
Dynamic Load Balancing of Microservices in
Kubernetes Clusters using Service Mesh

Research Project

MSc Cloud Computing

Abhishek Sanjay Shitole
Student ID: x19206925

School of Computing

National College of Ireland

Supervisor: Rashid Mijumbi

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Abhishek Sanjay Shitole

Student ID: x19206925

Programme: MSc Cloud Computing

Year: 2022

Module: Research Project

Supervisor: Rashid Mijumbi

Submission Due Date: 31/01/2022

Project Title: Dynamic Load Balancing of Microservices in Kubernetes
Clusters using Service Mesh

Word Count: 4935

Page Count: 18

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Abhishek Shitole

Date: 30th January 2022

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). �
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

�

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

�

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Dynamic Load Balancing of Microservices in
Kubernetes Clusters using Service Mesh

Abhishek Sanjay Shitole
x19206925

Abstract

As web application hosting continues to grow over the cloud, the industry has
now moved towards embracing the development of cloud-native micro-services-
based applications. Such type of applications is generally deployed on Kubernetes
as it offers greater benefits like reduced overhead, easy management, and faster de-
velopment as several teams can develop and deploy individual services together. In
the case of micro-service-based applications, the overall performance of the applic-
ation is dependent on the performance of individual services. But as the workload
on the application continues to increase the default Kubernetes load balancing
strategy fails to manage the fluctuating traffic because of its static nature and per-
forms poorly. Also, as many applications may reside onto the very same pod of
the cluster, security becomes a big concern. To overcome these challenges, this pa-
per proposes a technique that uses service-mesh Istio to inject sidecar proxies onto
every micro-service and dynamically balances the load among services by applying
service-specific routing through the Istio control plane. Inter-service communica-
tion is secured by encrypting the traffic among services by means of enforcing mTLS
across all services. The experimental results have proved that the proposed design
outperforms the traditional approach by maintaining stability and consistency in
response rate and consumes fewer resources.

1

1 Introduction

Cloud computing is being immensely used in web-application hosting domain to provide
On-demand computational resources. It offers essential characteristics such as sharing of
resources, auto-scaling, higher security, simplistic use, lower costs, better performance,
and fits practically all requests required in hosting a web-application. Currently there
is a growing acceptance around core principles and informally web-application designing
conventions which have been embraced and deployed in various successful cloud web-
applications. Such applications developed on cloud are coined as Cloud-native applica-
tions. These cloud-native applications are mainly built upon micro-services architecture,
as micro-services comprise of several separate applications which are independent from
each other, they are light-weight and can be easily deployed and updated together or
individually with minimal impact on users Gannon et al. (2017).
The use of container-based framework in application development has received a lot of
attention recently because of its light-weight nature, platform independency, improved
application performance and efficient resource sharing. Microservices are bundled within
a container for easy management, reduced overhead and application development be-
comes faster as smaller teams can work independently on distinct portions of the same
application, to produce high quality results and avoid code conflicts. An easier and effi-
cient way of managing micro-services-based applications is thru a container- orchestration
platform Kubernetes. The pod in Kubernetes consists of one or more docker containers
which helps to schedule and manage shared-resources of containers encapsulated in a
particular pod. Every container in a pod operates on the very same VM and uses similar
IP and port number and thus they can discover each other by traditional methods as
localhost Zhang et al. (2019). The storage space is also shared which is available locally
to the pod.
Load Balancing is of utmost importance for a web application which is cloud-native,
developed using micro-services, and hosted upon containers. The incoming workloads
to such applications vary unpredictably because they provide a range of services, and
each service consists of activities that may consume CPU, occupy storage, or use network
resources, and it is extremely difficult to predict which service will be operating at any
one time. The unpredictability of workloads poses a significant challenge for load balan-
cing. In an ideal case, the load balancer identifies underused and oversubscribed nodes
and then regulates the traffic so that workloads are shifted from an overloaded node to
an under burdened server without affecting the present application’s continuing duties.
This strategy maintains the burden whenever it hits a critical threshold. Workloads are
effectively distributed across nodes using this strategy, enhancing throughput while min-
imizing wait and response time McDaniel et al. (2015). However, in a microservices
environment, one service may be dependent on one or more other services to perform its
intended functions. As a result, the overall performance of an app is dependent on the
performance of all separate services.
Containerized platforms such as Kubernetes fail to address issues such as dynamic work-
load distribution and assure optimal performance in cases of service dependency as Kuber-
netes has a simple round robin strategy that requires to be updated every time in accord-
ance with the operating situations of the application. Kubernetes uses iptables and to
store load balancing rules. Adding far too many rules in iptables increases the searching
speed and requests allocation time. Also, as two or more applications reside on the same
pod, malicious access to the pod may leads to compromising of these applications.

2

1.1 Motivation

Introducing dynamic load distribution algorithms in the ingress controller of Kubernetes
to reduce the potential overheads and improve the RPS for the micro-services application
are showing great results Zhang et al. (2018). Strategies to label the incoming requests
A Dua et al. (2020) and Use of custom container-based load balancer Takahashi et al.
(2018) on Kubernetes have proven to be effective by improving the application’s portab-
ility without sacrificing the performance.
However, whenever the bulk traffic develops on the application, the requests among these
micro-services expand tremendously which requires specialized routing policies to be ap-
plied for optimizing the flow of data among the services while encrypting the requests
among micro-services Abidi et al. (2019). The proposed approach uses Service mesh Istio
which provides dynamic load-balancing among services by applying service-specific rout-
ing policies. Service-to-service communication is secure by using mTLS which encrypts
the requests among services.

1.2 Research Question

How can varying requests on an web-application using micro-services architecture and
hosted on Kubernetes clusters be managed effectively using real-time load balancing
techniques ?

1.3 Structure Of The Paper

This research paper is further divided into 6 sections. Section 2 presents the literature
review in the sector of dynamic loading balancing in containers and micro-services. Sec-
tion 3 talks about the research methodology and outline of proposed system. Section
4 explains the design specifications and architecture of the system.Section 5 discusses
stepwise implementation of proposed approach.Section 6 and 7 presents the experimental
results and conclusion accordingly..

2 Related Work

At the present, there is a lot of research-work & studies being carried out on Kubernetes &
Micro-services.Undoubtedly developing micro-services based applications and deploying
it on cloud provides great performance benefits across the board.This approach might be
adopted across all entire IT industry.This section illustrates various studies

2.1 Dynamic Load balancing techniques introduced in Kuber-
netes

The default load distribution strategies used by Kubernetes is not suitable for hand-
ling dynamically inbound bulk requests because of slow/improper workload distribution
among nodes. So, a dynamic load balancing algorithm in ingress controller of Kubernetes
was introduced by Zhang et al. (2018) which assesses cpu, storage and network band-
width of nodes and priority, resource weight of incoming requests before allocating them.
The proposed algorithm also learns about service dependency among micro-services prior

3

distribution. Similar approach was followed by Qingyang Liu et al. (2020) to use a cus-
tom load balancer which assigns requests based on every node’s current operating state
and weights of incoming requests. The above provided approaches help in reducing the
potential overheads and improve the RPS.

Due to the inherent design of Kubernetes, the master node carries a huge burden as it
is solely responsible for updating the data and replicating it to the worker nodes. The
default master selection mechanism cannot equivalently distribute the master among
nodes. As a result, user requests are concentrated on a single node, causing system
congestion. Nguyen and Kim (2020) proposed a leader-based consistency management
strategy for state-full applications which requires provisioning of main leader container
for handling user requests and dividing work among slaves. The other container to choose
leader amongst the available replicas. The main container realizes its status (master or
slave) and therefore will handle the incoming requests correspondingly. The receiving
pod will serve the read requests regardless of its location. Parallelly, the leading unit
processes only write operations. So, the write operations are transmitted to the masters
if the receiver pod is a following. The author’s solution helps to maintain consistency in
Kubernetes cluster by distributing the number of masters equally amongst cluster nodes.
As a result, bulk requests are handled faster and performance is increased.The BLD (bal-
anced distributed leaders) algorithm proposed by T. Nguyen and Kim (2021) improves
Kubernetes’ standard leader election process by evenly distributing leaders among nodes.
All replica pods start as followers and update the information in Leader Management
Endpoint object (LMEP) and Endpoint object (EP) to become current leaders. If the
criteria of BLD algorithm is satisfied they become leaders or else continue as followers
and seek to become leader whenever the conditions are met. The leaders need to keep
updating the information on frequent bases to be leaders. By following this algorithm,
the researchers improved throughput and latency of the applications.

A Dua et al. (2020) created a method to handle typical load balancing difficulties such
as fair allocation of inbound traffic to cluster nodes as systems get more complex, with
processors with variable capacities, loads, and configurations. The author presents a task
scheduling system and creates clusters dedicated to a certain type of job (dynamic data,
datacentric, etc.) by giving tags to each work in order to identify it. The approach is then
tweaked to add load-balancing measures like task transfer. To assess the efficacy of this
strategy, thousands of jobs with varying expected execution time and inputs were tested.
All in all, Cluster processing time has been cut in half, and throughput has increased
dramatically.Kimitoshi Takahashi et al. (2018) used the Linux kernel’s Internet Protocol
Virtual Server (IPVS) to develop a container-based software load balancer that can be run
on Kubernetes cluster. The proposed method proved to be effective where Kubernetes
is incompatible with the supplied load-balancer such as on-premises data-centers with
physical load balancers and so movement of nodes across different environments is a
problem. The author’s method gets the best performance by supposing excellent overlay
by selecting network operating mode and distributing processing of packets across many
cores. The results conducted by researcher revealed that the proposed IPVS load balancer
improved application’s portability without sacrificing performance.

4

2.2 Load Balancing in Microservices

Chang Yi et al. (2018) investigated many coarse grain load-balancing strategies and
provided an unique dynamic weighed load balancing strategy based on micro-services
clustering frameworks that solves incorrect resource consumption among all nodes of
cluster. Researcher claims that the fundamental source of the problem is that each node
cannot process user traffic fairly, and that some nodes are functional but others aren’t.
As a result, the cluster’s overall performance drops significantly. The author’s proposed
algorithm uses data from seven physical servers and allocation of resources amongst them,
as well as metrics such as multiple phases among several server interconnection and the
volume of memories that are used, to provide an accurate approach for dissmenating
loads among various servers. When compared to other algorithms, this method has a
higher throughput and a shorter reaction time.
As per Ruozhou Yu et al. (2019), the most challenging issue for microservices architec-
tures is dependency between service instances and controlling loads on these services.
The author employed a directed acyclic graph (DAG)-based technique to characterize
the interconnectedness of micro services and to equalize the loads by reducing the pres-
sure on the services with the greatest loads. This proposed approach tackles the issue
of load-balancing as a means of improving QOS. Yipei Niu et al. (2018) has made im-
portant contributions to load-balancing in microservices systems. The author created
a comprehensive model known as a chain orienting load-balancing algorithm (COLBA),
which assists in the management of load balancing among micro-services by assessing
different aspects such as diversified requests and inter competitiveness. The researchers
revealed that by carrying out experiments and comparing their proposed approaches to
standard load balancing strategies, total responsiveness in COLBA was reduced by 13
percent.
Rusek and Landmesser (2018) investigated many load-balancing algorithms and applied
them to micro services running in virtualized containers, demonstrating how the decent-
ralized swarm-like model surpasses other strategies. According to the authors, virtualized
containers are great examples of understanding the services as they enhance the efficacy
of containers which operate across different systems, and the containers in this scenario
act like a bunch of agents. The analysis gives conclusions based on current knowledge
as well as numerical-based simulation, demonstrating that using load dispersing ways
in cloud environments surpasses other existing methodologies.‘Hong Zhu et al. (2018),
analysed variety of load balancing algorithms used in microservices with a particular em-
phasis on the influence of scheduling strategies on service capacity and scalability. The
researcher found out that the round-robin approach is much more scalable and achieves
high processing capabilities when compared to other approaches such as workload-aware.

2.3 Containerized Micro-services

IntMA, a unique, scalable heuristic technique was proposed by Christina ‘Joseph and
Chandrasekaran (2020) for launching microservices in an interaction-aware way using
connection information received from the Interactions Graph. The Author implemen-
ted the strategy on Kubernetes platform and measured efficiency using various different
sample micro-services applications which are easy to host on GCP. The findings showed
that proposed strategy is successful in improving micro-based system’s response time and
throughput. Maria Fazio et al. (2016) highlight issue related to microservices whenever
they are hosted on cloud platforms like AWS, Azure, etc are dependent on various vendor

5

provided functionalities like load balancer, proxy server and databases. Thus, varying
configurations of microservices might affect application performance and so author sug-
gests there should be automation in selecting micro-services configuration. Additionally,
the authors indicates that the most challenging part in developing micro-serviced specific
models are learning and fitting of functions to monitor metrics like request arrival, CPU
utilization, memory consumed, etc. Leila ‘Abdollahi Vayghan et al. (2018) evaluated
high availability (HA) in Kubernetes clusters by deploying web-applications based micro-
services architecture and observed that initially Kubernetes behaves effectively when
failure is caused by external events. But in subsequent tests, the outage observed was 5
minutes and HA isn’t triggered because the requirements aren’t met. Additionally, the
default configuration needs to altered in such a way that it will minimize the network
overhead and false positives.

‘Rajavaram et al. (2019) conducted research on implementing the CI/CD pipeline
and projecting the different ways where the microservices can be continuously deployed.
They did this by using the Kubernetes to deploy the microservices where the application
uses the high availability. It is a method where, Kubernetes is used with the help of
Rudneck plugin to deploy the microservices on the cluster. According to this research,
the features, and the integration with Rudneck, Kubernetes is the best practical approach
for orchestration. Khaleq and Ra (2021) did their study on microservices autoscaling
based on the QoS for cloud systems. The study was done to demonstrate that, the
autoscaling done by the pod resource will generate high response that the generic CPU
based scaling. They concluded by showing the autoscaling of the microservices in cloud
with real time application where the time is main quality of service. They also concluded
from the analysis that, the autoscaling is to be done with a good understanding as
the behavior of the microservices vary. Abdollahi Vayghan et al. (2019) researched on
previously studied the deployment of the stateless microservices with Kubernetes. In
this paper, they provided a model to deploy the stateful microservices application with
the help of Deployment controller and Kubernetes. They showed the availability that
is provided by the Kubernetes for the stateful microservices. They provided a solution
where the redirection of services is done through the healthy pods. This solution provided
the handling of the failure at any platform.

2.4 Overview on Service Mesh

Lim et al. (2021) In his research, the author used a service mesh framework Istio for
effectively managing services and controlling traffic in VM and container systems. An
orchestrating software based on service-mesh was used in automating the proxy deploy-
ment for VM on the LCM side. The services were configured by specifying deployments,
network connectivity based upon microservices structure. The author carried out ex-
periments by programming codes with on open-source software’s such as Openstack,
Kubernetes and Istio and observed.
The default scheduling in Kubernetes is static in nature, to solve the issue Wojciechowski
et al. (2021) offers NetMARKS which is a unique solution to Kubernetes pod scheduling
that makes advantage of dynamic network measurements gathered by Istio Service Mesh.
NetMARKS makes scheduling decisions based on data acquired by Prometheus. This
technique enhances Kubernetes scheduling while being completely backward compatible.
The author verified the approach by running it through various workloads and processing
configurations. According to the findings, NetMARKS can cut application’s response

6

time by up to 37 percent and saves almost 50 percent of cross-node bandwidth in a com-
pletely autonomous way.
When monitoring and controlling network and application traffic through service mesh
istio, the application sensitive information might get exposed to external world which is a
security risk. As containers consists of only one network interface, there is not possibility
to separate application traffic from others. To resolve this issue, Kang et al. (2019)
presented a secure coordination system for container-based three tier service traffic that
uses en-/decapsulation for traffic division and encrypting. the researcher was able to
successfully deliver function-level traffic monitoring and management of comprehensible
metrics for functional health. It may also withstand the testing of function/proxy fail-
ures and assist containers management in re-covering impacted services and connected
monitoring agents.

2.5 Summary of Literature Review

Reference Algorithm/
Framework

Approach Advantages Limitations

Zhang
et al.

(2018)

Endpoint
Assessment

Assess en-
dpoints
according
to service
dependency

Improved re-
sponse time

High
Over-
head

Nguyen
and Kim
(2021)

Balanced
Leader Dis-
tribution
Algorithm

Evenly
distribute
the leaders
throughout
nodes in the
cluster

Enhances the
throughput

Increased
Latency

Dua
et al.

(2020)

Scheduling
and Mi-
gration
Algorithm

Label tasks
according to
sizes

Increased
Throughput

High Re-
sponse
Pro-
cessing
Time

This Re-
search

Service
Mesh Istio

Define rout-
ing policies
in YAML
files

Low Re-
sponse Time,
improved
security

Increases
com-
plexity

Table 2.1: Summary of Literature Review and Research Niche.

After reviewing many techniques and algorithms offered by researchers for dynamically
balancing incoming traffic across Kubernetes clusters, the majority of researchers recom-
mended new algorithms to be deployed over Kubernetes proxy or by replacing the proxy

7

with a bespoke load balancer. Their primary focus was always on appropriately dispers-
ing the load by utilizing every resource to its best extent. Almost all of the studies failed
to pay attention to specific features such as service dependency and imposing security
on micro-services within a cluster, detailed request tracking, and monitoring important
metrics such as HTTP failures, agent status, latency, and resource consumption, and
centrally adjusting load-balancing policies without modifying the actual code.

To address the aforementioned concerns, my proposed approach considers service
dependency across micro-services, and as a result, the deployment types and routing
information for each service to be hosted on Istio are provided for better load-balancing
and resource utilization. Additionally, security is given by authenticating each service and
encrypting traffic between them using mTLS, which is enforced by centrally applying a
PeerAuthentication security policy to all services. Kiali tracks all incoming requests
and their actions, and Prometheus monitors essential metrics such as HTTP failures,
individual service status, latency, and resource usage, which are shown in the Grafana
dashboard.

3 Methodology

This section describes methodology of the research. Research flow is explained in 3.1 and
various tools and technologies used in this research are discussed in 3.2.

This research contributes towards dynamic load balancing of micro-services in Kuber-
netes clusters by making use of open-source service mesh framework Istio. The proposed
solution in this paper solves issues in Kubernetes such as limited load balancing, track-
ing service latencies problems and missing security among services. Variable Incoming
requests are evenly distributed among all available services with mTLS enabled across
every micro-service which provides extra layer of security. The proposed system also
achieves better performance and lower response time when compared with Kubernetes.
In a nutshell, the proposed solution fills a gap in the Kubernetes ecosystem which was
previously lacking.

Figure 1: Basic Architecture of Service Mesh(Cha and Kim (2021))

Figure 3 shows how service mesh separates the data plane and control plane and
isolates individual services. Furthermore, sidecars which act like proxies are injected in
every service and are responsible for forwarding requests to other sidecar. All the routing
policies for proxies, security functions, service registration and other function are handled
by control plane.

8

3.1 Research Flow

All activities in this research were conducted on a 3-node Kubernetes cluster deployed
on Google Kubernetes Engine (GKE). The application based on micro-services is taken
from Istio website Istio (2021) and modified to fit the requirements before deploying it
onto the cluster. Istio is then installed on top of the Kubernetes container and then the
YAML file for virtual service is created along with defining load balancing and security
policies before injecting the sidecar proxies onto pods. Prior to exposing the application
to external traffic, Kiali, Prometheus and Grafana are deployed onto Istio for monitoring
and recording metrics of the application. Load testing on micro-services application is
performed using Locust tool.

Figure 2: Flow Diagram

3.2 Tools and Technologies Used

This research was carried out on Google Kubernetes Engine with machine type e2-
standard-4 (Ubuntu). A three-node cluster was provisioned with one leader and two
follower nodes. The micro-services web-application is developed in Python language.
The following technologies and tools were employed:

• Kubectl: This research used kubectl as a command-line interface for communicat-
ing with and managing pods in the Kubernetes cluster. All the deployments and
configurations were also applied using this entity.

• Istio: Service Mesh tool Istio with version 1.12.1 is used in the study to manage
microservice communication and data sharing. After installation, istio was used
to inject proxies in Kubernetes pods and for routing traffic to the relevant service
while enforcing policies.

• Istioctl: The study used Istioctl for debugging and diagonalizing installation issues
within service mesh. It is also used to launch dashboards for kiali and grafana when
deployed in istio-system.

• Kiali: This research uses kiali for visualizing inbound traffic on service mesh and for
identifying service health issues quickly. It builds a topology of the entire system
and displays real-time traffic analytics on it.

• Prometheus Grafana: The combination of both open-source tools is used in research
for real-time monitoring of incoming HTTP requests and cluster resources. While

9

Prometheus fetches data from Istio’s ingress controller other sources, Grafana Dash-
board displays detailed insights like response time, CPU usage, memory utilization
for inbound requests, clusters, nodes, and pods.

• Locust: It is a performance testing tool that has been used in research for generating
load over the application so that the load balancing capabilities of the proposed
system can be tested.

4 Design Specification

In this section, the design specifications of the project are discussed. Subsection 4.1, de-
scribes the required system configuration for running the project, and system architecture
is explained in Subsection 4.2.

4.1 Required Specifications for System

Google Kubernetes Engine used in this research is bundled with pre-configured docker
version 20.10.11 and kubernetes version 1.21.5.Kubernetes uses kubectl for managing
all operation and deployments within a container.Generally kubernetes places micro-
services on different pods for loose coupling and independent scaling.Micro-services can
be restarted with ease in case of unforeseen failures.Below Tables 2 & 3 depicts cluster
configuration and software configurations required to run this project.

Kubernetes Cluster on GKE

Machine type e2-standard-4

No of Nodes 3

Operating System Debian Version 10

Total vCPU 12

Total Memory 48 GB

Cost $0.134012/hr per node

Table 2: Required Cluster Configuration.

Software Description

Service Mesh Istio 1.12.1

Kiali Requires Istio installed

Locust Requires Cluster with 3 node

Manifest language YAML

Table 3: Required Software Configuration.

10

4.2 System Architecture

The architecture of this research is composed of three important components: A bookstore
application based on microservice architecture, Kubernetes clusters, and the service mesh
Istio. Every task is aided, acquired, is carried out on the Kubernetes cluster is provided
by Google Kubernetes Engine, a PaaS platform. The high-level design of our proposed
model is depicted in Figure 4.
The microservices ProductPage, Details, Ratings, and Review work collaboratively to
provide a tenuously connected bookshop application that operates on Kubernetes con-
tainers.Envoy proxy is injected as sidecar onto every pod that runs a service. All the
routing policies for proxies, security functions, service registration, etc defined by control
plane are enforced onto these sidecars and they perform actions accordingly. The control
plane gathers telemetry data and functions as the brain of Istio.
A plethora of monitoring and controlling capabilities using Prometheus and Grafana
are introduced to the core operational control-plane for detailed monitoring of cluster re-
sources and the incoming requests on the system. Kiali provides visualization of real-time
inbound traffic and creates a topology for better analytics and identifying health issues
within the model.In comparison to conventional methods of deploying an application, the
proposed system does it in a lot easier and more efficient manner.

Figure 3: High Level Design of proposed model

5 Implementation

The proposed system’s implementation was finished with the order depicted in Figure
3 Flow Diagram. The bookstore application using micro-services architecture runs on
three nodes Kubernetes cluster. The Istio-system namespace is created for keeping Is-
tio configurations separate. On this namespace, the network configs (YAML file) are
applied on the ingress-gateway. The ingresshost, ingressport, and secureingressport are
configured in Istio-ingressgateway. This gateway plays an important role of a load bal-
ancer by distributing the incoming load among the various application services. Firewall
rules are created in Google Cloud Platform in order to allow the ingress port and secure

11

ingress port which will be used by Istio-ingressgateway. All the dynamic routing and
security policies that are to be applied among individual services are written in a YAML
file named as VirtualService and Enable-mTLS respectively. It is then applied onto every
sidecar present in every pod through control plane. Locust tool generates load on the
bookstore application by simulating users that are predefined by us. Thus, we use this
tool for performance testing of the application and the proposed system. As shown in
Figure 5, Kiali displays the topology diagram of the system based on the real-time incom-
ing workloads over various services. It also highlights important metrics like bandwidth,
throughput, Request per second, and the amount of load distributed to individual ser-
vices. Additional details like resource consumption, gRPC requests, CPU usage, memory
usage, etc can be seen after logging onto Grafana Dashboard.

Figure 4: Real-time traffic Visualization thru Kiali

6 Evaluation

In this section, the performance evaluation is performed by conducting various exper-
iments on the proposed system and comparing these results with the default Kuber-
netes system. The proposed system uses Google Kubernetes engine to run Kubernetes
three-node cluster and to host the micro-services web-application for evaluation and ex-
periments. The Default Kubernetes system which has been used for comparison was
developed with the exact same configurations as that of the proposed system.
The experiments were conducted by generating load for five minutes under three different
scenarios (as shown in below table 4). Using the load testing tool locust, we simulate
users and the amount of incoming requests per second on the micro-serviced based web
application. Metrics such as response time, cpu utilization, and memory consumption
were observed and recorded with the help of Kiali and Grafana.

12

Scenario Total Users Requests per second
1 1000 100
2 3000 300
3 5000 500

Table 4: Scenarios for experiments

6.1 Experiment 1

For the first experiment, we have defined total user and requests per second according
to scenario 1 as shown in Table 4.From below figure, it can be observed the average
response time (green line) and the 95th percentile response time (Maximum Response
time for 95% requests) for both the systems (proposed default) is nearly the same. But,
the cluster with default kubernetes system consumes more CPU and memory (30% &
10.9%) as compared to proposed system.

Figure 5: For Kubernetes-based system

Figure 6: For Istio-based system

Figure 7: Comparison of Resource consumption

13

6.2 Experiment 2

For the second experiment, we have applied configuration stated from scenario 2 as dis-
played in Table 4.From Figure it can be noticed that, the response time for first few
seconds for both the systems are zero, which might mean that when the web-application
was unresponsive at start.After 1 minute of receiving load, the response time for proposed
model (24464 ms) was less than that of the default kubernetes model (34925). The CPU
usage and memory consumption for default system continued to remain more than that
of the proposed system as shown in figure.

Figure 8: For Kubernetes-based system

Figure 9: For Istio-based system

Figure 10: Comparison of Resource consumption

14

6.3 Experiment 3

For the third experiment, we selected values as given in scenario 3 of Table 4.It can be
witnessed from the start, that the application hosted on default kubernetes system is
struggling with varying response times when 5000 users with 500 requests per second
are deployed, Whereas the Istio based proposed system remains stable. Also the CPU
utilization for default kubernetes cluster shoots above 40 % and memory nearly 25 %,
but the CPU usage and memory consumption for Istio based cluster continues to remain
lower than that of the default model.

Figure 11: For Kubernetes-based system

Figure 12: For Istio-based system

Figure 13: Comparison of Resource consumption

15

6.4 Discussion

From the above-conducted experiments on the proposed istio-based system and the de-
fault kubernetes-based system, it can be said that the response time is nearly the same
for both the models, when there are a smaller number of users and fewer incoming re-
quests per second on the application (scenario 1). The proposed design consumes fewer
resources as compared to default design in this scenario. But when the number of users
and requests gradually increase (scenario 2 3), the default Kubernetes system begins
to struggle, thus delivering higher response time, failed requests, and consuming more
CPU and Memory. Whereas the proposed istio-based system outperforms by maintaining
stability and consistency in response rate and consumes fewer resources compared to the
default one.
The existing web applications based on micro-services architecture can introduce the
proposed istio-based design as it is capable of efficiently balancing the bulk web requests
among the micro-services and improves the response time of which is critical for any
application. The proposed design also consumes fewer resources when compared to other
models, thus saving any additional cost of buying or provisioning extra resources.

7 Conclusion and Future Work

This Research proposes a service-mesh Istio-based system, which efficiently handles the
varying requests on a web application using micro-services architecture and hosted on a
Kubernetes cluster by ,improving the response time and consuming fewer resources as
compared to traditional kubernetes system as shown in the evaluation part.This study is
also successful in applying dynamic load balancing policies directly onto the individual
micro-services of an application with the help of Istio control plane by the method of
injecting sidecar proxy onto every micro- service of the application. Furthermore the
security issue among individual micro-services deployed on the same pod of kubernetes is
solved by the means of implementing service authorization through mTLS by encrypting
traffic.Detailed metric tracking of incoming requests and resources can be done with the
help of kiali and grafana.
Container complexity in some situations adds a compute overhead and increases the
latency when running the proposed istio-based system. Further research to reduce the
latency and complexity can be done.End-to-end tracing of every service outside the scope
of proposed istio-based system cannot be measured.Therefore by introducing tools such as
dynatrace or Jaeger can enabled end-to-end tracing and are beneficial when troubleshoot-
ing issues.

References

Abdollahi Vayghan, L., Saied, M. A., Toeroe, M. and Khendek, F. (2018). Deploying
microservice based applications with kubernetes: Experiments and lessons learned,
2018 IEEE 11th International Conference on Cloud Computing (CLOUD), pp. 970–
973.

Abdollahi Vayghan, L., Saied, M. A., Toeroe, M. and Khendek, F. (2019). Microservice
based architecture: Towards high-availability for stateful applications with kubernetes,

16

2019 IEEE 19th International Conference on Software Quality, Reliability and Security
(QRS), pp. 176–185.

Abidi, S., Essafi, M., Guegan, C. G., Fakhri, M., Witti, H. and Ghezala, H. H. B. (2019).
A web service security governance approach based on dedicated micro-services, Pro-
cedia Computer Science 159: 372–386. Knowledge-Based and Intelligent Information
Engineering Systems: Proceedings of the 23rd International Conference KES2019.
URL: https://www.sciencedirect.com/science/article/pii/S1877050919313742

Cha, D. and Kim, Y. (2021). Service mesh based distributed tracing system, 2021 In-
ternational Conference on Information and Communication Technology Convergence
(ICTC), pp. 1464–1466.

Dua, A., Randive, S., Agarwal, A. and Kumar, N. (2020). Efficient load balancing to
serve heterogeneous requests in clustered systems using kubernetes, 2020 IEEE 17th
Annual Consumer Communications Networking Conference (CCNC), pp. 1–2.

Fazio, M., Celesti, A., Ranjan, R., Liu, C., Chen, L. and Villari, M. (2016). Open issues
in scheduling microservices in the cloud, IEEE Cloud Computing 3(5): 81–88.

Gannon, D., Barga, R. and Sundaresan, N. (2017). Cloud-native applications, IEEE
Cloud Computing 4(5): 16–21.

Istio (2021). Sample bookinfo application.
URL: https://github.com/istio/istio/tree/master/samples/bookinfo

Joseph, C. T. and Chandrasekaran, K. (2020). Intma: Dynamic interaction-aware re-
source allocation for containerized microservices in cloud environments, Journal of
Systems Architecture 111: 101785.
URL: https://www.sciencedirect.com/science/article/pii/S1383762120300758,

Kang, M., Shin, J.-S. and Kim, J. (2019). Protected coordination of service mesh for
container-based 3-tier service traffic, 2019 International Conference on Information
Networking (ICOIN), pp. 427–429.

Khaleq, A. and Ra, I. (2021). Intelligent autoscaling of microservices in the cloud for
real-time applications, IEEE Access PP: 1–1.

Lim, H., Kim, Y. and Sun, K. (2021). Service management in virtual machine and
container mixed environment using service mesh, 2021 International Conference on
Information Networking (ICOIN), pp. 528–530.

Liu, Q., Haihong, E. and Song, M. (2020). The design of multi-metric load balancer
for kubernetes, 2020 International Conference on Inventive Computation Technologies
(ICICT), pp. 1114–1117.

McDaniel, S., Herbein, S. and Taufer, M. (2015). A two-tiered approach to i/o qual-
ity of service in docker containers, 2015 IEEE International Conference on Cluster
Computing, pp. 490–491.

Nguyen, N. D. and Kim, T. (2021). Balanced leader distribution algorithm in kubernetes
clusters, Sensors 21(3).
URL: https://www.mdpi.com/1424-8220/21/3/869

17

Nguyen, N. and Kim, T. (2020). Toward highly scalable load balancing in kubernetes
clusters, IEEE Communications Magazine 58(7): 78–83.

Niu, Y., Liu, F. and Li, Z. (2018). Load balancing across microservices, IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, pp. 198–206.

Rajavaram, H., Rajula, V. and Thangaraju, B. (2019). Automation of microservices
application deployment made easy by rundeck and kubernetes, 2019 IEEE Interna-
tional Conference on Electronics, Computing and Communication Technologies (CON-
ECCT), pp. 1–3.

Rusek, M. and Landmesser, J. (2018). Time complexity of an distributed algorithm
for load balancing of microservice-oriented applications in the cloud, ITM Web of
Conferences 21: 00018.

Takahashi, K., Aida, K., Tanjo, T. and Sun, J. (2018). A portable load balancer for
kubernetes cluster, Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, HPC Asia 2018, Association for Computing Ma-
chinery, New York, NY, USA, p. 222–231.
URL: https://doi.org/10.1145/3149457.3149473

Wojciechowski, , Opasiak, K., Latusek, J., Wereski, M., Morales, V., Kim, T. and Hong,
M. (2021). Netmarks: Network metrics-aware kubernetes scheduler powered by service
mesh, IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, pp. 1–
9.

Yi, C., Zhang, X. and Cao, W. (2018). Dynamic weight based load balancing for mi-
croservice cluster, Proceedings of the 2nd International Conference on Computer Sci-
ence and Application Engineering, CSAE ’18, Association for Computing Machinery,
New York, NY, USA.
URL: https://doi.org/10.1145/3207677.3277955

Yu, R., Kilari, V. T., Xue, G. and Yang, D. (2019). Load balancing for interdependent
iot microservices, IEEE INFOCOM 2019 - IEEE Conference on Computer Commu-
nications, pp. 298–306.

Zhang, F., Tang, X., Li, X., Khan, S. U. and Li, Z. (2019). Quantifying cloud elasticity
with container-based autoscaling, Future Generation Computer Systems 98: 672–681.
URL: https://www.sciencedirect.com/science/article/pii/S0167739X18307842

Zhang, J., Ren, R., Huang, C., Fei, X., Qun, W. and Cai, H. (2018). Service depend-
ency based dynamic load balancing algorithm for container clusters, 2018 IEEE 15th
International Conference on e-Business Engineering (ICEBE), pp. 70–77.

Zhu, H., Wang, H. and Bayley, I. (2018). Formal analysis of load balancing in mi-
croservices with scenario calculus, 2018 IEEE 11th International Conference on Cloud
Computing (CLOUD), pp. 908–911.

18

	Introduction
	Motivation
	Research Question
	Structure Of The Paper

	Related Work
	Dynamic Load balancing techniques introduced in Kubernetes
	Load Balancing in Microservices
	Containerized Micro-services
	Overview on Service Mesh
	Summary of Literature Review

	Methodology
	Research Flow
	Tools and Technologies Used

	Design Specification
	Required Specifications for System
	System Architecture

	Implementation
	Evaluation
	Experiment 1
	Experiment 2
	Experiment 3
	Discussion

	Conclusion and Future Work

