
Configuration Manual

MSc Research Project

Cloud Computing

Nikhil Kumar Singh
Student ID: 19202491

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie

National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Nikhil Kumar Singh

Student ID: 19202491

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 16/12/2021

Project Title: Configuration Manual

Word Count: 7836

Page Count: 25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):

Contents

1 Overview: 1

2 Accounts: 1

2.1 Snowflake Trial Account: . 1

2.2 AWS, Azure and GCP Trial Accounts . 4

3 Collecting data-sets: 4

4 Uploading Datasets to the cloud: 6

4.1 AWS: . 6

4.2 Azure: . 7

4.3 GCP: . 9

5 Loading data into snowflake: 10

5.1 Loading Data from cloud into snowflake: 10

6 Creating a snowpipe: 12

6.1 Creating a task: . 12

6.2 Creating a stream: . 16

6.3 Creating snowpipe using task and stream 19

7 Access Management: 23

Configuration Manual

Nikhil Kumar Singh
19202491

1 Overview:

This paper contains a comprehensive, step-by-step guide for implementing this research
study. It will detail all of the steps I took to accomplish my study and how those actions
may be repeated.

2 Accounts:

For this research, I created 4 trail accounts (Snowflake, AWS, Azure and GCP) and the
steps for creating their trial accounts are mentioned in the further sections.

For the implementation of the infrastructure for the project, I took some inspiration
majorly from Khedekar & Tian (2020), Wang et al. (2021) and from other papers as well
including Wan et al. (2021) and Xin et al. (2019)

2.1 Snowflake Trial Account:

Please have your contact information (name, email, company/business name, and coun-
try) available before beginning this step, since you will be utilizing these throughout the
sign-up process. Your email address will be used to deliver a link to your Snowflake
instance, so ensure it is accurate. You do not need to submit payment information at
this time, but you will be required to do so after your trial period ends (after 30 days).

To begin, let’s create a Snowflake account. The Snowflake website has an intuitive
user interface for establishing and maintaining your account. Additionally, it provides a
free-to-use (for 30 days) account with a 400USD compute credit.

Go to the Snowflake website, www.Snowflake.com, and look for the START FOR
FREE button. Then, on that page, click the START FOR FREE option to begin the
provisioning process.

1

Figure 1: Types of Instance

You will be sent to a register page, where you may begin your 30-day trial with
400USD in credit. Please complete the needed contact information on this page and
proceed.

The following steps outline the various choices for instance type and cloud platform
selection. These two choices are crucial from a cost and efficiency standpoint.

On the next page, you’ll be invited to pick your Snowflake edition and public cloud
provider, as well as the location in which your Snowflake instance will be hosted. Which
Snowflake edition you choose is mostly determined by your use case. Standard is the
entry-level version and includes all required SQL warehouse capability. It does not,
however, allow multi-cluster virtual warehouses or materialized views, and supports just
one day of time travel (Snowflake’s method of updating data versions as new data arrives).
Enterprise edition is a suitable fit for the majority of enterprises because to its support
for multi-cluster virtual warehouses, materialized views, and time travel up to 90 days.
As seen in the following screenshot, we chose Enterprise as shown in Figure 1:

Business Critical has various new security measures and expanded failover capabilities,
ensuring that your business maintains more continuity.

A critical point to remember is that Snowflake is a Software as a Service (SaaS),
which means that regardless of the public cloud platform you choose, you will access
your Snowflake instance through a URL and will not be required to log into your cloud
provider’s dashboard. Snowflake’s service is available on all three main public cloud
vendors: Amazon Web Services (AWS), Microsoft Azure (Microsoft Azure), and Google
Cloud Platform (Google Cloud Platform) (GCP). These three platforms are broadly
comparable in terms of capabilities, with certain limitations imposed by the platform

2

Figure 2: Snowflake Workspace

design.

Which public cloud you pick is critical when considering which public cloud hosts the
remainder of your apps and data. Generally, it is preferable to use the same public cloud
and area as the rest of your data, since this results in reduced overall costs and improved
performance for your firm.

We’ve chosen AWS as the platform here. Unless otherwise noted, all of the samples
supplied operate on AWS. After making that selection, go to the following page, where you
will receive a notification indicating that Account Setup is in Progress. Once the instance
has been created, this will change to a success message. You will get an activation email
with instructions on how to activate your account and create a temporary username and
password:

The activation email contains an activation link that will activate your account and
take you to a site where you can establish a username and password. This username will
serve as the Account Administrator for your instance, so please pick wisely and safeguard
your login and password. Once your username and password have been configured, you
will be sent to the Snowflake webUI.

After this, you’ll be able to login to the snowflake account.

Click Get Started to get to your personal workspace as shown 2:

You’ll have a unique URL with your account name in it to access your Snowflake
environment as shown in figure 3:

During the account set-up, some sample databases were provided as well as shown in

3

Figure 3: URL to access the workspace

figure ??:

You are currently signed in with the SYSADMIN role. To access and modify account
information, however, you must first move to the ACCOUNTADMIN position, which is
the super admin role as shown in figure 5:

2.2 AWS, Azure and GCP Trial Accounts

In the similar fashion accounts need to be activate for Azure, AWS and GCP. The links
are added in the footnotes.

• AWS trial account setup steps 1

• Azure trial account setup steps 2

• GCP trial account setup steps 3

3 Collecting data-sets:

For this research, there is a requirement to upload huge data-set on the cloud. Now, you
could use any dataset large enough. For my research I used few public datasets from
kaggle and combined them together to have a big dataset of about 14GB in size.

1https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
2https://k21academy.com/microsoft-azure/create-free-microsoft-azure-trial-account/
3https://k21academy.com/google-cloud/create-google-cloud-free-tier-account/

4

Figure 4: Worksheet and default databases

Figure 5: Roles in snowflake

5

Following are the datasets that I used for my research.

1. F1 2020 race data 4

2. Brazilian E-Commerce Public Dataset by Olist 5

3. Bitcoin Historical Data 6

4. The Movies Dataset 7

5. Trending YouTube Video Statistics 8

6. 120 years of Olympic history: athletes and results 9

7. 5000 Movie Dataset 10

4 Uploading Datasets to the cloud:

The same datasets then needs to be uploaded to three cloud storage’s and the steps to
do that are mentioned in this section.

4.1 AWS:

To upload the files to a bucket on Amazon S3

• Create an Amazon S3 bucket.

• Log in to the AWSManagement Console and go to https://console.aws.amazon.com/s3/
to access the Amazon S3 console.

• To create a bucket, click Create Bucket.

• Type a bucket name in the Create a Bucket dialog box’s Bucket Name field.

• The bucket name you choose must be unique among all bucket names already in use
in Amazon S3. One strategy for ensuring uniqueness is to prefix your bucket names
with your organization’s name. Bucket names must adhere to specific guidelines.
For further details, see the Amazon Simple Storage Service User Guide’s section on
bucket constraints and limitations.

4https://www.kaggle.com/coni57/f1-2020-race-data
5https://www.kaggle.com/olistbr/brazilian-ecommerce?select=olistorderpaymentsdataset.csv
6https://www.kaggle.com/mczielinski/bitcoin-historical-data
7https://www.kaggle.com/rounakbanik/the-movies-dataset?select=ratings.csv
8https://www.kaggle.com/datasnaek/youtube-new
9https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

10https://www.kaggle.com/tmdb/tmdb-movie-metadata

6

Figure 6: Bucket in AWS S3

• Choose a Region.

• Create the bucket in the region where your cluster is located. If your cluster is
located in the United States of America’s West (Oregon) Region, choose US West
(Oregon) Region (us-west-2).

• Select Create.

• When Amazon S3 successfully builds your bucket, the console’s Buckets section
shows your empty bucket.

• Create a folder and Choose the name of the new bucket.

• Select the Actions button and from the drop-down box, select Create Folder.

• Load a new folder with a name.

Upload the data files to the new Amazon S3 bucket.

• Choose the name of the data folder.

• In the Upload - Select Files wizard, choose Add Files.

• Follow the Amazon S3 console instructions to upload all of the files you downloaded
and extracted,

• Choose Start Upload.

4.2 Azure:

The steps to upload data on Azure are slightly different.

It Azure, you’ll first need to create a storage account as shown in Figure 7

After creating a storage account, we will then need to create a container inside that
storage account as shown in Figure 8

Then we can create a folder and upload the dataset in that folder as shown in Figure
9

7

Figure 7: Azure Storage Account

Figure 8: Container in Azure

8

Figure 9: Dataset uploaded in azure

Figure 10: Dataset uploaded in GCP

4.3 GCP:

Just like AWS and Azure, you can create a folder in GCP cloud storage and upload the
dataset there as well as shown in the figure.

• Login to GCP account.

• Open the cloud storage browser in GCP console.

• Click on the CREATE BUCKET option.

• Enter the requested details and click on Done.

9

Figure 11: Loading from cloud storage via external stage

5 Loading data into snowflake:

In this section, we will see how the data from cloud storage can be loaded into the
snowflake application.

Figure 11 shows the architecture of how the data is loaded into the snowflake applic-
ation from the three sources.

5.1 Loading Data from cloud into snowflake:

We need to create a policy so that the data on the cloud can be accessed by the Snowflake
application.

Overall it’s a 4 step process to load the data into S3 and into the snowflake from S3.
The details steps are mentioned in the official snowflake documentation

Basically, it’s a 3-4 step process depending on the cloud service provider and the links
for the official snowflake documentations are listed below.

• Bulk loading from Amazon S3 11.

11https://docs.snowflake.com/en/user-guide/data-load-s3.html

10

Figure 12: AWS Integration Object

Figure 13: Creating a stage object

• Bulk loading from Microsoft Azure 12.

• Bulk loading from Google GCP 13.

Next we create an integration and staging objects to load the files into a stage in
snowflake from where we can later load in into the database.

Figure 12 shows the commands to create the integration object before being able to
access the data in snowflake.

Next we create a stage object as shown in the figure 13

Next, we list the stage object and see the files loaded into the stage from the S3 bucket
using the command ”LIST @demo db.public.stage aws;”

Now that we see the list of files as shown in figure 14.

12https://docs.snowflake.com/en/user-guide/data-load-azure.html
13https://docs.snowflake.com/en/user-guide/data-load-gcs.html

11

Figure 14: List of files in external stage

Next we create a table in which we will load the data from this stage and then we
would be able to access the contents.

The similar steps needs to be carried out for azure and GCP and the queries for the
same are attached in the artifacts under code/loading data

6 Creating a snowpipe:

6.1 Creating a task:

To create a pipeline we will first create a task in snowflake and the steps are menitoned
as follows.

• To simplify the process for you, we’ve utilized Snowflake’s example data and built
an aggregate query on top of it. (Please note that sample data is supplied with
your Snowflake instance and is located in the database SNOWFLAKE SAMPLE
DATA.) On the sample data, we will run the following fictitious query:

SELECT C.C_NAME,SUM(L_EXTENDEDPRICE),SUM(L_TAX)

FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER C

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.ORDERS O

ON O.O_CUSTKEY = C.C_CUSTKEY

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.LINEITEM LI

ON LI.L_ORDERKEY = O.O_ORDERKEY

GROUP BY C.C_NAME;

• The result for the above query is is shown in figure 15

12

• Now we’ll establish a target table to store the results of this query. Notably, we have
added a Reporting Time column to the columns returned by the previous query.
Each time we enter data, we will include the current timestamp in this column:

CREATE DATABASE task_demo;

USE DATABASE task_demo;

CREATE OR REPLACE TABLE ordering_customers

(

Reporting_Time TIMESTAMP,

Customer_Name STRING,

Revenue NUMBER(16,2),

Tax NUMBER(16,2)

);

• We will now create a task using the preceding SQL statement to insert data into
the ordering customers table. To start with, we will configure the task to run every
2 minutes:

CREATE TASK refresh_ordering_customers

WAREHOUSE = COMPUTE_WH

SCHEDULE = ’30 MINUTE’

COMMENT = ’Update Ordering_Customers Table with latest

data’

AS

INSERT INTO ordering_customers

SELECT CURRENT_TIMESTAMP, C.C_NAME,

SUM(L_EXTENDEDPRICE), SUM(L_TAX)

FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER C

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.ORDERS O

ON O.O_CUSTKEY = C.C_CUSTKEY

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.LINEITEM LI

ON LI.L_ORDERKEY = O.O_ORDERKEY

GROUP BY CURRENT_TIMESTAMP, C.C_NAME;

• Let’s validate that the task has been created correctly by running the DESC com-
mand:

DESC TASK refresh_ordering_customers;

• The following figure 16 is the output of the previous code, which has been broken
into numerous lines for readability. Notably, a new task is generated by default in
a suspended state, as seen in the output:

• If you are executing your code through a role other than ACCOUNTADMIN, you
must provide that role the following privileges:

13

Figure 15: Sample output

Figure 16: DESC Command output

USE ROLE ACCOUNTADMIN;

GRANT EXECUTE TASK ON ACCOUNT TO ROLE SYSADMIN;

• We now need to change the task’s status to Resumed so that it may resume execu-
tion on time. This will be accomplished by executing the describe command once
again to verify that the task has been properly transferred from the suspended
to the begun state. Nota bene, the next step must be performed as ACCOUN-
TADMIN; otherwise, you may provide the needed permissions to another role, as
described in the previous step:

ALTER TASK refresh_ordering_customers RESUME;

DESC TASK refresh_ordering_customers;

• The accompanying code produces the following output figure 17:

• Note that now, the state of the task is set to started, which means the task is now
scheduled and should execute in the next 2 minutes.

• We will now keep an eye on the task execution to validate that it runs successfully.
To do that, we need to query task history, as follows:

SELECT name, state,

completed_time, scheduled_time,

Figure 17: DESC Command output

14

•

Figure 18: Output of task history

Figure 19: Output of task history

error_code, error_message

FROM TABLE(information_schema.task_history())

WHERE name = ’REFRESH_ORDERING_CUSTOMERS’;

• The output from the query is shown in figure 18

• As seen by the output, the job has not yet been completed, and the planned time
for execution is displayed. In another two minutes, we’ll check the status, and this
job should have completed.

• Rerun the above query after 2 minutes. As predicted, the job was successfully
completed, as shown by the following output 19, and the next instance is scheduled
for execution:

• Let’s validate that the task has indeed executed successfully by selecting from the
ordering customers table:

SELECT * FROM ordering_customers;

• As shown in the figure 20, the query returned around 100,000 records, which indic-
ates that the task executed successfully:

More examples of creating tasks are present in folder code/tasks as shown in figure

Figure 20: Validating the task

15

Figure 21: Tasks files

6.2 Creating a stream:

• Let’s start by creating a database and a staging table on which we will create our
stream object. We create a staging table to simulate data arriving from outside
Snowflake and being processed further through a stream object:

CREATE DATABASE stream_demo;

USE DATABASE stream_demo;

CREATE TABLE customer_staging

(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

• The process of creating a stream is quite straightforward with a simple command
such as the following:

CREATE STREAM customer_changes ON TABLE customer_staging;

• Let’s describe the stream to see what has been created:

DESC STREAM customer_changes;

• As shown in figure 22 the mode of the stream is set to DEFAULT, which indicates
it will track inserts, updates, and deletes that are performed on the table:

• Let’s insert some data into the staging table to simulate data arriving into Snow-
flake:

INSERT INTO customer_staging VALUES (1,’Jane

Doe’,’NSW’,’AU’);

INSERT INTO customer_staging VALUES

(2,’Alpha’,’VIC’,’AU’);

16

Figure 22: The created stream

Figure 23: Validating whether the data is inserted into the table

• Validate that the data is indeed inserted into the staging table by selecting it from
the table:

SELECT * FROM customer_staging;

• As expected, two rows are present in the staging table as shown in figure 23:

• Now, let’s view how the changing data has been captured through the stream. We
can view the data by simply selecting from the stream object itself, which is shown
as follows :

SELECT * FROM customer_changes;

• The following output (figure 24) shows the data that has been recorded by the
stream. Notice both rows have been recorded with an action code of INSERT:

• Now that we have our stream set up successfully, we can process the data from the
stream into another table. You would usually do this as part of a data pipeline.
Create a table first in which we will insert the recorded data:

CREATE TABLE customer

(

Figure 24: Viewing the changing data

17

Figure 25: Validating the data from the customer table

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

• Retrieving data from a stream and inserting it into another table is as simple as
performing a query on the stream itself. As shown ahead, the query selects the
required columns from the stream and inserts them into the customer table. Do
note that we have used a WHERE clause on metadata$action equal to INSERT.
This is to ensure that we only process new data:

INSERT INTO customer

SELECT ID,Name,State,Country

FROM customer_changes

WHERE metadata$action = ’INSERT’;

• Let’s select the data from the customer table to validate that the correct data
appears there:

SELECT * FROM customer;

• As expected, the two rows that were originally inserted into the staging table appear
here as shown in figure 25:

• Let’s find out what happens to the stream after data has been processed from it.
If we perform SELECT now, there will be zero rows returned since that data has
already been processed:

SELECT * FROM customer_changes;

• The output shows zero rows returned (figure 26):

• Let’s update a row in the staging table. We are then going to see in the stream
how that update appears:

UPDATE customer_staging SET name = ’John Smith’ WHERE

ID = 1;

18

Figure 26: Zero rows returned

Figure 27: Selecting the data from the stream

• Select the data from the stream:

SELECT * FROM customer_changes;

• You will see two records appear in the result set, as shown in figure 27:

• An update operation is essentially captured as DELETE followed by INSERT.
Therefore, you will see both INSERT and UPDATE appear in the result. If you
are processing the stream for deletes as well, you will need additional logic in the
consuming code to process DELETE correctly.

6.3 Creating snowpipe using task and stream

• Let’s start by creating a database and a staging table on which we will create our
stream object. We will be creating a staging table to simulate data arriving from
outside Snowflake and being processed further through a stream object:

CREATE DATABASE stream_demo;

USE DATABASE stream_demo;

CREATE TABLE customer_staging

(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

19

Figure 28: The created stream

• Next, create a stream on the table that captures only the inserts. The insert-only
mode is achieved by setting APPEND ONLY to TRUE:

CREATE STREAM customer_changes ON TABLE

customer_staging APPEND_ONLY = TRUE;

• Let’s describe the stream to see what has been created:

DESC STREAM customer_changes;

• As shown in the following output (figure 28), notice that the mode of the stream is
set to APPEND ONLY, which indicates it will only track inserts:

• So, we have created a staging table and a stream on top of it. Now, we are going
to create the actual table into which all the new customer data will be processed:

CREATE TABLE customer

(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

• Let’s now create a task that we will use to insert any new data that appears in the
stream:

CREATE TASK process_new_customers

WAREHOUSE = COMPUTE_WH

COMMENT = ’Process new data into customer’

AS

INSERT INTO customer

SELECT ID,Name,State,Country

FROM customer_changes

WHERE metadata$action = ’INSERT’;

• Let’s schedule this task to run every 1 minutes. We are assuming that new customer
data is getting inserted into the staging table all the time and we need to process
it every 1 minutes. Please note that to resume a task, you will need to run the
command as ACCOUTNADMIN or another role with the appropriate privileges:

20

Figure 29: Customer table

Figure 30: Viewing the changing data

ALTER TASK process_new_customers

SET SCHEDULE = ’1 MINUTE’;

ALTER TASK process_new_customers RESUME;

• Let’s check that the target table, that is, customer, is empty:

SELECT * FROM customer;

• As expected, no rows are present in the customer table as shown in figure 29:

• We will now insert some data into the staging table (effectively simulating data
that has arrived into Snowflake from an external source):

INSERT INTO customer_staging VALUES (1,’Jane

Doe’,’NSW’,’AU’);

INSERT INTO customer_staging VALUES

(2,’Alpha’,’VIC’,’AU’);

• Now, let’s view how the changing data has been captured through the stream. We
can view the data by adding SELECT from the stream object itself:

SELECT * FROM customer_changes;

• The following output (figure 30 shows the data that has been recorded by the
stream. Notice both rows have been recorded with an action code of INSERT:

• Retrieving data from a stream and inserting it into another table is as simple as
performing a query on the stream itself. As shown ahead, the query selects the
required columns from the stream and inserts them into the customer table. Do
note that we have used a WHERE clause on metadata$action set to INSERT. This
is to ensure that we only process new data:

21

Figure 31: Two rows inserted into the staging table

INSERT INTO customer

SELECT ID,Name,State,Country

FROM customer_changes

WHERE metadata$action = ’INSERT’;

• Let’s select the data from the customer table to validate that the correct data
appears there:

SELECT * FROM customer;

• As expected, the two rows that were originally inserted into the staging table appear
here (figure 31):

• We will now insert some more data into the staging table and let it be processed
by the scheduled task:

INSERT INTO customer_staging VALUES

(3,’Mike’,’ACT’,’AU’);

INSERT INTO customer_staging VALUES

(4,’Tango’,’NT’,’AU’);

• Now, we wait for our scheduled task to run, which will process this staging data into
the target table. You can also keep an eye on the execution and the next scheduled
time by running the following query. Once the scheduled task has executed, the
results will look like what is shown as follows:

SELECT * FROM

TABLE(information_schema.task_history(

task_name => ’PROCESS_NEW_CUSTOMERS’))

ORDER BY SCHEDULED_TIME DESC;

• Once the task has been successfully executed, you will see output similar to the
following screenshot (figure 32). The task that has been run successfully will have
a QUERY ID value assigned and a STATE value of SUCCEEDED:

22

Figure 32: Processing the staging data into the target table

Figure 33: Validating the rows in the staging table

• Once the task has been successfully executed, select the data from the target table
to validate that the rows in the staging table have been inserted into the target
table:

SELECT * FROM customer;

• You will see two additional records appear in the result set, indicating that the data
from the staging table was processed through a combination of tasks and streams
and inserted into the target table (figure 33):

7 Access Management:

Figure 35 shows the roles in snowflake application.

The detailed steps for working with each of the roles are documented and present
inside code/Access management folder (figure 35).

23

Figure 34: Role Hierarchy

Figure 35: code/Access management

24

Figure 36: Folder Structure

Their are numerous other parts of the implementation as well and they are shared in
the artifacts as shown in figure 36. Also, I would be covering some important tasks in
the demo video as well.

References

Khedekar, V. & Tian, Y. (2020), ‘Multi-tenant big data analytics on aws cloud platform’.

Wan, W., Du, X., Zhao, X. & Yang, Z. (2021), ‘A cloud-enabled collaborative hub for
analysis of geospatial big data’.

Wang, F., Wang, H. & Xue, L. (2021), ‘Research on data security in big data cloud
computing environment’.

Xin, Li, J. & Guo (2019), ‘Research on ship data big data parallel scheduling algorithm
based on cloud computing’, Journal of Coastal Research 94(sp1), 535–539.

25

	Overview:
	Accounts:
	Snowflake Trial Account:
	AWS, Azure and GCP Trial Accounts

	Collecting data-sets:
	Uploading Datasets to the cloud:
	AWS:
	Azure:
	GCP:

	Loading data into snowflake:
	Loading Data from cloud into snowflake:

	Creating a snowpipe:
	Creating a task:
	Creating a stream:
	Creating snowpipe using task and stream

	Access Management:

