
Configuration Manual - Automate Provisioning and

Orchestration of Cloud Infrastructure using AWX

Setup the AWX host, specifications below

Type Value

CPU Processor Intel(R) Core(TM) i7-3520M CPU @ 2.90GHz

No. of Cores 2

Memory 4G

Operating system Centos 8.4

Ansible Version 2.9.18

AWX Version 17.1.0

Docker Version 20.10.10

Docker Compose 1.29.2

Step 1: Install Centos8 using the OracleVM image and install dependency packages.

dnf install epel-release -y

dnf install git gcc gcc-c++ ansible nodejs gettext device-mapper-

persistent-data lvm2 bzip2 python3-pip -y

dnf config-manager --add-

repo=https://download.docker.com/linux/centos/docker-ce.repo

dnf install docker-ce.x86_64

#systemctl start docker

#systemctl enable docker

#systemctl status docker

pip3 install docker-compose

Step 2: Import AWX packages from git and setup the application packages.

git clone https://github.com/ansible/awx.git

Update the installer file with (password, and user requirements) and install package using Ansible build

playbook to deploy the AWX application.

vi /root/awx/installer/inventory

AWX application runs under docker compose, you could see four docker containers awx_web (handle

web requests), aws_task(perform the ansible tasks), awx_postgres (maintain database), awx_redis(in-

memory caching solution).

Login to the console using the password configured in above section:

Create Organization: Navigate from left side options select Organization under Access.

I have created a Organization with name Enterprise1.

I Configure AWS credential / GCP credential / Machine credential (on-prem server password)

Below services can be integrated using this tool by configuring its credentials.

Create credentials: Navigate from left side options select credentials under Resources column.

Provide Access key and secret access key. For Google cloud provide the JSON token file by uploading it in

the credential column.

Create Project : Name project and map the playbook.

Default project location in server is under (/var/lib/awx/projects) folder, playbooks hosted as

separate folder init.

Create inventory: Under Resources >> inventories

Create playbooks for server and cluster deployment (playbook codes are attached as separate file to

the project submission source code folder.

Create Job template: Map the master playbook from the project folder, tag the Inventory group and EC2

credential as this job is ti deploy EC2 instances

A) 1st Project (Deploy Ec2 instance)

1) Create keypair - aws-awk-key-us-east-1 on the region.

2) Once the playbook ran it will deploy the ec2 and sg and vpc etc

Create dynamic inventory: Under Resources >> inventories >> sources

Add AWS credential to enable sync, this help automatic inventory capture every time it syncs.

Hadoop Cluster Implementation:

Create the Hadoop deploy Project and the Template.

Validate the AWS console:

Validate the Cluster by login into the Master (Namenode) using command # hadoop dfsadmin –report

Kubernetes Cluster Implementation:

Create Kubernetes Projects, Project Template in awx console.

Executing Kubernetes deploy playbook from awx console.

Job Validation from AWX side:

Job Validation from AWS console and Server side:

Terminate the AWS servers if not in use:

Job Execution from AWX Console:

Validate Job status from AWX Console:

Validate the server removal status from AWS Cloud console:

Create Google Cloud resources using Ansible and AWX:

Adding GCP service account to AWX-

Create Project for GCP

Deploy compute instance deploy job

Validate the server status and validate weburl for webservice GCP console:

Terminate the GCP Instance:

Update the Terminate yaml file on project folder and create Job template.

Additional system administration tasks playbook configured under operations folder:

Monitor and control all the jobs using Centralized dashboard:

You can view Hosts, Failed Hosts, Inventories, Projects and Git project sync failures on Dashboard for

better centralized control of overall tasks.

Additional work tried to enable GIT and openstack implementation but couldn’t make it work. Kindly

ignore below logs:

Enable GIT Passwordless Authentication:

Git Code commit:

1) Credential

2) Project

3) Template

Git hub personal acces token:

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

