system for 90 cycles, I have calculated the generated load, pro-
cessed load and idle time for each cycle. Since I used sin wave for data generation, there
were spikes with upward and downward movement. With the load generation on each
cycle, the scaling controller responsibility was to allocate similar processing capabilities.
The generated graph after running the system for 90 cycles, is shown in Figure 5.

Figure 5: Line graph of Generated Load, Processed Load and Idle Time using Linear
Regression

On analysing the graph for linear regression, it has been found that When there
was a spike with downward movement, there was a huge difference in the actual load
and processed load on the system. The graph represents that algorithm scaled-up the

12



resources very well, but it causes over allocation when there was decreased amount of
load. Therefore, in the graph also it has been observed that when the load decreased
due to over-allocation of resources, the idle time also increased considerably as shown in
Figure 5.

Figure 6: Total Processed, Idle and delayed Load using Linear regression

After running the cloud system over the period of 90 cycles, I had calculated the
processed load, idle run and delayed load using linear regression. On analysing the graph
as shown in Figure 6, it had been observed that total load processed by the system
was 167.44. Meanwhile, the idle cycle were obtained around was 18.60 and delayed
load was 21.76. After calculating the results of other algorithms, I could compare the
results obtained using linear regression algorithm and would discuss about the analysis
in discussion chapter.

6.2 Experiment 2 / Evaluation of Support Vector Regression

In this experiment, I have used the support vector regression (SVR) algorithm for pre-
dicting the load on each cycle. The same load had been generated like linear regression
in order to compare the results on same benchmark and the future load was predicted
for each cycle using support vector regression algorithm. After running the proposed
framework for 90 cycles, the generated load, processed load and idle run were calculated
for each cycle as shown in Figure 7.

13



Figure 7: Line graph for Generated Load, Processed Load and Idle Time using SVR

From the following graph, it was observed that the resources were under-allocated at
peak, when momentum of graph was very high. When the load on the graph decreased, on
observing the graph carefully, over-allocation of resources also had been observed. Also, in
terms of idle time in comparison with linear regression, it was analysed as SVR represents
the minimum number of idle cycles as compared to the Linear regression algorithm. The
minimum number of idle cycle represented the efficient utilization of resources.

Figure 8: Total Processed, Idle and delayed Load using Support Vector Regression

I have calculated the processed load, idle run and delayed load for Support vector
regression algorithm over 90 cycles as shown in Figure 8. System processed the load of
175.17 using SVR, also the idle runs were found to be 6.848 and delayed load has been

14



observed as 14.04. On comparing the results with linear regression it has been found
that processed load by SVR was comparatively high and idle cycles were 3 time lesser
in comparison, and also observed minimum delayed load between cycles. So definitely in
every aspect, SVR architecture outperformed the linear regression algorithm.

6.3 Experiment 3 / Evaluation of Bi-LSTM

Bi-LSTM was the most complex neural network architecture and was found to be better
for predicting the time-series analysis. Predicting the load on every cycle was also con-
sidered as a time-series problem, and therefore, Bi-LSTM had been used in my proposed
architecture. The results of Bi-LSTM algorithm were analyzed by generating the same
graph and results such as the metrics such as generated load, processed load and idle
runs were calculated over every cycle. In terms of prediction, the results of Bi-LSTM
were found to be more precise and accurate. However, to some extent, Bi-LSTM had
also exhibited under and over-provisioning of the resources. The number of idle cycles
were also found to be minimal. The line graph for Generated load, processed load and
idle time using Bi-LSTM algorithm over every cycle is shown in Figure 9

Figure 9: Line graph of Generated Load, Processed Load and Idle Time using Bi-LSTM

However, from the results of line graph, for every cycle it was very difficult to analyze
the performance of the algorithm. Therefore, I have also calculated the total processed
load, idle cycles and delayed load using Bi-LSTM algorithm, which are shown in Figure
10.

15



Figure 10: Total Processed, Idle and delayed Load using Bi-LSTM

After calculating these metrics, it has been found that total load processed using
Bi-LSTM algorithm was 168.83, where the number of idle runs was 4.886 and delayed
load was 20.38. The total number of idle-cycles obtained using Bi-LSTM algorithm was
minimum as compared to the SVR and Linear regression algorithms. However, total
load processed by Bi-LSTM found to be higher than linear regression algorithm but less
than the support vector regression algorithm. Moreover, in terms of delayed load, the
Support vector method had achieved the minimum delay in processing the load, followed
by Bi-LSTM and Linear regression.

As the final phase of evaluation, the different attributes such as processed load, delayed
load and idle cycles are compared against each other and plotted in tabular form as
illustrated in Figure 11. From the generated output values, the performance of each of
the algorithms can be evaluated. Linear Regression algorithm was found to be the least
efficient one with less processed load and significantly more number of idle cycles with
delay. Support Vector Regression model exhibited better results in comparison to Linear
Regression as it processed more incoming load with very less amount of delays. The
last algorithm in this research was Bi-LSTM, performed better than Linear Regression
in all aspects with better processed load, less idle cycles and delay. However, Bi-LSTM
processed less load than SVR algorithm despite the less idle cycles.

16



Figure 11: LR, SVR and Bi-LSTM - Performance Comparison

6.4 Discussion

In order to identify the optimal model for auto-scaling mechanism, in the proposed work,
I had compared 3 different machine learning and deep learning based algorithms in terms
of processed load, idle run and delayed load. Also, the generated load and resource
allocation were observed over each cycle. After analyzing the results, it was observed
as the linear regression algorithm scaled-up the resources very well but faced issues in
prediction when the sudden fall in load, which caused the over allocation of resources and
resulted in poor idle times. On the other hand, to some extent, over provisioning and
under-provisioning had been observed in both support vector regression and Bi-LSTM
models. However, while comparing the total processed load by the system, SVR had
processed high amount of load with respect to Bi-LSTM. Contrast to this, Bi-LSTM
framework exhibited the minimum number of idle cycles among all the algorithms. On
the other hand, comparing the delayed load, the highest delayed load was obtained using
linear regression, followed by Bi-SLTM and fianlly Support vector regression. Also. in
the case of delayed load, SVR outperformed the other two algorithms with better results
on each cycle. Based on the overall analysis, I can mention that Bi-LSTM algorithm
utilized the resources more efficiently as the total idle run using Bi-LSTM was minimum.
But the delayed load of Bi-LSTM was quite higher due to which the total number of
processed load was comparatively less when plotted against support vector regression.

7 Conclusion

In this research, a framework had been proposed for auto-scaling mechanism which was
inspired from the real-world cloud computing platform. The main objective of this re-
search was to identify the most optimal algorithm for auto-scaling mechanism, which
could enhance the productivity of resources, and could reduce the over-head and latency
on the system. Therefore, I had experimented with the 3 different algorithms based on
the machine learning and deep learning architectures. The algorithms were Linear re-
gression, Support vector regression and Bi-LSTM, which had been compared with respect
to the different metrics and against outcomes. After analyzing the graphs and results of
different experimentation, it can be concluded that as the minimum number of idle cycles
were achieved using Bi-LSTM algorithm, and it was more convenient for resource utiliz-
ation. However, due to the complex architecture of Bi-LSTM algorithm, the predictions

17



get delayed and which resulted in process delays on the load. On the other hand, SVR
was a simple architecture and sometimes, it under-allocated the resources at peak load.
However, the total load processed by SVR was quite higher unlike the linear regression
and Bi-LSTM algorithms. Also, the delayed load were minimum. Thus, I can suggest
that Bi-LSTM performs better in terms of resources utilization and in terms of overall
analysis, like total processed load, delayed load, the support vector regression will be
an optimal choice. As the behaviour of the cloud is dynamic and non-linear in nature,
the linear regression algorithm did not performs well for auto-scaling mechanism. My
current research utilized the synthetic data generation of load for predicting the resource
requirements. However, in the future work the traffic data and resource information on
the cloud computing platform can be captured and can be used for prediction. Identify-
ing the optimal algorithm for auto-scaling is still an open area of research where multiple
algorithms can be experimented and results can be compared with each other. The be-
haviour of prediction for every algorithm might change on different test case scenarios.
Therefore, cloud providers should identify their needs and appropriate algorithms should
be deployed for the desired results.

References

Aslanpour, M. S., Ghobaei-Arani, M. and Toosi, A. (2017). Auto-scaling web applications
in clouds: A cost-aware approach, Journal of Network and Computer Applications 95.

Biswas, A., Majumdar, S., Nandy, B. and El-Haraki, A. (2017). A hybrid auto-scaling
technique for clouds processing applications with service level agreements, Journal of
Cloud Computing 6.

Che, H., Bai, Z., Zuo, R. and Li, H. (2020). A deep reinforcement learning approach to
the optimization of data center task scheduling, Complexity 2020: 1–12.

Chen, T. and Bahsoon, R. (2015). Self-adaptive trade-off decision making for autoscaling
cloud-based services, IEEE Transactions on Services Computing 10: 1–1.

Evangelidis, A., Parker, D. and Bahsoon, R. (2018). Performance modelling and verific-
ation of cloud-based auto-scaling policies, Future Generation Computer Systems 87.

Golshani, E. and Ashtiani, M. (2021). Proactive auto-scaling for cloud environments using
temporal convolutional neural networks, Journal of Parallel and Distributed Computing
154.

Guo, Y., Stolyar, A. and Walid, A. (2018). Online vm auto-scaling algorithms for applic-
ation hosting in a cloud, IEEE Transactions on Cloud Computing PP: 1–1.

Islam, M. T. and Buyya, R. (2018). Resource management and scheduling for big data
applications in cloud computing environments.

Kaur, R. and Kaur, G. (2017). Proactive scheduling in cloud computing, Bulletin of
Electrical Engineering and Informatics 6: 174–180.

Li, B. (2017). Research and analysis of resource scheduling algorithm in cloud computing
environment, Agro Food Industry Hi-Tech 28: 3192–3196.

18



Mehta, H., Prasad, V. and Bhavsar, M. (2017). Efficient resource scheduling in cloud
computing, IJARCS.

Oladoja, I., Adewale, O., Oluwadare, S. and Oyekanmi, E. (2021). A threshold-based
tournament resource allocation in cloud computing environment, Asian Journal of
Research in Computer Science pp. 1–13.

Patel, P., Scholar, A., Dwivedi, A., Richariya, V. and Sabri, M. (2016). Adaptive
threshold based dynamic resource provisioning in cloud environment, SSRN Electronic
Journal 5: 15–21.

Singh, P., Gupta, P., Jyoti, K. and Nayyar, A. (2019). Research on auto-scaling of
web applications in cloud: Survey, trends and future directions, Scalable Computing:
Practice and Experience 20: 399–432.

Singh, P., Kaur, A., Gupta, P., Gill, S. S. and Jyoti, K. (2021). Rhas: robust hybrid
auto-scaling for web applications in cloud computing, Cluster Computing 24.

Srirama, S., Adhikari, M. and Paul, S. (2020). Application deployment using contain-
ers with auto-scaling for microservices in cloud environment, Journal of Network and
Computer Applications 160: 102629.

Sun, S. and Li, X. (2020). Deep-reinforcement-learning-based scheduling with contiguous
resource allocation for next-generation cellular systems.

Tang, P., Li, F., Zhou, W., Hu, W. and Yang, L. (2015). Efficient auto-scaling approach
in the telco cloud using self-learning algorithm, GLOBECOM, pp. 1–6.

Verma, M., Gangadharan, G. R., Narendra, N., Vadlamani, R., Inamdar, V.,
Ramachandran, L., Calheiros, R. and Buyya, R. (2016). Dynamic resource demand pre-
diction and allocation in multi-tenant service clouds, Concurrency and Computation:
Practice and Experience 28.

Verma, S. and Bala, A. (2021). Auto-scaling techniques for iot-based cloud applications:
a review, Cluster Computing 24.

Ye, Y., Ren, X., Wang, J., Xu, L., Guo, W., Huang, W. and Tian, W. (2018). A new
approach for resource scheduling with deep reinforcement learning.

Zhang, J., Xie, N., Zhang, X., Yue, K., Li, W. and Kumar, D. (2018). Machine learning
based resource allocation of cloud computing in auction, Computers, Materials and
Continua 56: 123–135.

19


	Introduction
	Research Question

	Literature Review
	Cloud Resource Scheduling
	Threshold-Based Auto-Scaling
	Proactive Scheduling
	Machine Learning Framework
	Deep Learning Framework
	Hybrid Framework

	Methodology
	Client/Task Generation
	Task Queue
	Processing Server
	Flexible Resource Pool
	Scaling Controller

	Design Specification
	Linear Regression
	Support Vector Regression
	Bi-LSTM

	Implementations
	Evaluation
	Experiment 1 / Evaluation of Linear Regression
	Experiment 2 / Evaluation of Support Vector Regression
	Experiment 3 / Evaluation of Bi-LSTM
	Discussion

	Conclusion

