Automate Provisioning and
Orchestration of Cloud
Infrastructure using AWX

MSc Research Project
Cloud Computing

Sivaraj Thiyagarajan
Student ID: x20182473

School of Computing
National College of Ireland

Supervisor: Dr. Majid Latifi

National
College
Ireland

~

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Sivaraj Thiyagarajan
Student ID: x20182473
Programme: Cloud Computing
Year: 2021
Module: MSc Research Project
Supervisor: Dr. Majid Latifi
Submission Due Date: 31/01/2022
Project Title: Automate Provisioning and Orchestration of Cloud Infrastruc-
ture using AWX
Word Count: 6501
Page Count: 2]

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 31st January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O
Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [J
your own reference and in case a project is lost or mislaid. It is not sufficient to keep

a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Automate Provisioning and Orchestration of Cloud
Infrastructure using AWX

Sivaraj Thiyagarajan
x20182473

Abstract

Hybrid-cloud infrastructure adaption is a popular trend in the recent era. As in-
frastructure grows, the need to design and develop an effective method to automate
provisioning and control multiple clouds becomes crucial, as the manual method
faces complexities in resource provisioning, application deployment, monitoring,
and centralized control. This paper examines the concepts of infrastructure as code
(IAC) and the advantages of using it instead of the manual method. Compares
and contrasts the features and capabilities of commercially licensed IAC tools with
the open-source GUI-based Ansible Works (AWX) tool. This Paper introduces a
centralized architecture that includes on-premise and public, private cloud infra-
structures using AWX. The study also involves the design, development of indi-
vidual infrastructure using Ansible playbooks and deploying servers and clusters
(Kubernetes, Hadoop) in Amazon web services (AWS) and Google Cloud Platform
(GCP) using AWX. Our goal is to integrate automation in resource provisioning
and administration of multiple infrastructures using a single tool (AWX) to handle
all infrastructure administration tasks. This study also compares the implementa-
tion of similar infrastructure using manual method and evaluates the efforts, time,
and cost, also discuss how this approach could help enterprises with hybrid infra-
structure to establish efficient centralized resource management.

1 Introduction

Cloud computing delivers highly available, elastic, scalable, authentic services to the
customers, Due to its features, more organizations migrate their workloads to the cloud.
The public cloud provider offers a variety of services to fulfill customer needs. Unlike
the traditional data center model, the cloud provides an easy and rapid implementation
of cloud resources, which helps businesses to bring the product to the market quickly.
Cloud resources are billed based on utilization and resources can be terminated when
they are no longer needed. Enterprises can easily scale the resources if their business
grows, without investing huge upfront costs. Hybrid infrastructure helps enterprises
meet business compliance and audit requirements by maintaining confidential data and
workloads on-premises.

Provision and control of cloud resources are handled manually using the cloud pro-
vider console. Handling single cloud infrastructure will not create major operational
overhead. But infrastructure involving multiple clouds and hybrid infrastructure will be
more complex to handle, requires additional support staff to maintain the infrastructure,
which creates additional costs to businesses. [Tomarchio et al.| (2020) illustrated the need

of implementing the cloud resource orchestration frameworks (CROF) in the environment
involving multiple clouds, for effective life-cycle management of cloud resources from re-
source implementation to the monitoring phase. The use of agile methodologies and the
DevOps framework in service delivery minimizes the amount of time it takes to deploy
and test software, allowing businesses to get services to market faster. The IAC approach
enables this rapid transition in provisioning and orchestration schedule reduction.

Infrastructure as a code is an efficient process of creating and controlling the On-
premise and cloud infrastructure using codes. Lavriv et al. (2018) used the concept of
Infrastructure as a Code to design a template for creating cloud resources. It’s just a
bunch of code that tells cloud providers what to do. The Infrastructure as a Service
(IaaS) model provides compute, storage, and networking considerably more accessible
well as offers unrivaled automation capabilities. It helps to control the present state of
the infrastructure while reducing the time it takes to create.

Open Source Software (OSS) has dominated the technology industry for the past two
decades. Collaboration and innovation are fostered through open-source projects. OSS
pursues a community-centric strategy. Updates and distribution of codes are possible.
It fosters open participation in code testing as well as quick issue resolution, result-
ing in more reliable software. Popular Open-source tools include Kubernetes, Origin
Community Distribution (OKD), GitHub, and AWX. According to research, open-source
software is more secure than vendor proprietary software.

Singh et al.| (2016]) denotes, Ansible is a well-known IAC tool for DevOps automation
and configuration management. It uses Playbooks created using yet another Markup
language (YAML), which can be used to provision and orchestrate servers, networking
devices, and applications. Compared to other IAC tools, Ansible delivers simple, modular,
flexible, and efficient command-line interface (CLI) functions. But managing multiple
playbooks using CLI leads to administrative challenges and a lack of control. GUI-
based Ansible tool help overcome all major challenges faced in CLI-based Ansible. AWX
is a well-known GUI-based Ansible tool built over Ansible engine to provide advanced
features such as Web user Interface, Role-based access control (RBAC), REST API, Job
scheduling, and integration of multiple clouds and on-premise infrastructure, centralized
control, and configuration management could be configured by customized dashboard
creation.

In this paper, I propose a novel approach to automate resource provisioning and
orchestration in public, private, and hybrid cloud environments using a graphical open-
source IAC tool. This approach uses an Open-source project Ansible Worx to combine
private cloud, public cloud (AWS, GCP), and on-premises infrastructure into the TAC
tool and deploy infrastructure resources using YAML codes to deploy, control, and or-
chestrate repeated system administration tasks to enhance overall cloud automation and
management using a GUI based TAC tool.

1.1 Research Question

Complexity in resource provisioning, orchestration, and centralized Infrastructure ad-
ministration are the major concerns in Organizations employing Multi and hybrid cloud
Infrastructures using manual methods. Therefore there is a research question as follows:

RQ: To what extent does a single Open-source IAC tool effectively handle
centralized resource provisioning and orchestration for enterprises using multi-
cloud and hybrid infrastructures?

1.2 Research Objectives

The following Research Objectives are considered to address the above mentioned RQ:

1. Understanding the complexities and variability concerning manual and automated
cloud deployments.

2. Analyse challenges, emerging trends, and interoperability of Infrastructure as a code
in multi-cloud infrastructures.

3. Design Open-source TAC architecture for centralized control and administration.

4. Develop complex cluster environments using Yet Another Markup Language (YAML)
codes for Amazon Web Services (AWS) and Google Cloud Platform (GCP) Cloud

infrastructure.
5. Automate provisioning and orchestrating cluster environments using AWX.

6. Integrate Github to enable continuous integration (CI) and continuous delivery
(CD) using AWX.

7. Create centralized control and dashboards for overall infrastructure management.

8. Evaluating the implementation time and costs between Manual and Automated
IAC cloud deployment methods.

1.3 Contribution

As a Contribution, this research introduces a centralized architecture using a web-based
graphical IAC tool (AWX) that can provision and administrate the on-premise and mul-
tiple cloud infrastructures. To begin, multiple difficulties of resource orchestration in the
current cloud ecosystem are explored and I create a comprehensive taxonomy of desired
properties and dimensions that may be used to characterize Infrastructure as a code by
thoroughly analyzing recently published literature. I examine a variety of traditional
infrastructure scenarios and design, develop and deploy the same architecture with cent-
ralized control using the AWX. This will assist the reader in understanding not only the
merits of each architecture and implementation but also the unsolved difficulties that
must be addressed in the future.

1.4 Document Structure

The rest of the paper is organized as follows. In Section[2] T discuss the related works con-
ducted by various researchers under the same context, specification analysis of different
IAC tools available, and its functionalities compared. I explain the detailed methodology
and the techniques used to materialize the research objective in Section [3] Design details,
architectural diagrams are discussed in Section [4] I have provided a detailed implement-
ation strategy for each scenario in Section bl Section [] evaluates the time metrics while
implementing the different case studies and cost comparison of commercial tools, and, I
analyze the potential benefits and the advantages of using AWX over the manual method
by comparing the results based on time and cost benefits. In Section [7, I conclude the
potential benefits of integrating GUI-based IAC tool over the traditional method and how
AWX improve overall productivity, centralized control, and infrastructure automation.

2 Related Work

Cloud resource orchestration, as described in Section [1} Introduction, is concerned with
the discovery, selection, allocation, and administration of cloud resources. In this section,
I looked at the most recent literature in the fields indicated, I was looking for suggestions,
frameworks, prototypes, and commercially licensed products that address the challenges.
I discovered that several researchers have already published papers related to our research
topic. Each of these studies lists and categorizes a variety of projects that fall under
the broad tent of cloud resource orchestration, whether they are proficient or smaller
proposals focusing on a specific set of orchestration characteristics. I compare on-premise
and multi-cloud frameworks. Review various methods, studies, and protocols used. How
the software and hardware as codes are defined. Also, discuss the business standard
frameworks for TAC, and comparative study of use cases, proven methods, issues, and
best practices for implementing infrastructure resources.

2.1 Challenges in Manual Cloud Provisioning and Control

As cloud computing gains traction in the I'T industry, the change from monolithic to
microservices design, as well as the shift from largely virtual machines (VMs) to a cloud-
native architecture, has made it far more critical to automate infrastructure to respond
quickly, academics and practitioners are reporting an increasing number of concerns and
challenges. Traditional deployment and control will not be an easy task to achieve the
centralized administration, where each cloud infrastructure needs to be managed indi-
vidually via vendor console. Common challenges faced in multi-cloud infrastructure are
provisioning, application deployment, load balancing, costs, and monitoring. |Ghanam
et al| (2019) denoted the critical challenges faced by enterprises involving hybrid in-
frastructure. The author analyzed the major issues such as data management, service
management, quality, economic challenges, security, and privacy. [Barhate and Dhore
(2018) mentioned that the interoperability (ability to work with each other, when mul-
tiple cloud systems are involved) and Cloud brokering concerns caused by parallel access
to services from different providers cannot be overlooked in the review of resource orches-
tration when multiple cloud infrastructures are involved. Implementing open standards
at all levels in the cloud is one strategy to solve the interoperability challenge. The cloud
computing industry is pursuing several cloud standardization initiatives. These efforts
to standardize focus on challenges such as workload management, data migration, and
user authentication, among others. IT teams may recover control of their multi-cloud
ecosystems by using cloud automation and orchestration technologies that take advant-
age of scheduling capabilities. Provisioning servers, backing up data, and controlling
unused processes and resources are all duties handled by cloud automation. Low-level
tasks across different platforms can then be streamlined into more complicated processes
via cloud orchestration, freeing the team from manually meddling with everyday chores.
Cloud orchestration may assist ensure that cost overruns and under-utilization of services
do not damage the bottom line once the development, security, and operations teams have
full visibility and can discover any weaknesses in the infrastructure. Cloud orchestration
and automation services offered by cloud providers are proprietary, which doesn’t support
other vendor services to orchestrate.

2.2 On-premise and Cloud Frameworks

Cloud computing has gotten a lot of attention in the last decade because of its unique
properties such as easy adaptability, flexibility, and supportability for a wide range of
applications and software. Banking and finance sector businesses need to maintain on-
premise infrastructure to maintain confidential business data and sensitive information
related to the transactions, to comply with Payment Card Industry (PCI) audit require-
ments. Applications requiring low latency, high throughput, and very-high Input-Output
Systems (IOPS) are hosted and controlled in-house datacenters.

According to |Sun et al. (2016), private cloud infrastructure offers outstanding secur-
ity, privacy, scalability, and performance. Firms can host a private cloud on a vendor’s
facility or in their data centers. According to Hassan et al.| (2019) organizations evalu-
ate factors such as elasticity, security, compliance, storage, data sensitivity, scaling, and
cost before adopting the cloud. The public cloud offers huge clusters of resources for
big data applications on a pay-per-use basis, Setting up similar infrastructure in a tra-
ditional datacenter model requires huge cost and time. According to |Ardagna; (2015), a
public cloud infrastructure hosted in a single vendor creates several issues such as Vendor
dependability, supportability and higher costs. Ardagna et al|(2012) in their work de-
notes multi-cloud infrastructures helps control vendor lock-in, hardware complexity, and
quality issues. To assist operators and developers, they suggest the MODA CLOUDS
(Model-driven development) approach, which defines the standards for developing and
operating applications in multi-cloud setups.

2.3 Orchestration and Provision of Cloud Infrastructures

The process of allocating cloud resources and services to enterprises depending on their
needs is known as cloud provisioning. Typically, cloud provisioning is managed by the I'T
employees of the organization, who connect into the vendor-provided console to deploy
cloud resources. To install cloud resources and services in multi-cloud and private cloud
situations, the administrator must log in to each vendor’s cloud console. Kritikos et al.
(2019) discussed the framework to perform business migration using cross-level orches-
tration for cloud adaption and monitoring. Bousselmi et al. (2014)) compare and contrast
the various technique of orchestration, they discuss software as a service orchestration
SAAS(O) and the infrastructure as a service orchestration IAAS(O) strategy, as well
as the problems that came with it, and determined that both techniques were effective
in implementing resources. On-demand dynamic provisioning, manual provisioning, and
post-sales provisioning are the three different delivery strategies. Provisioning and co-
ordinating cloud resources in multi-cloud and hybrid configurations have become increas-
ingly complex and difficult to handle as the catalog of different cloud provider services
has grown. Tomarchio et al. (2020]) defines the cloud resource orchestration framework
(CROFs) to manage the entire life-cycle from resource implementation to the control
phase. [Tamburri et al. (2019) introduced an industrially state-of-the-art standardiza-
tion that uses standard notation to automate the deployment of technology-independent
and various cloud-supported apps. Specifies infrastructure as a topology, allowing for
faster reuse. As illustrated by |Ranjan et al.| (2015]), the primary goal of orchestration is
to ensure that services are delivered consistently to meet the Quality of Service (QoS)
requirements.

2.4 DevOps and Infrastructure as a Code Tools

Software engineering methodologies are used in DevOps (Development and Operations) to
cascade development and operational tasks and improve overall deliverables. Automated
deployments, multi-cloud deployments, disposable environments, immutable infrastruc-
ture, security automation, disaster recovery and backups, and blue-green deployments
are all major infrastructure as a code use cases. DevOps integrates and reuses conven-
tional development tools (For example, code management, code revision, code versioning).
Artac et al. (2017) connect Devops strategies to the OASIS ”"Topology and Orchestra-
tion Specification for Cloud Applications” blueprint (TOSCA). Shvetcova et al. (2020)
present Coloni architecture tool that provides application infrastructure in a hybrid cloud
environment using TOSCA templates and creates Ansible playbooks to deploy complex
cloud topologies efficiently. Sandobalin et al.| (2020) contrasted the Model-driven (Argon)
and code-centric (Ansible) IAC tools. The results demonstrate Ansible’s ability to deploy
software and infrastructure services quickly. The usefulness and specifications of various
IAC tools were compared. |Guerriero et al| (2019) denotes, Ansible is the only tool among
the other tools, used by 70 percent of enterprises. It also compares the functionality of
each tool in detail, including extensibility, automation, usability, coding, maturity, and
interoperability, and concludes that each tool has its own set of functionality and can be
chosen based on use cases. Figure [l|shows the comparison study of different IAC tools in
the market based on its architecture, methods used for propagation of change, language
used to develop, programming approach, interoperability with other operating system fla-
vors, authentication methodology, integrity, and confidentiality. This functionality helps
understand businesses to adopt the right tool to fulfill their infrastructure needs.

Unix/Windows

Unix/Windows

configuration of

Windows

Puppot Chef Ansible Terraform
Configuration Configuration Configuration .
Type Management Management Management Orchestration
Infrastructure Mulable Mutable Mutable lmimutable
Architecture Client-Server Client-Server Server-Only Server-Only
Source Code Open Source Open Source Open Source Open Source
Changes
propagation Pull Pull Push I"ush
method
Programmin HashiCorp
;'g = Puppet DSL Ruby DSL YAMIL Configuration
LANgUAZEe I
SAnEUAEEe
Programming R
Languagc Declarative lmperative Llo-.]a:al.ww_: and Declarative
Imperative
Approach
. . - Soerver = Unix,
Master - Unix, Server - Unix, s poris Vasl majoril [
Interoperability Agents - Clienis - HUpj Ny . ajorily o

opcrating systems

Acconntability

Activity service API

Ruby based Chef
Lo Resource class

Ansible built-in Logs

Terraform built-in
Lioags

Authentication Certificate-based Certificate-bascd Cloud built-in AP Cloud built-in APL
Multi-master N . . N a i
architecture, 1F Contains primary (ontains primary (..{IIIT.H.ITIH ng]".
Availability Primary master fails, server as well as "Hlmuf“ which i active |th:11(‘ that is
Sccondary master backup scever substituted by substituted by
' t“;kﬂ .it'.% place i) o secondary instance, secondary node.
Periodic client Periodic client
Integrity conliguralion conliguration N/A N/A
validation validation
Confidentiality HTTPS HTTPS SSH Cloud build-in API
Figure 1: TAC Tools Comparison

2.5 Orchestration and provisioning using Ansible

Ansible is a popular open-source IAC tool in recent years, with the most forks on GitHub
thanks to its simple structure, human-readable code, and ease of creation, manipulation,
and execution. Ansible allows you to use YAML playbooks to provision complicated
cluster systems like OpenStack, Kubernetes, Hadoop, ECS, and more. Kokuryo et al.
(2020) explore the Ansible terms such as task, module, role, and Playbook, They ex-
amined the invalid module, incorrect application of imperative modules, practices to be
avoided, and best methods for the proper execution of the task. |[Palma et al. (2020
analyzed a python-based package (Ansible METRICS) that evaluates the usage of the
Ansible command-line and illustrates the execution and operation workflow. The pro-
gram uses the YAML file as input and stores it as an index list, then extracts the plays
and executes the jobs as defined in the input, allowing the play to be implemented in
the infrastructure. Masek et al. (2018) created a framework for their university systems
using Ansible and Java, which provide web UI to operate infrastructure via smart devices.
Pieplul (2018)) implemented application automation using Ansible and Jenkins in a CI/CD
pipeline. Results demonstrate fast, efficient, and optimized hosting of web applications
using Ansible. Juopperi (2017) used the Chatops (a recent add-on in DevOps function,
in which development updates to the service may be made via chat service) was cre-
ated and provisioned in AWS cloud architecture. [Kaush and Gupta| (2017) implemented
OpenStack cluster using the Ansible and noted that the manual method for deploying
OpenStack takes several days. They noted developing the complete cluster using YAML
helps to understand the errors during the dry-run stage.

2.6 Impact of Open-source Software’s IT Industry and AWX

Adopting the enterprise-level paid multi-cloud management software adds a huge burden
to the overall IT budget. Open-source software (OSS) would be the best alternative. Re-
shad and Sinha (2020) discusses the factors that promote open source software solutions
from business and technical perspectives. The authors denote the open-source projects
are more secure and reliable, as more users test the source code which in-turns provide
great chances of frequent checks and bug fixes. [Khandelwal and Kumar| (2020) compares
the features of OSS and closed source software based on development, flexibility, innov-
ation, usability, cost, security and argues open-source software can be a viable solution
for businesses looking to save proprietary software license prices while simultaneously
avoiding the penalties and legal consequences that come with unauthorized use.

Ansible Worx (AWX) is an open-source community project (managed by Ansible-
galaxy) that is upstream of Red Hat’s Ansible Tower product. which encourages com-
munity participation and encourages developers to enhance and repair bugs. AWX can
do automation via a restful API, plan and automate a workflow, establish a dashboard
for access reporting and monitoring the success and failures of activities, jobs, projects,
inventories, and even configure device monitoring. The integrated RBAC (Role-based
access control) can be used to configure access delegation. AWX addresses Ansible tool
difficulties such as managing various environments and performing scheduled operations,
as well as access control complexity. Complex clusters and Autoscaling Cloud resources
can be implemented as different projects, and resource management can be handled ef-
ficiently. Table 1 summarises the related work carried out by several researchers in the
field of IAC, as well as a comparison study of its methodology, merits, and demerits.

Table 1: Summary of Related Works

Related Work | Methodologies Advantages Limitations
Ghanam et all| Challenges in multi cloud | Hybrid cloud | Interoperability,
(2019) setups framework Service and Eco-

nomic challenges

Ardagna et al|| MOdel-Driven Approach for | Monitor and re- | Complex for
(2012) the design and execution | deploy by ob- | multi cloud
of applications on multiple | serving perform- | setups
Clouds ance
Bousselmi et all| Comparison of Infrastruc- | Efficient provi- | challenges in
(2014) ture as a service (IAAS) and | sioning using | IAAS provision-
Software as a service SAAS | SAAS ing
approach
Reshad andl | Opensource source solu- | Flexibility, Interoperability
Sinhal (2020) tions(OSS) security in OSS | and support
availability
Tomarchio et _all| Systematic review of Cloud | Open issues in | Challenges
(2020) resource Orchestration | multi-cloud en- | in traditional
(CRO) Framework vironments provisioning
methods
Tamburri et all| Topology and Orchestration | Declarative Challenges to
(2019) Specification for cloud ap- | modeling achieving Qual-

plication (TOSCA)

ity of Service

Shvetcova et al.
(2020)

Clouni proposed TOSCA
Architecture

Deploy complex
cloud topology

Challenges in
TOSCA deploy-

ments

Sandobalin et al.
(2020)

Model-driven (Argon) and
code-centric (Ansible)

Usefulness and
quality of code-

Drawbacks of
Argon model

centric ~ (IAC)

deployments
Guerriero et all| Evaluation of various TAC | Best practices, | Challenges in
(2019) tools development, integration of

evolution of IAC
tools

codes

Palma et al.
(2020)

Ansible

lyzer

METRICS Ana-

Develop quality
codes

Problematic
metrics in code
development

Pieplul (2018)

Deployment of Cloud scen-
arios using Ansible and GIT

Methodology to
deploy for en-
tire application
stack

Challenges in
manual imple-
mentation

Juopperi (2017)
Kaush and
Gupta; (2017)

Deployment of openstack

cluster automation using
Ansible

Deployment
time reduction

Challenges in
configuring com-
plex codes for
clusters

3 Proposed Methodology

This section describes the research methods used to achieve the aforementioned research
objectives. The proposed approach is designed to address the practical challenges such as
resource provisioning, application deployment, visibility, control, governance, compliance,
cost management faced in manual implementation methods. I performed a detailed liter-
ature review of existing deployment strategies and methods for commencing any complex
cluster infrastructures by making an in-depth analysis of each stage in the deployment
lifecycle. This was taken to obtain a broad understanding of existing standards, meth-
odologies, complexities, and pitfalls in the existing approach and to develop an advanced
automated solution to deliver the desired infrastructure.

As shown in the Figure [2, the proposed research methodology comprises of five steps,
1) Requirement Analysis 2) Design, 3) Develop, 4) Deploy, 5) Evaluate

 Develop the e Create projects e Evaluate time
Playbooks using and Job template metrics compared
AML. using playbooks in
AWX.

® System

equirements
e Application
equirements

® Design
entralized AWX
rchitecture

e Setup AWX
ost

® Dry run the
icodes to verify the * Deploy the
unctionality. Clusters in cloud
using AWX and

alidate results.

Figure 2: Proposed Research Methodology

e Requirement Analysis: Analyzed existing frameworks, standards followed in
cloud orchestration and provisioning. Collect information related to application
compatibility and the system level requirements to set up the AWX server and im-
plement the server with all required packages. Cloud service providers information
and the services required to be deployed as a part of the research are analyzed.
create user accounts and security keys from cloud service provider console.

e Design: Design centralized architecture using AWX by integrating AWS and GCP
cloud infrastructure along with the in-house servers. Design separate architecture
for Amazon instance and Google cloud instances, Kubernetes, Hadoop cluster en-
vironment, define each cloud component involved in implementing the resources
and denote the connectivity between each component in the architecture.

e Develop: This phase is related to code development, where the major challenge
of multi-cloud infrastructure lies in interoperability between On-premise to cloud
infrastructure and between different cloud service providers. Application interop-
erability, platform interoperability, and management interoperability. A detailed
review of the requirements is examined based on the individual cluster scenarios
and used appropriate Ansible modules to support the configuration are developed
to overcome interoperability and coding dependencies. Develop the individual Ans-
ible playbooks for each cluster and the resource defined in the design section using

4

YAML codes. Ansible roles are used to define specific tasks. Hadoop deployment
playbook consists of five playbooks, the master playbook is defined with four child
plays (ec2 instance creation, Hadoop master node creation, Hadoop slave node cre-
ation, Hadoop client creation). Kubernetes cluster deployment playbook consists
of a master and child plays for deploying ec2 instance, Kubernetes master and slave
servers in Amazon cloud. The playbooks are designed to execute entire cluster
components in sequential order defined in the master playbook. Test the developed
codes using dry-run functionality. A fully developed and tested playbook allows
administrators to deploy the cloud resources remotely.

Deploy: Create an AWX host by installing the required packages. Configure cloud
credentials in the AWX console for each cloud service provider account, create in-
dividual projects for each cluster, and create job templates using the playbooks
created on the development stage on the AWX console. Configure GitHub creden-
tials to deploy the playbooks directly from the Git repository. Deploy Kubernetes,
Hadoop cluster environments directly by executing each job template. Validate the
cloud resources by login into the cloud console for verification.

Evaluate: Compare and assess the metrics for manual versus AWX-based deploy-
ments gathered throughout the deploy phase. List the drawbacks of the manual
technique and compare them to the advantages and benefits of using AWX. Com-
pare the expenses and benefits of utilizing the AWX tool to the TAC commercial
tools.

Design Specification

A high-level architecture diagram of the centralized resource provisioning and manage-
ment using AWX is illustrated in the Figure [3] It shows the in-build features of the tool,
the connectivity between the AWX and the public, private, and on-premise data center.
Details of the individual components of AWX are described below.

Ansible - Simple software engine developed in python to automate provision-
ing, configuration management, orchestration, and application deployments using
YAML codes. playbooks were created using these codes for deployment.

Modules and Roles - Pre-defined functionality to perform a specific task, there
are 25004+ modules available in Ansible Galaxy (Ansible repository) to perform
various automation tasks. Roles are Used to load related files, variables, tasks,
and artifacts in a defined file structure, which helps to define the requirements in a
defined structure.

API - Representational State Transfer (REST) Application program Interface
(API) performs HTTP requests using GET, POST, DELETE and PUT data types
to access data for processing and the plugins handle service automation.

CMDB (Inventory) - Complete configuration management database of hosts,
devices, credentials, roles, users, details about Role-based access control (RBAC),
operating system, patch level, etc are stored to keep track of entire assets in the
enterprise.

10

Each play must be created using variables such as the operating system, packages, and
configuration settings. On the AWX server, completely developed code will be placed in
the /var/lib/AWX directory. I configured the master playbook by connecting individual

*

Plugins

Public Cloud

AWX
J’ s
) m S~
Modules Inventory

|

On-Premise Servers

L

openstack

CMDB

kubernetes

Private Cloud

Figure 3: Proposed AWX Centralized Architecture

plays that have all the dependencies needed to perform the main task effectively.

Figure [depicts the Ansible Worx’s task workflow and component interconnection
within the system. Job templates handle playbooks from different projects and execution
can be done manually or by scheduling. A complete record of the job history, execution

summary, and configuration management are maintained within the AWX.

host

Job
Schedule

job

Scope 10 subset
of inventory

Figure 4: AWX Workflow Diagram

Project
Git Repository
playbooks
source
Project |
contains
playbooks.
has job templates |
Job Template applies Playbook

[playbook —_ |

[vars]|
instance of

Jobtemplate ™)

1

1

Task

D playbook and role source code

-

[configured in Ansioe Awx

repos for playbooks and roles

D “real” infrastructure environment

4.1 Design on-premise and cloud servers using AWX

In this section, I designed and created a playbook to deploy two EC2 instances along with
an AWS S3 storage bucket. Another playbook is created to deploy a compute instance
along with web-server packages in the GCP cloud. Figure |5 shows the architecture
diagram of the proposed EC2 deployment with S3 storage on a VPC within the AWS
cloud service and a compute instance deployed with Nginx web server service. Cloud
components for this design are AWS (virtual private cloud, Amazon internet gateway,
elastic compute service, security group, simple storage service) and GCP cloud (compute
instance, external network address translator)

cr;nn p o
@ @ -
e
4
® q,%
E)
Inventory Playbook @
deployyml)

On-Premise

vPC
Subnet

| Internet GW

| Security Group |

| EC2Instance

Figure 5: On-Premise, AWS and GCP cloud architecture

I installed two virtual machines on the host machine (using Oracle Virtual Box) as
on-premise servers. Separate playbooks were created for system administration tasks,
such as package installation, package removal, uptime, and filesystem status checks.

=
= |
‘Worker (Data} Node Job Node JoudWatch
' "
—> o= =
wa, ‘\./ MAS Task Node
- ter (Name) Node
Internet gateway
i 83
—
- Client Node
DEVOPS <

AWS Hadoop Architecture

Figure 6: Multi-Node Hadoop Architecture

12

4.2 Design Multi-node Hadoop Cluster Using AWX

This section covers the architectural design of a Hadoop cluster in the AWS cloud. Ha-
doop is a scalable distributed computing software used to process a very large volume of
data. Hadoop cluster deployment is very complex to implement. Developed the end-to-
end YAML code and create the project, template, and deployment using job template
in AWX for automated provisioning. Figure [6] shows the deployed Hadoop master and
worker nodes using EC2 instance in AWS. Amazon cloud components used are Amazon
Virtual Private Cloud (VPC), Elastic Compute Service (EC2). Hadoop components and
the connectivity between each component are shown in the figure and the details of in-
dividual Hadoop cluster components are as follows. Masternode (Control and manage
the Hadoop distributed file-system storage and the other nodes in the cluster). Worker
node(Perform data processing as well as create, delete data blocks as per master-node
instructions). Task and Job Node(Perform parallel processing for computational power);
Client node (Submit Mapreduce jobs, Perform data loading to the Hadoop cluster and
fetch results).

I develop the playbooks using required Ansible modules to configure a new amazon
VPC, network subnet, network gateway, security group, and create compute instances
and map with the network, the Hadoop cluster variables can be either declared hardcoded
or by specifying using a separate YAML file. The playbook is designed in such a way
that the entire cluster will be deployed on execution. Hadoop deployment consists of four
playbooks, for deploying EC2, master, slave, and client node, all the four playbooks are
configured to execute in sequential order using the master file (hadoopclusterdeploy.yml),
all dependency packages and the parameters are defined in the variable file will be installed
at the time of implementation.

Figure 7: Ansible playbook structure and EC2 deploy Playbook

13

4.3 Design Kubernetes Cluster using AWX

Kubernetes is a powerful container-orchestration system used for efficient use of comput-
ing resources, applications can be containerized and deployed as pods in slave nodes and
can scale resources when required in automated configuration settings. Deployment of
fully functional Kubernetes clusters needs more work hours to implement, I developed
the playbooks by defining the requirements and dependencies in YAML codes. The ar-
chitectural diagram of the Kubernetes cluster is shown in Figure [§ Let us discuss the
use of individual components below.

1 N
7l] ™
s
——
docker
| P
. A
ah Internet patgway P2 -
DEVOPS 51
2
E
Ry

(" Slave Node

" Slave Node

Kubernetes Cluster Architecture

Figure 8: Kubernetes Cluster Architecture

e MasterNode - controls and manages the worker nodes

e Slave node - worker node where pods are running

e Kube Control Manager - Controlling cluster and its functions.
e Kube Scheduler - assign pods to the node

e Kube Proxy - maintain the network on nodes

e Kubelet - node agent communicate with control plane

e Pod - execution unit

Kubernetes cluster deployment consists of three playbooks, (1) deploying the Virtual
private cloud, Security group, EC2 instance, (2) deploying the Kubernetes and docker
packages, creating Kubernetes cluster, and generating authentication token for the slave
nodes to join the cluster (3) install Kubernetes packages on slave nodes and add the nodes
to the cluster.

14

5 Implementation

This section discusses the implementation of cloud resources and clusters, as designed in
the previous section. create a user account in AWS and GCP with privileges to deploy
cloud resources. Create host machine in Oracle VirtualBox with 2 Cores, 4G Memory
and install centos 8.4 Operating system, configure python, pip, boto, Ansible, Docker,
and AWX (17.1.0) packages on it. Configure the below steps on the AWX console:

1. Create the organization and inventory. Configure credentials for AWS, GCP, and
local machines. Create a project folder for each cluster setup and map the related
playbook.

2. Create individual Job templates and map the required credential and project for
each deployment.

3. Configure the dynamic inventories for automatic discovery of cloud servers.

5.1 Provision Cloud Servers in AWS and GCP using AWX

Execute the EC2 deployment job from AWX console to implement compute instances as
shown in Figure [J] to execute.

o -
Views Templates > Ec2deploy
Details
Dashboard
Jobs
Schedues «BacktoTemplates Details Access Notif che Surv
Activity St
ity Stream Name. Ec2deploy JobType run Organization Enterprise]
Workflow Approvals
Inventory AWS_inv Project Ec2Jobs Playbook ec2deployyml
Resources Forks o Verbosity O (Normal) Timeout o
Templates Show Changes Off Job Slicing 1 Created 12/6/2021, 8:46:47 PM by admin
Credentials Last Modified 12/10/2021,1:22:43 AM by admin
ez Credentials Cloud:ansible
Inventories
Hosts
Access
Organizations

Teams

Figure 9: AWS Ec2 Deploy Job

Similarly, execute the GCP compute job to deploy the webserver from the AWX
console. Job execution is similar to ec2 deployment. Verify the job completion status.
Figure 10| shows the server status on GCP console.

= Google Cloud Platform 3 MyMsc2021 Q Search products and resources v
{5 Compute Engine VM instances EICREATEINSTANCE ~ &IMPORTVM CIREFRESH D START/RESUME i @OPERATIONS~ [E) HELP ASSISTANT
Virtual machines -~
INSTANGES INSTANGE SOHEDULE
A VM instances

urable virtual machines for running workloads on Google
infrastructure. Learn

[instance templates

T Fiter Enter property name or value
B soletenantnodes er !

O staws Name & Zone Recommendations Inuseby Intemal P Extemal IP Connect
B Machinemages

O e webserver us-centrall-a 10.128.0.5 (nic0) 35.232.160.42 SSH ~

Figure 10: GCP instance deployed

15

5.2 Deployment of Multi-Node Hadoop Cluster using AWX

Let’s provision the three-node Hadoop cluster using the playbook created on the design
and deploy section, the playbooks configured to install three nodes in AWS, Once the
servers are deployed, playbook update the hostnames as master, slave, upon completion
of first, the second playbook will automatically trigger, it downloads and install Hadoop
and java packages on these nodes and configure the Hadoop application by updating the
configuration file defined in the playbook. Validate the final setup either by login into the
AWS console or ssh into the cluster. The Job execution is shown below in the Figure

™ hadoop_deploy Plays 4
+

1 PLAY [10CalRost] **e#ksssiintsbashnhasb b haht ik s hbbhhht ek inhakih EARERERRRIEAEE 00:49:13
2
3 TASK [Gathering Facts] *Fissstsskmisssssshsst ik sbhhihbt ki kinhatih EARERERRRIEIEE 00149113
4 ok: [localhost]
5
6 TASK [Running EC2 Role] *E¥kRsssssxsxsxsx ¥ ¥k kxExExbxsd Axkxskxx kX ax EREREX¥E¥4% 00:49:19
7
8 TASK [ec2? : Install boto & boto3 on local system] *#*¥Esisfxskxiiiesfssixi=reda® §0:49:20
9 ok: [localhost] => (item=boto)

180 ok: [localhost] => (item=boto3)

1

12 TASK [ec2 : Create Security Group for Hadoop Cluster] #®#sdssimiiidackimiskeiidss g@:49:31
13 [WARNING]: Group description does not match existing group. Descriptions cannot

14 be changed without deleting and re-creating the security group. Try using

15 state=absent to delete, then rerunning this task.

16 ok: [localhost]

7

18 TASK [ec2 : Deploy four EC2 instances on AWS] **skdidisdsissimiiiiaiininiaiidsas 9p:49:38
19 changed: [localhost] =» (item=hadoop_master)

280 changed: [localhost] =» (item=hadoop_s
21 changed: [localhost] => (item=hadoop s
22 changed: [localhost] =» (item=hadoop_client)

e1)
/82)

23

24 TASK [ec2 : Add 1st instance to host group namenode] ***ix®eiconiciormcioniconint ggi52:37
25 changed: [localhost]

26

27 TASK [ec2 : Add 2nd instance to host group datanode] ***¥**x=ix 00:52:37
28 changed: [localhost]

29

38 TASK [ec2 : Add 3rd instance to host group datanode] **#kscksskskiieikmiiiiiiiiss 9p:52:38
31 changed: [localhost]

32

33 TASK [ec2 : Add 4th instance to host group clientnode] *¥*¥*®#mxrsisaiaxixiei®as p@:52:39

Figure 11: Ansible Playbook Execution Output

Figure [12] shows the provisioned resources in AWS console. Each server hostname is
automatically set as configured in the playbook, each server is assigned with a public IP
address, servers can be accessed externally using this IP.

stances) e v | [scso | INCERTERSGE
Q 1]
Instancestate=running [X | [Clearfilters
Name v instance ID e v Instanc.. v Status check Aarmstatus Availab.. ¥ Public IPv4 DNS v PubliclPva.. v Elastic
Tags hadoop_slavez -Ofaac7b87b95Bedf6 g @Q tzmico ©2/2checks passed Noalarms + us-east-1a ec2-3-80-29-128.compute-1.amazonaws.com 38029128
Limits hadoop_slavel -00495cf9341d2d69% @@ miro @2/2checks passec Noalarms + us-east-la c2-54-236-210-185 compute-1.amazonaws.com 54236210185
hadoop_client i-08ecf8a221adb2594 @@ t2miro @2/2checks passed Noalarms + us-east-1a ec2-34-226-192-193.compute-1.amazonaws.com 34226192193
hadoop_master 1-020bch3de6 113608 @@ wmiro @2/2checkspassed Noalarms + us-east-la c2-34-228-27-174.compute-1 amazonaws.com 3422827174
< >

Figure 12: Hadoop Cluster deployed in AWS

16

5.3 Implementation of Kubernetes Cluster Orchestration using
AWX

Deployment steps are similar for any system provisioning in AWX, A significant role is
played by the Ansible playbook, as the complete set of instructions required for a specific
cluster setup is defined in the form of codes, once the job template is triggered in AWX,
the step-by-step execution of the instruction begins. Kubernetes cluster deployment job
deploys four AWS ec2 instances and installs the docker and kubeadm packages on all the
nodes. Upon completion of the playbook install and configure the Kubernetes cluster
and install Flannel network service in the master node and create a security token for
the slaves to connect to the master node. Similarly, the slave nodes are installed with
the packages and access token and join to master to form a complete cluster. The entire
setup is deployed directly from AWX, Cluster can be managed and controlled. Figure
shows the last lines of the execution log, It shows the total number of changes made on
each server. Where the changes denote the individual tasks that were configured in the
playbook to execute during deployment.

B S S s s 23:86:24
) unreachable=6 failed=6 skipped=6 rescued=8 ignored=8

ok=9
ok=11 unreachable=8 failed=6 skipped=6 rescued=8 ignorad=8
ok=2 unreachable=0 failed=0 skipped=0 rescued=8 ignored=0

unreachable=0 failed=8 skipped=0 rescued=8 ignored=8

Figure 13: Kubernetes Playbook Execution Output

Figure [14] demonstrates that the control-plane is installed on the master node and
all of the needed namespace services are running in the cluster. As a result, the Ans-
ible playbook and AWX were used to set up a sophisticated Kubernetes cluster. AWX
provides dynamic inventory functionality to automatically fetch the newly installed server
information to its database.

Figure 14: Kubernetes cluster validation

Additional playbooks are created for routine system administration tasks. These
playbooks can be used to perform day-to-day operational tasks and can be configured as
scheduled jobs to run on defined time. Jobs such as package install, security patching,
server reboot, and cloud server removal are configured and placed under the operations
project folder.

17

6 Evaluation

The experimental study of the proposed model and the key findings of the research work
are presented in this evaluation section. The goal of this research project is to illustrate
the overall IT infrastructure orchestration and management can be done using a single
tool. The experiment involves the on-premise, public cloud, and private cloud infrastruc-
tures. I have taken standalone virtual machines for on-premise infrastructure and AWS,
GCP cloud infrastructures for the research. Amazon Linux2 Operating system used for
both Hadoop and Kubernetes cluster environments. Redhat Linux 8 operating system is
used for AWS standalone web server setup and Centos7 is used for GCP webserver setup.

|Webserver Deploy: Manual vs AWX Executlon

w35

]

230

R

£

c 20

o

= 15

5

a 10
’ I
0

Server Server Application Total Duration
Provisioning Configuration jep\u',rrnem

W Manual AWYX - Automated

Figure 15: Time comparison of webserver deployment

6.1 Compare time taken to implement resources in GCP and
AWS using manual and AWX

As denoted in the implementation phase the webservers and clusters are deployed in
AWS and the GCP cloud environments using the playbooks created, from the AWX
console. An investigation was conducted based on time duration taken for manual and
automated AWX deployment, by taking into account all required dependency creations
(VPC creation, security group, gateway) as a part server deployment procedure. Duration
of each task plotted based on completion of each task in order, server provisioning task
involves the creation of network and install of an operating system. Server configuration
tasks involve up-gradation of operating system and installation of services, Application
deployment tasks involve package installation, the configuration of specific settings to
make the application work as expected.

Figure (15| depicts the experiment’s findings, it shows the server provision task is 650
percent faster than the manual method, and the overall deployment of web server setup
using AWX method is 300 percent faster than the manual deployment method in case of
single server implementation with a simple application deployment without any complex
configuration.

Figure shows the time duration comparison of Hadoop and Kubernetes cluster
deployment using manual and the automation method.Only difference in overall time
duration is that the Hadoop cluster involves 4 servers, but the Kubernetes cluster consists
of only 3 nodes. Execution time is plotted in the chart. Results show that the overall
Hadoop cluster implementation using the AWX method is 600 percent faster than the

18

Hadoop Cluster Deploy : Manual vs AW)(‘ Kubernetes Cluster Deploy : Manual vs AWX

Duration in Minutes
&

Duration in Minutes
w
2

10

s B_ wm_ H_ H_ N 2
-o&(& 0‘30(\ \‘0&" Q"b ¢ ‘@EP ‘?@S 10
f

o‘}‘, o 4‘.} 5 '\"& ‘,s,\é .
R i <& < & & 0
H‘(‘z’ ee‘ z(b\ Server Server Master Node Salve Nodes Owverall cluster
o a* Provisioning Configuration setup
u Manual AWX - Automated m Manual AWX - Automated

Figure 16: Time comparison of cluster deployment

manual method and the Kubernetes cluster implementation is 587 percent faster than
manual deployment. Hence it’s evident that using infrastructure as a coding methodology
reduces the overall deployment time in any deployment. It is required to be noted that the
deployment time reduces significantly if the installation involves complex configuration
and more servers using the TAC tools.

‘Manual vs AWX Automatian‘

Duration in Minute
cw R BRE
|
|
.
||
%,
|
>

*) & & &
& & 3 & &
F & & & & 4&“0 (ﬁé&
3) N & & A o
& o & £ & 3 i+
¢ \& 3 & & & &
(.Fs: & 2 o .-,"’ otj‘
Ny ¥ * &F ¥
< 8¢ &
e e

m Manual AWX - Automated

Figure 17: Time comparison of system administration tasks

6.2 Compare time taken to perform system administration tasks
using manual and AWX

In this section, I evaluated the time taken to perform different system administration tasks
using both methods. I have created a few playbooks for individual package installation,
package removal, OS patching, and server status check. These basic tasks are carried out
by the system administrator to keep the environment stable. These tasks are executed
against in-house servers and the cloud servers and then taken to complete these tasks as
captured and plotted in the Figure The time duration is captured based on the single
server execution of each task. It shows the patch upgrade task is 200 percent faster as
compared to the manual method, other tasks look 150 - 250 percent faster compared to
manual execution, it should be noted that execution of these tasks in multiple servers

19

take the same duration by using the AWX since AWX offers the parallel execution of
tasks, which greatly reduce overall execution time.

Figure |18 shows the license cost comparison of Enterprise version of GUI based TAC
solution offer by different vendors over Open-source AWX. Approximate cost of license
is 100 dollars per node for a year.

| Price Comparision of GUI-Based IAC Tools |

(=]
=]
=
"z 10000 Free
£ so000 I I I
0

Ansible Tower Enterprise Chef Puppet Enterprise AWX (Opensource)
Enterprise
w100 nodes m 200 nodes 300 nodes

Figure 18: Price comparison of Enterprise version of IAC Tools

6.3 Discussion

This research evaluates the ability and interoperability of the AWX TAC tool in multi-
cloud environments and provides centralized administrative control. Simple web servers
and complex cluster environments are deployed to demonstrate the functionality of the
tool. The experiments demonstrate the use of the IAC tool to reduce overall imple-
mentation time. The above experiment could be enhanced by involving several complex
deployment tasks and advanced cloud components. Also, implementation of workflow
template by combining several jobs template could be developed to orchestrate robust
activity. This study analyzed the benefits of GUI-based Open source tools and their
use-cases in overall system administration and orchestration.

7 Conclusion and Future Work

Automation plays a major role in recent infrastructure provisioning and administration,
manual deployment methods are more complex. To some extend, CLI-based TAC solves
the problem, however, deploying GUI-based automation to handle centralized deploy-
ment and management is mandated. This paper presents a centralized architecture using
the AWX by integrating in-house, multi-cloud infrastructures. Results show deployment
tasks take 60 to 70 percent less time compared to manual techniques. The proposed solu-
tion helps overcome delays in manual processing and control challenges. AWX provides
centralized control for job execution, role-based access control, and workflow automa-
tion. On the other side, AWX Tool is a community-driven open source project, even
though Ansible has strong community support, more expertise is needed to troubleshoot
if an issue arises, also the development of the Ansible playbooks needs significant time
and knowledge. In future work, I intend to explore the possibilities of the Ansible with
AWX in the field of server-less computing, micro-services-based solutions, Fog, and Edge
computing.

20

References

Ardagna, D. (2015). Cloud and multi-cloud computing: Current challenges and future
applications, pp. 1-2.

Ardagna, D., Nitto, E. D., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria, F., Ca-
sale, G., Matthews, P., Nechifor, C. S., Petcu, D., Gericke, A. and Sheridan, C. (2012).
Modaclouds: A model-driven approach for the design and execution of applications on

multiple clouds, 2012 4th International Workshop on Modeling in Software Engineer-
ing, MiSE 2012 - Proceedings pp. 50-56.

Artac, M., Borovssak, T., Nitto, E. D., Guerriero, M. and Tamburri, D. A. (2017). De-
vops: Introducing infrastructure-as-code, Proceedings - 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Companion, ICSE-C 2017 pp. 497-498.

Barhate, S. M. and Dhore, M. P. (2018). Hybrid cloud: A solution to cloud interoper-
ability, Proceedings of the International Conference on Inventive Communication and
Computational Technologies, ICICCT 2018 pp. 1242-1247.

Bousselmi, K., Brahmi, Z. and Gammoudi, M. M. (2014). Cloud services orchestration: A
comparative study of existing approaches, Proceedings - 2014 IEEE 28th International

Conference on Advanced Information Networking and Applications Workshops, IEEE
WAINA 2014 pp. 410-416.

Ghanam, Y., Ferreira, J. and Maurer, F. (2019). Emerging issues amp; challenges in
cloud computing—a hybrid approach, Journal of Software Engineering and Applica-
tions 05: 923-937.

Guerriero, M., Garriga, M., Tamburri, D. A. and Palomba, F. (2019). Adoption, support,
and challenges of infrastructure-as-code: Insights from industry, Proceedings - 2019
IEEFE International Conference on Software Maintenance and Fvolution, ICSME 2019
pp. 580-589.

Hassan, W., Chou, T.-S., Pagliari, L., Pickard, J. and Tamer, O. (2019). Is public cloud
computing adoption strategically the way to go for all the enterprises?, pp. 310-320.

Juopperi, M. (2017). Deployment automation with chatops and ansible.
Kaush, S. and Gupta, S. (2017). Implementation of open stack through ansible.

Khandelwal, A. and Kumar, A. (2020). (pdf) impact of open source software in research,
Scientific Papers .

Kokuryo, S., Kondo, M. and Mizuno, O. (2020). An empirical study of utilization of
imperative modules in ansible, Proceedings - 2020 IEEE 20th International Conference
on Software Quality, Reliability, and Security, QRS 2020 pp. 442-449.

Kritikos, K., Zeginis, C., Iranzo, J., Gonzalez, R. S., Seybold, D., Griesinger, F. and
Domaschka, J. (2019). Multi-cloud provisioning of business processes, Journal of Cloud
Computing 8.

21

Lavriv, O., Klymash, M., Grynkevych, G., Tkachenko, O. and Vasylenko, V. (2018).
Method of cloud system disaster recovery based on” infrastructure as a code” concept,
pp. 1139-1142.

Masek, P., Stusek, M., Krejci, J., Zeman, K., Pokorny, J. and Kudlacek, M. (2018). Un-
leashing full potential of ansible framework: University labs administration, Conference
of Open Innovation Association, FRUCT 2018-May: 144-150.

Palma, S. D., Nucci, D. D. and Tamburri, D. A. (2020). Ansiblemetrics: A python library
for measuring infrastructure-as-code blueprints in ansible, SoftwareX 12: 100633.

Pieplu, R. (2018). Ground control segment automated deployment and configuration
with ansible and git, p. 2337.

Ranjan, R., Benatallah, B., Dustdar, S. and Papazoglou, M. P. (2015). Cloud resource or-
chestration programming: Overview, issues, and directions, IEEE Internet Computing
19: 46-56.

Reshad, A. and Sinha, S. (2020). Open source software solution for small and medium
enterprises, International Journal of Computer Sciences and Engineering .

Sandobalin, J., Insfran, E. and Abrahao, S. (2020). On the effectiveness of tools to support
infrastructure as code: Model-driven versus code-centric, IEFE Access 8: 17734-17761.

Shvetcova, V., Borisenko, O. and Polischuk, M. (2020). Using ansible as part of to-
sca orchestrator, Proceedings - 2020 Ivannikov Ispras Open Conference, ISPRAS 2020
pp- 109-114.

Singh, N. K., Thakur, S., Chaurasiya, H. and Nagdev, H. (2016). Automated provisioning
of application in iaas cloud using ansible configuration management, Proceedings on

2015 1st International Conference on Next Generation Computing Technologies, NGC'T
2015 pp. 81-85.

Sun, A., Ji, T., Yue, Q. and Xiong, F. (2016). laas public cloud computing platform
scheduling model and optimization analysis, International Journal of Communications,
Network and System Sciences 4(12): 803.

Tamburri, D. A., den Heuvel, W. J. V., Lauwers, C., Lipton, P., Palma, D. and Rutkowski,
M. (2019). Tosca-based intent modelling: goal-modelling for infrastructure-as-code,
Software-Intensive Cyber-Physical Systems 34: 163-172.

Tomarchio, O., Calcaterra, D. and Di Modica, G. (2020). Cloud resource orchestration
in the multi-cloud landscape: a systematic review of existing frameworks, Journal of
Cloud Computing 9(1): 1-24.

22

	Introduction
	Research Question
	Research Objectives
	Contribution
	Document Structure

	Related Work
	Challenges in Manual Cloud Provisioning and Control
	On-premise and Cloud Frameworks
	Orchestration and Provision of Cloud Infrastructures
	DevOps and Infrastructure as a Code Tools
	Orchestration and provisioning using Ansible
	Impact of Open-source Software's IT Industry and AWX

	Proposed Methodology
	Design Specification
	Design on-premise and cloud servers using AWX
	Design Multi-node Hadoop Cluster Using AWX
	Design Kubernetes Cluster using AWX

	Implementation
	Provision Cloud Servers in AWS and GCP using AWX
	Deployment of Multi-Node Hadoop Cluster using AWX
	Implementation of Kubernetes Cluster Orchestration using AWX

	Evaluation
	Compare time taken to implement resources in GCP and AWS using manual and AWX
	Compare time taken to perform system administration tasks using manual and AWX
	Discussion

	Conclusion and Future Work

