

Configuration Manual

MSc Research Project Cloud Computing

Abhishek Shitole Student ID: x19206925

School of Computing National College of Ireland

Supervisor:

Rashid Mijumbi

National College of Ireland

MSc Project Submission Sheet

School of Computing

Student Name:	Abhishek Shitole			
Student ID:	x19206925			
Programme:	Cloud Computing	Year:	2022	
Module:	MSc Research Project			
Supervisor:	Rashid Mijumbi			
Submission Due Date:	31/01/2022			
Project Title:	Configuration Manual			
Word Count:	495	Page Count:	6	

I hereby certify that the information contained in this (my submission) is information pertaining to research I conducted for this project. All information other than my own contribution will be fully referenced and listed in the relevant bibliography section at the rear of the project.

ALL internet material must be referenced in the bibliography section. Students are required to use the Referencing Standard specified in the report template. To use other author's written or electronic work is illegal (plagiarism) and may result in disciplinary action.

Signature:	Abhishek Shitole
Date:	30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST

Attach a completed copy of this sheet to each project (including multiple copies)	
Attach a Moodle submission receipt of the online project submission, to each project (including multiple copies).	
You must ensure that you retain a HARD COPY of the project, both for your own reference and in case a project is lost or mislaid. It is not sufficient to keep a copy on computer.	

Assignments that are submitted to the Programme Coordinator Office must be placed into the assignment box located outside the office.

Office Use Only

Office Use Offy	
Signature:	
Date:	
Penalty Applied (if applicable):	

Configuration Manual

Abhishek Shitole x19206925

1 Introduction

This configuration manual provides in detail, stepwise installation, configuration and deployment of all the software's, tools and files required for implementation of the proposed system.

2 Prerequisites

Kubernetes Cluster on GKE			
Machine type	e2-standard-4		
No of Nodes	3		
Operating System	Debian Version 10		
Total vCPU	12		
Total Memory	48 GB		
Cost	\$0.134012/hr per node		

Below stated are hardware software and requirements for implementing this project.

Software	Description		
Service Mesh	Istio 1.12.1		
Monitoring	Prometheus		
Data Visualization	Grafana		
Kiali	Requires Istio installed		
Locust	Requires Cluster with 3 node		

3 Implementation

3.1 Deploying Kubernetes Cluster on Google Kubernetes Engine (GKE)

1. We first set environment variables for zones and cluster-name by using following command on cloud shell.

abhishekshitole2710@cloudshell:~ <mark>(ultimate-opus-333416)</mark>\$ export CLUIST_LOCATION=us-central1-c abhishekshitole2710@cloudshell:~ <mark>(ultimate-opus-333416)</mark>\$ export IST_PROJ=\$(gcloud config get-value project) Your active configuration is: [cloudshell-1020]

Figure 1: Defining cluster location & zone

2. Run the below command to create a cluster named bookstore with 3 nodes and e2standard machine type.

gcloud container clusters create bookstoreistio --project=\${CC_PROJ} -zone=\${CLU_LOCATION} --machine-type=e2-standard-4 --num-nodes=2

3.1 Installation & Configuration of Service Mesh Istio

1. Create a installer.sh by typing vi installer.sh and paste the below codes in it.

Figure 2: Installing Istio & Enabling proxy injection

2. Execute the script by typing **bash installer.sh**

3.2 Deploying Micro-services application

1. Clone the micro-services application from github by using following command

git clone https://github.com/Abhishek-NCI/Mthesis.git

2. Create appinstaller.sh by typing vi appinstaller.sh and paste the below codes in it.

Figure 3: Deploying bookinfo & applying gateway config

3. Execute the script by typing **bash appinstaller.sh** in cloud shell.

4. To check for validation issues in namespace following command is used

3.3 Configuring Istio Ingress gateway & Exposing External traffic

1. Create a exttraffic.sh by typing vi exttraffic.sh and paste the below codes in it.

Figure 5: Configuration of istioingress gateway

- 2. Execute the script by typing **bash exttraffic.sh** in cloud shell.
- 3. Copy the output of this file and paste it onto the browser to see web application running.

← → C 🙆 (○ 🗞 34.133.55.206/productpage	습 🛛 😾 🗏
💩 Getting Started 🕀 Gmail 💶 YouTube 🕀 Ansible Tower 💮 1. Preparing for the To 🕀 Netscaler Gateway	🕀 Cloud Computing for 💮 Swayam 💮 Student Login EduNxt 💮 How to Build a Wirele 📎
Bookinfo Sample	Sign in
The Comedy Summary: Wikipedia Summary: The Comedy of Errors is one of William Shakespeare's early plays. It is slapstick and mistaken identity, in addition to puns and word play.	OF Errors s his shortest and one of his most farcical comedies, with a major part of the humour coming from
Book Details	Book Reviews
Type: papetback Pages: 200 Publisher: PublisherA Language: English ISBN-10: 1234567890 ISBN-13: ISBN-13:	An extremely entertaining play by Shakespeare. The slapstick humour is refreshing! — Reviewer1 Absolutely fun and entertaining. The play lacks thematic depth when compared to other plays by Shakespeare. — Reviewer2

Figure 6: Accessing web application BookInfo

3.4 Installation of Monitoring & Visualisation Tools

1. Use below command to Install Kiali, Prometheus and Grafana as addon.

abhishekshitole2710@cloudshell:~ (ultimate-opus-333416)\$ kubectl apply -f istio-1.12.1/samples/addons

Figure 7: Installing Addon's

2. Rollout deployments of Kiali, Prometheus and Grafana by using below commands.

Figure 8: Rolling out Kiali, Prometheus & Grafana

3. Kiali, Prometheus & Grafana can be accessed using below commands

abhishekshitole2710@cloudshell:~ (ultimate-opus-333416)\$ istioctl dashboard kiali
abhishekshitole2710@cloudshell:~ (ultimate-opus-333416)\$ istioctl dashboard prometheus
abhishekshitole2710@cloudshell:~ (ultimate-opus-333416)\$ istioctl dashboard grafana
Figure 9: Accessing Kiali, Prometheus & Grafana dashboard

3.5 Generating Load on Application

- 1. For Generation of load over application we first need to setup load testing tool locus on the Kubernetes cluster. [Refer to Cloud, G., 2021] for configuration and setting up load generator tool Locust.
- 2. After Locust has been setup, we now simulate the load over application for that we need to enter the overall users to simulate and users to produce per second.

4 Observations

For observing the dynamic load balancing in microservices we open kiali dashboard. Detailed observation on incoming requests and resource consumption can been observed on Grafana dashboard.

4.1 Observation on Kiali

4.2 Observation on Grafana

1. Mesh Dashboard

Ø	器 istio / Istio Mesh Dashboard <i> </i>				۲	 Last 5 minutes ~ 	Q 🗘 5s × 📮
~	Istio is an open platform that provides a uniform way to secure, connect, and monitor microservices. Need help? Join the Istio community.						
Q	Global Request Volume	Global Success Rate (non-5xx responses)		4xxs		5xxs	
+ 88	262 ops/s	100.0%	0 ops/s			0.0689 ops/s	
	Virtual Services	vices Destination Rules Gateways			Workload Entries		
ф æ	1	N/A		1		N/A	
1997 1997	Service Entries	PeerAuthentication Policies	RequestAuthentication Policies		es	Authorization Policies	
	N/A	N/A	N/A			N/A	
	HTTP/GRPC Workloads						
							Success Rate
	reviews.default.svc.cluster.local	reviews-v1.default	24.56 ops/s	3.30 ms	6.29 ms	9.96 ms	100.00%
	reviews.default.svc.cluster.local	reviews-v3.default	24.58 ops/s	7.94 ms	15.11 ms	24.01 ms	100.00%
	reviews.default.svc.cluster.local	reviews-v2.default	24.58 ops/s	8.52 ms	20.20 ms	25.09 ms	100.00%
	ratings.default.svc.cluster.local	ratings-v1.default	49.73 ops/s	3.14 ms	4.85 ms	9.44 ms	100.00%
€	productpage.default.svc.cluster.local	productpage-v1.default	73.42 ops/s		9.46 s	9.95 s	100.00%
?	details.default.svc.cluster.local	details-v1.default	74.00 ops/s	4.74 ms	40.26 ms	49.94 ms	100.00%

2. Workload Dashboard

3. Performance Dashboard

References

Cloud, G., 2021. Distributed load testing using Google Kubernetes Engine | Cloud Architecture Center | Google Cloud. [online] Google Cloud. Available at: https://cloud.google.com/architecture/distributed-load-testing-using-gke

Istio. 2021. Getting Started. [online] Available at: https://istio.io/latest/docs/setup/getting-started/ [Accessed 16 December 2021].