~

"'—-
\ National
College

Ireland

Configuration Manual

MSc Research Project
Cloud Computing

Nikhil Kumar Singh
Student ID: 19202491

School of Computing
National College of Ireland

Supervisor: Sean Heeney

National College of Ireland National

Project Submission Sheet Col]ege of
School of Computing Ireland
Student Name: Nikhil Kumar Singh
Student ID: 19202491
Programme: Cloud Computing
Year: 2021
Module: MSc Research Project
Supervisor: Sean Heeney
Submission Due Date: 16/12/2021
Project Title: Configuration Manual
Word Count: 7836
Page Count: [25

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature:

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). O

Attach a Moodle submission receipt of the online project submission, to | [J
each project (including multiple copies).
You must ensure that you retain a HARD COPY of the project, both for | [
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only
Signature:

Date:
Penalty Applied (if applicable):

Contents

1__Overview: | 1
2__Accounts: 1
2.1 Snowflake Trial Account: |o oo 1
2.2 AWS, Azure and GCP Trial Accounts|. 4
[3 Collecting data-sets: | 4
[4 Uploading Datasets to the cloud:| 6
HET AWS] . 6
E2Azurel]o 7
3 GCP . . 9
[> Loading data into snowflake:| 10
[>.1 Loading Data from cloud into snowflake:| 10
6 Creating a snowpipe:| 12
6.1 Creatingatask: | 12
[6.2 Creating a stream: | 16
[6.3 Creating snowpipe using task and stream|. 19

Access Management: | 23

Configuration Manual

Nikhil Kumar Singh
19202491

1 Overview:

This paper contains a comprehensive, step-by-step guide for implementing this research
study. It will detail all of the steps I took to accomplish my study and how those actions
may be repeated.

2 Accounts:

For this research, I created 4 trail accounts (Snowflake, AWS, Azure and GCP) and the
steps for creating their trial accounts are mentioned in the further sections.

For the implementation of the infrastructure for the project, I took some inspiration
majorly from Khedekar & Tian| (2020)), Wang et al.| (2021)) and from other papers as well
including Wan et al.| (2021) and Xin et al.| (2019)

2.1 Snowflake Trial Account:

Please have your contact information (name, email, company /business name, and coun-
try) available before beginning this step, since you will be utilizing these throughout the
sign-up process. Your email address will be used to deliver a link to your Snowflake
instance, so ensure it is accurate. You do not need to submit payment information at
this time, but you will be required to do so after your trial period ends (after 30 days).

To begin, let’s create a Snowflake account. The Snowflake website has an intuitive
user interface for establishing and maintaining your account. Additionally, it provides a
free-to-use (for 30 days) account with a 400USD compute credit.

Go to the Snowflake website, www.Snowflake.com, and look for the START FOR
FREE button. Then, on that page, click the START FOR FREE option to begin the
provisioning process.

Choose your Snowflake edition

() Standard
A strong balance between features, level of
support, and cost.

@® Enterprise
Standard plus 90-day time travel, multi-cluster
warehouses, and materialized views.

(O Business Critical
Enterprise plus enhanced security, data
protection, and database failover/fallback.

Figure 1: Types of Instance

You will be sent to a register page, where you may begin your 30-day trial with
400USD in credit. Please complete the needed contact information on this page and
proceed.

The following steps outline the various choices for instance type and cloud platform
selection. These two choices are crucial from a cost and efficiency standpoint.

On the next page, you'll be invited to pick your Snowflake edition and public cloud
provider, as well as the location in which your Snowflake instance will be hosted. Which
Snowflake edition you choose is mostly determined by your use case. Standard is the
entry-level version and includes all required SQL warehouse capability. It does not,
however, allow multi-cluster virtual warehouses or materialized views, and supports just
one day of time travel (Snowflake’s method of updating data versions as new data arrives).
Enterprise edition is a suitable fit for the majority of enterprises because to its support
for multi-cluster virtual warehouses, materialized views, and time travel up to 90 days.
As seen in the following screenshot, we chose Enterprise as shown in Figure

Business Critical has various new security measures and expanded failover capabilities,
ensuring that your business maintains more continuity.

A critical point to remember is that Snowflake is a Software as a Service (SaaS),
which means that regardless of the public cloud platform you choose, you will access
your Snowflake instance through a URL and will not be required to log into your cloud
provider’s dashboard. Snowflake’s service is available on all three main public cloud
vendors: Amazon Web Services (AWS), Microsoft Azure (Microsoft Azure), and Google
Cloud Platform (Google Cloud Platform) (GCP). These three platforms are broadly
comparable in terms of capabilities, with certain limitations imposed by the platform

Worksheet 1 + L

Find database objects C « All Queries

&= SNOWFLAKE_SAMPLE_DATA
sie INFORMATION_SCHEMA
«le TPCDS_SF100TNC
«3» TPCDS_SF10TCL
els TPCH_SF1
+3s TPCH_SF10 write queries here
ol* TPCH_SF100
== TPCH_SF1000
«l= TPCH_SF10000
+Is WEATHER

% UTIL_DB

Figure 2: Snowflake Workspace

design.

Which public cloud you pick is critical when considering which public cloud hosts the
remainder of your apps and data. Generally, it is preferable to use the same public cloud
and area as the rest of your data, since this results in reduced overall costs and improved
performance for your firm.

We’ve chosen AWS as the platform here. Unless otherwise noted, all of the samples
supplied operate on AWS. After making that selection, go to the following page, where you
will receive a notification indicating that Account Setup is in Progress. Once the instance
has been created, this will change to a success message. You will get an activation email
with instructions on how to activate your account and create a temporary username and
password:

The activation email contains an activation link that will activate your account and
take you to a site where you can establish a username and password. This username will
serve as the Account Administrator for your instance, so please pick wisely and safeguard
your login and password. Once your username and password have been configured, you
will be sent to the Snowflake webUI.

After this, you’ll be able to login to the snowflake account.
Click Get Started to get to your personal workspace as shown [2}

You’ll have a unique URL with your account name in it to access your Snowflake
environment as shown in figure

During the account set-up, some sample databases were provided as well as shown in

3+ Worksheet - Worksheet 1 x +

<« C O + xj53127.west-europe.azure.snowflakecomputing.com/fonsole#/internal /w

Enjoy your free trial! Visit our documentat

Al % >
Sicsnowflake A IELINENEE. - \Q
Databases Shares Warehouses Worksheets History
Worksheet 1 + v
Find database objects G « All Queries
& DEMO.DB

.3 SMNOWFLAKE_SAMPLE_DATA

£ UTILDB

Figure 3: URL to access the workspace

figure ?77:

You are currently signed in with the SYSADMIN role. To access and modify account
information, however, you must first move to the ACCOUNTADMIN position, which is
the super admin role as shown in figure

2.2 AWS, Azure and GCP Trial Accounts

In the similar fashion accounts need to be activate for Azure, AWS and GCP. The links
are added in the footnotes.

e AWS trial account setup steps El
e Azure trial account setup steps [

e GCP trial account setup steps E|

3 Collecting data-sets:

For this research, there is a requirement to upload huge data-set on the cloud. Now, you
could use any dataset large enough. For my research I used few public datasets from
kaggle and combined them together to have a big dataset of about 14GB in size.

Thttps://aws.amazon.com/premiumsupport /knowledge-center /create-and-activate-aws-account,/
Zhttps://k21academy.com/microsoft-azure/create-free-microsoft-azure-trial-account /
3https://k21academy.com/google-cloud /create-google-cloud-free-tier-account /

¢ Worksheet 1 +

Find database objects ©« O Al Queries | Saved a few seconds ago

Starting with...
& DEMO.DB 2
<= SNOWFLAKE_SAMPLE_DATA
s INFORMATION_SCHEMA
+is TPCDS_SF100TNC
+i: TPCDS_SF10TCL
<t TPCH_SF1
+3s TPCH_SF10 write queries here
+Is TPCH_SF100
<2 TPCH_SF1000
<2 TPCH_SF10000

sls WEATHER

g uTILDB
Figure 4: Worksheet and default databases
& ? | KOEN
Partner Connect Help Notifications il kol

~ | Q Search 4 Roles Change Password

IV ACCOUNTADMIN Switch Role
a SYSADMIN (Default) Preferences

PUBLIC Log Out

SECURITYADMIN

Figure 5: Roles in snowflake

Following are the datasets that I used for my research.

1. F1 2020 race datal]

2. Brazilian E-Commerce Public Dataset by Olist []

3. Bitcoin Historical Data [f]

4. The Movies Dataset []

5. Trending YouTube Video Statistics [f

6. 120 years of Olympic history: athletes and results [

7. 5000 Movie Dataset [

4 Uploading Datasets to the cloud:

The same datasets then needs to be uploaded to three cloud storage’s and the steps to
do that are mentioned in this section.

4.1 AWS:

To upload the files to a bucket on Amazon S3

e Create an Amazon S3 bucket.

e Login to the AWS Management Console and go to https://console.aws.amazon.com/s3/
to access the Amazon S3 console.

e To create a bucket, click Create Bucket.
e Type a bucket name in the Create a Bucket dialog box’s Bucket Name field.

e The bucket name you choose must be unique among all bucket names already in use
in Amazon S3. One strategy for ensuring uniqueness is to prefix your bucket names
with your organization’s name. Bucket names must adhere to specific guidelines.
For further details, see the Amazon Simple Storage Service User Guide’s section on
bucket constraints and limitations.

thttps://www.kaggle.com/coni57/f1-2020-race-data
®https://www.kaggle.com/olistbr/brazilian-ecommerce?select=olist, rder,aymentsqataset.csv
Shttps://www.kaggle.com /mczielinski/bitcoin-historical-data
"https://www.kaggle.com /rounakbanik /the-movies-dataset?select=ratings.csv
8https://www.kaggle.com/datasnaek /youtube-new
Yhttps://www.kaggle.com /heeso037/120-years-of-olympic-history-athletes-and-results
Ohttps: //www.kaggle.com/tmdb/tmdb-movie-metadata

Buckets (1) nfo

Buckets are containers for data stored in $3. Learn more A
Q 1 @

Name A AWS Region v Access v Creation date v

thesisnikhil US East (Ohio) us-east-2 Bucket and objects not public December 5, 2021, 15:49:21 (UTC+00:00)

Figure 6: Bucket in AWS S3

e Choose a Region.

e Create the bucket in the region where your cluster is located. If your cluster is
located in the United States of America’s West (Oregon) Region, choose US West
(Oregon) Region (us-west-2).

e Select Create.

e When Amazon S3 successfully builds your bucket, the console’s Buckets section
shows your empty bucket.

e Create a folder and Choose the name of the new bucket.
e Select the Actions button and from the drop-down box, select Create Folder.

e [Load a new folder with a name.

Upload the data files to the new Amazon S3 bucket.

Choose the name of the data folder.

In the Upload - Select Files wizard, choose Add Files.

Follow the Amazon S3 console instructions to upload all of the files you downloaded
and extracted,

Choose Start Upload.

4.2 Agzure:

The steps to upload data on Azure are slightly different.
It Azure, you'll first need to create a storage account as shown in Figure [7]

After creating a storage account, we will then need to create a container inside that
storage account as shown in Figure

Then we can create a folder and upload the dataset in that folder as shown in Figure
9)

Home >

Storage accounts =

Default Directory

+ Create fé:? Manage view O Refresh i Export to CSV % Open gue {-" Assign tags i Delete R’j Feedback
) P pen query gn tag

Filter for any field Subscription == all Resource group == all Location == all +7 Add filter

Showing 1to 1 of 1 records.

\:‘ Name T Type Ty Kind Ty Resource group T

\:‘ = thesisnikhil Storage account StorageV2 My_first_resource_group

Figure 7: Azure Storage Account

@I R Search resources, services, and docs (G+/)

Home > Storage accounts > thesisnikhil

Storage accounts « == thesisnikhil | Containers »
Default Directory - Storage account
-+ Create ié? Manage view ~ - |J3 Search (Cmd+/) ‘ ks -+ Container |‘;‘| Change access level 2
| Filter for any field.. = Overview | Search containers by prefix
Name T Activity log
P Name
— T
= thesisnikhil a0 [siogs
&? Diagnose and solve problems
D datasets
fo Access Control (IAM)
W’ Data migration

Events
B8 Storage browser (preview)
Data storage
= Containers
8 File shares
T Queues

00 Tables

Figure 8: Container in Azure

= Microsoft Azure [G) [R Search resources, services, and docs (G+/)

DEFAULT DIRECTORY S0

Home > thesisnikhil >

] datasets X
Container

« T Upload £ Change accesslevel () Refresh | [1 Delete | 2 Changetier | & release 7 Breaklease /® View snapshots Create snapshot

I Overview Authentication method: Aceess key (Switch to Azure AD User Account)
Location: datasets

2 Diagnose and solve problems

By Access Contral (AM) [search blobs by prefix (case-sensitive) | @) showdelted blobs

settings 7 Add filter

@ Shared access tokens Name Modified Access tier Archive status Blob type Size Lease state

Access policy [J 2 Be_olist_customers_dataset.csv 12/5/2021,3:22:37 PM Hot (Inferred) Block blob 862 MiB Available

Mli- Properties O® t_geolocation_datasetcsv 12/5/2021,3:27:38 PM Hot (Inferred) Block blob 58.44 MiB Available

© vetadata O :_order_items_datasetcsy 12/5/2021,3:23:23 PM Hot (Inferred) Block blob. 1472 MiB Available
[J 2 BE_olist_order_payments_datas... 12/5/2021,3:22:19PM Hot (Inferred) Block blob 551 MiB Available e
[[8e olist order reviews dataset... 12/5/2021,3:23:15PM Hot (inferred) Block blob 1378 MiB Available
[J 2 8E_olist_orders dataset.csv 12/5/2021,3:23:15PM Hot (Inferred) Block blob 16.84 MiB Available .
D : BE_olist_products_dataset.csv 12/5/2021,3:21:52 PM Hot (Inferred) Block blob 227 MiB Available e
[J [Be_olist_sellers_datasetcsv 12/5/2021,3:2039 PM ot (inferred) Block blob 170561 KiB Available
[] [8E_product_category_name_tra... 12/5/2021,3:20:38 PM Hot (Inferred) Block blob 255KiB Available .
D : MV_credits.csv 12/5/2021, 4:09:25 PM Hot (Inferred) Block blob 181.12 MiB Available e
—

Quetam Drafarancas .

Figure 9: Dataset uploaded in azure

ts and resources

Google Cloud Platform

m:n Cloud Storage & Bucket details CREFRESH 1 LEARN

@ Browser ot ae

thesisnikhil
@i Monitoring Location Storageclass Public access Protection

£

us (multiple regions in United States) Standard Not public None
£ Settings

0BJECTS CONFIGURATION PERMISSIONS PROTECTION LIFECYCLE

Buckets > thesisnikhil Ifj
UPLOAD FILES UPLOAD FOLDER CREATE FOLDER MANAGE HOLDS DOWNLOAD DELETE

Filter by name prefixonly v "= Filter Filter objects and folders I Show deleted data

B Neme Size Type Created @ Storage class Last modified Public access @ Version history @

O B BEolistcustomers_dataset.csv B.6MB text/csv Dec 6, 20. Standard Dec 6,202. Not public - *

O B BEolist geolocation_dataset.csv 58.4 MB text/csy Dec6, 20 Standard Dec6,202.. Notpublic - +:

[0 B BEolist_order_items_dataset.csv 14.7 MB text/csv Dec 6, 20. Standard Dec 6, 202. Not public - 3
W Marketplace O B BEolistorder_payments_dataset.csv 5.5MB text/csv Dec 6, 20. Standard Dec 6, 202. Not public - * i

B BE_olist order_reviews_dataset.csv 138 MB text/csv Dec, 20. Standard Dec 6,202 Not public = *:

Release Notes

O B BEolistorders_datasetcsv 16.8 MB text/csv Dec 6, 20. Standard Dec 6, 202. Not public - ¥

a O B BEolistproducts._dataset.csv 23M8 text/csy Dec, 20 Standard Dec 6,202 Nt public - + 3

Figure 10: Dataset uploaded in GCP

4.3 GCP:

Just like AWS and Azure, you can create a folder in GCP cloud storage and upload the
dataset there as well as shown in the figure.

Login to GCP account.

Open the cloud storage browser in GCP console.

Click on the CREATE BUCKET option.

Enter the requested details and click on Done.

Public Cloud Storage Your Snowflake Instance

AWS S3 Bucket

u COPY

Figure 11: Loading from cloud storage via external stage

5 Loading data into snowflake:

In this section, we will see how the data from cloud storage can be loaded into the
snowflake application.

Figure [11] shows the architecture of how the data is loaded into the snowflake applic-
ation from the three sources.

5.1 Loading Data from cloud into snowflake:

We need to create a policy so that the data on the cloud can be accessed by the Snowflake
application.

Overall it’s a 4 step process to load the data into S3 and into the snowflake from S3.
The details steps are mentioned in the official snowflake documentation

Basically, it’s a 3-4 step process depending on the cloud service provider and the links
for the official snowflake documentations are listed below.

e Bulk loading from Amazon S3 1]

Hhttps://docs.snowflake.com /en/user-guide/data-load-s3.html

10

// Create storage integration object

create or replace storage integration s3_int
TYPE = EXTERNAL_STAGE
STORAGE_PROVIDER = S3
ENABLED = TRUE
STORAGE_AWS_ROLE_ARN = ''
STORAGE_ALLOWED_LOCATIONS = ('s3://<your-bucket-name>/<your-path>/', 's3://<your-bucket-name>/<your-path>/')
COMMENT = 'This an optional comment'

// See storage integration properties to fetch external_id so we can update it in S3
DESC integration s3_int;

Figure 12: AWS Integration Object

] [] Create Stage.txt

———— Create file format & stage objects ———

— create file format

create or replace file format demo _db.public.fileformat azure
TYPE = C5V
FIELD_DELIMITER = ', "aws
SKIP_HEADER = 1;

—-— create stage object

create or replace stage demo db.public.stage aws
STORAGE_INTEGRATION = aws_integration
URL = 'aws://storageaccountsnow.blob.core.windows.net/snowflakecsv®
FILE_FORMAT = fileformat aws;

EEERERE R TR

— list files
LIST @demo_db.public.stage_aws;

Figure 13: Creating a stage object

e Bulk loading from Microsoft Azure [?]

e Bulk loading from Google GCP [7]
Next we create an integration and staging objects to load the files into a stage in
snowflake from where we can later load in into the database.

Figure (12| shows the commands to create the integration object before being able to
access the data in snowflake.

Next we create a stage object as shown in the figure

Next, we list the stage object and see the files loaded into the stage from the S3 bucket
using the command ”LIST @Qdemo_db.public.stage_aws;”

Now that we see the list of files as shown in figure [14}

2https://docs.snowflake.com/en /user-guide/data-load-azure.html
B3https://docs.snowflake.com /en /user-guide/data-load-ges.html

11

LIST @demo_db.public.stage_azure;

Results Data Preview + Open Histo
+ QuerylD S5QL 316s 129
KA Copy Columns v |
Row name size md5 last_modified

1 azure://thesisnikhil.blob.core.windows.ne... 9033957 8a2c4244856aab4bde3b8ed81f8ca2’sl Sun, § Dec 202115:22:37 GMT

2 azure://thesisnikhil.blob.core.windows.ne... 61273883 6d8464e41c8e2013955e437bbb4falbd Sun, 5 Dec 2021 15:27:38 GMT

3 azure://thesisnikhil.blob.core.windows.ne... 15438671 f4fa76976662e9cba063310e49ed2645 Sun, 5 Dec 202115:23:23 GMT

4 azure://thesisnikhil.blob.core.windows.ne... 5777138 75ce0c041d18e5{250c5¢cea%aB042944 Sun, § Dec 2021 15:22:19 GMT

5 azure:/ithesisnikhil.blob.core.windows.ne... 14451670 914066be00d2db0c3d8571071cff1688 Sun, 5 Dec 202115:23:15 GMT

6 azure://thesisnikhil.blob.core.windows.ne. .. 17654914 8bdB0e55¢1caz29d9f70b6213e72f22¢ Sun, 5 Dec 202115:23:15 GMT

7 azure://thesisnikhil.blob.core.windows.ne... 2379446 e93540110423669223b83c%a01fdfSca Sun, 5 Dec 2021 15:21:52 GMT

8 azure://thesisnikhil.blob.core.windows.ne... 174703 5b22c02facdf842d6c0aea3be1849018 Sun, 5 Dec 2021 15:20:39 GMT

9 azure://thesisnikhil blob.core.windows.ne... 2613 4196d142e8f2b9697521fc50c97f626b Sun, 5 Dec 2021 15:20:38 GMT

10 azure://thesisnikhil.blob.core.windows.ne... 189917658 NULL Sun, 5 Dec 2021 16:09:25 GMT

Figure 14: List of files in external stage

Next we create a table in which we will load the data from this stage and then we
would be able to access the contents.

The similar steps needs to be carried out for azure and GCP and the queries for the
same are attached in the artifacts under code/loading_data

6 Creating a snowpipe:

6.1 Creating a task:

To create a pipeline we will first create a task in snowflake and the steps are menitoned
as follows.

e To simplify the process for you, we’ve utilized Snowflake’s example data and built
an aggregate query on top of it. (Please note that sample data is supplied with
your Snowflake instance and is located in the database SNOWFLAKE SAMPLE
DATA.) On the sample data, we will run the following fictitious query:

SELECT C.C_NAME,SUM(L_EXTENDEDPRICE) ,SUM(L_TAX)

FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER C

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.0RDERS O

ON 0.0_CUSTKEY = C.C_CUSTKEY

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.LINEITEM LI
ON LI.L_ORDERKEY = 0.0_ORDERKEY

GROUP BY C.C_NAME;

e The result for the above query is is shown in figure

12

e Now we'll establish a target table to store the results of this query. Notably, we have
added a Reporting Time column to the columns returned by the previous query.
Each time we enter data, we will include the current timestamp in this column:

CREATE DATABASE task_demo;

USE DATABASE task_demo;

CREATE OR REPLACE TABLE ordering_customers
(

Reporting_Time TIMESTAMP,

Customer_Name STRING,

Revenue NUMBER(16,2),

Tax NUMBER(16,2)

);

e We will now create a task using the preceding SQL statement to insert data into
the ordering_customers table. To start with, we will configure the task to run every
2 minutes:

CREATE TASK refresh_ordering_customers

WAREHOUSE = COMPUTE_WH

SCHEDULE = ’30 MINUTE’

COMMENT = ’Update Ordering_Customers Table with latest
data’

AS

INSERT INTO ordering_customers

SELECT CURRENT_TIMESTAMP, C.C_NAME,
SUM(L_EXTENDEDPRICE), SUM(L_TAX)

FROM SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.CUSTOMER C

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.0RDERS 0

ON 0.0_CUSTKEY = C.C_CUSTKEY

INNER JOIN SNOWFLAKE_SAMPLE_DATA.TPCH_SF1.LINEITEM LI
ON LI.L_ORDERKEY = 0.0_ORDERKEY

GROUP BY CURRENT_TIMESTAMP, C.C_NAME;

e Let’s validate that the task has been created correctly by running the DESC com-
mand:

DESC TASK refresh_ordering_customers;
e The following figure [16| is the output of the previous code, which has been broken

into numerous lines for readability. Notably, a new task is generated by default in
a suspended state, as seen in the output:

e If you are executing your code through a role other than ACCOUNTADMIN, you
must provide that role the following privileges:

13

Results Date Preview « OpenHistory

¥ QueryID SOL 83m: 98,896
& Columns v
Row C_NAME SUM(L_EXTENDEDPRICE) SUM(L_TAX)
ul er#000019336 3081119.38 338
r#000139328 143775143 142
r#000123745 3680110.29 as2
000046379 1729092.26 187
5 Customer#000087702 2575101.48 252
Figure 15: Sample output
Resuits Data Preview = OpenHi
v GuerylD SGL 3m: 1
& Copy Columns *
Row created_on name id database_name schema_name owner comment warehouse schedule predecessors state definition condition
1 2021-12-15... REFRESH_O. 0la0féco-fc.. TASK_DEMO PUBLIC SYSADMIN Update Ord... COMPUTE.... 2 MINUTE HULL suspended INSERT INT.. HULL

Figure 16: DESC Command output

USE ROLE ACCOUNTADMIN;
GRANT EXECUTE TASK ON ACCOUNT TO ROLE SYSADMIN;

We now need to change the task’s status to Resumed so that it may resume execu-
tion on time. This will be accomplished by executing the describe command once
again to verify that the task has been properly transferred from the suspended
to the begun state. Nota bene, the next step must be performed as ACCOUN-
TADMIN; otherwise, you may provide the needed permissions to another role, as
described in the previous step:

ALTER TASK refresh_ordering_customers RESUME;
DESC TASK refresh_ordering_customers;

The accompanying code produces the following output figure [I7}

Note that now, the state of the task is set to started, which means the task is now
scheduled and should execute in the next 2 minutes.

We will now keep an eye on the task execution to validate that it runs successfully.
To do that, we need to query task_history, as follows:

SELECT name, state,
completed_time, scheduled_time,

Results Data Preview

v GuerylD SGL 41ms 1
& || Copy
Row created_on name id database_name schema_name owner comment warehouse schedule predecessors state (4
1 202112-15.. REFRESH_O.. 0laOffcbfc.. TASK.DEMO PUBLIC SYSADMIN Update Ord.. COMPUTE... 2 MINUTE NULL started I

Figure 17: DESC Command output

14

Results Data Preview

+ Open Histor;

v QuerylD SGL 1285 1
4, | Copy Columns *
Row NAME STATE COMPLETED_TIME SCHEDULED_TIME ~ ERROR_CODE ERROR_MESSAGE
1 REFRESH_ORDERING CUSTOMERS SCHEDULED NULL 2021-12-1503:58:15.215 -0800 NULL MNULL
Figure 18: Output of task_history
Results Data Preview
v QuerylD SQL 283ms 2
& Copy
Row NAME STATE COMPLETED_TIME SCHEDULED TIME ERROR_CODE ERROR_MESSAGE
1 REFRESH_ORDERING_CUSTOMERS SCHEDULED MNULL 2021-12-15 04:01:15.235 -0800 NULL NULL
2 REFRESH_ORDERING CUSTOMERS SUCCEEDED 2021-12-15 03:50:18109 -0800 2021-12-15 03:59:15.215 -0B00 NULL NULL

Figure 19:

Output of task_history

error_code, error_message
FROM TABLE(information_schema.task_history())
WHERE name = ’REFRESH_ORDERING_CUSTOMERS’ ;

The output from the query is shown in figure

As seen by the output, the job has not yet been completed, and the planned time
for execution is displayed. In another two minutes, we’ll check the status, and this
job should have completed.

Rerun the above query after 2 minutes. As predicted, the job was successfully
completed, as shown by the following output [I9, and the next instance is scheduled
for execution:

Let’s validate that the task has indeed executed successfully by selecting from the
ordering_customers table:

SELECT * FROM ordering_customers;

As shown in the figure 20} the query returned around 100,000 records, which indic-
ates that the task executed successfully:

More examples of creating tasks are present in folder code/tasks as shown in figure

Results Data Preview « Open History

v QuerylD SGL 685ms 99,096
& Columns * "
Row REPORTING.TIME CUSTOMER_NAME REVENUE TAX
1 2021-12-15 03:59:16.423 Customer# 000145765 1693153 75 153
2 2-15 03:69:16.423 Customer# 000075229 3245223.20 an
3 2-15 03:59:16.423 Customer#000025862 3719022.96 a7z
4 035016423 Customer#000080505 3784125.30 428
5 2021-12-15 035016423 Customer#000147364 3480457.29 418

Figure 20: Validating the task

15

< Tasks

Back/Forward

Name

Creating Tasks.txt

Creating tree of tasks.txt

Task history.txt

Task with stored procedure. txt
Using CROM.txt

Figure 21: Tasks files

6.2 Creating a stream:

e Let’s start by creating a database and a staging table on which we will create our
stream object. We create a staging table to simulate data arriving from outside
Snowflake and being processed further through a stream object:

CREATE DATABASE stream_demo;
USE DATABASE stream_demo;
CREATE TABLE customer_staging
(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

)

e The process of creating a stream is quite straightforward with a simple command
such as the following:

CREATE STREAM customer_changes ON TABLE customer_staging;
e Let’s describe the stream to see what has been created:
DESC STREAM customer_changes;

e As shown in figure 22| the mode of the stream is set to DEFAULT, which indicates
it will track inserts, updates, and deletes that are performed on the table:

e Let’s insert some data into the staging table to simulate data arriving into Snow-
flake:

INSERT INTO customer_staging VALUES (1,’Jane
Doe’,’NSW’,’AU’);

INSERT INTO customer_staging VALUES
(2,’Alpha’,’VIC’,’AU’);

16

Results Data Preview == Open History

+ QueryID SQL 94ms 1
& Copy Columns v+ @

Row created_on name database_name schema_name owner comment table_name type stale mode stal

1 2021-12-15.. CUSTOMER_.. STREAM_DE.. PUBLIC ACCOUNTA... STREAM_DE.. DELTA false DEFAULT 202112

Figure 22: The created stream

Results Data Preview 4= Open History
+ QueryID SQL 178ms 2
& Copy Celumns v
Row ID NAME STATE COUNTRY
1 2 Alpha ViC AU
2 1 Jane Doe NSW AU

Figure 23: Validating whether the data is inserted into the table

e Validate that the data is indeed inserted into the staging table by selecting it from
the table:

SELECT * FROM customer_staging;

e As expected, two rows are present in the staging table as shown in figure [23}

e Now, let’s view how the changing data has been captured through the stream. We
can view the data by simply selecting from the stream object itself, which is shown
as follows :

SELECT * FROM customer_changes;

e The following output (figure shows the data that has been recorded by the
stream. Notice both rows have been recorded with an action code of INSERT:

e Now that we have our stream set up successfully, we can process the data from the
stream into another table. You would usually do this as part of a data pipeline.
Create a table first in which we will insert the recorded data:

CREATE TABLE customer

Row ID NAME STATE COUNTRY METADATASACT METADATASISUP METADATA$ROW
1 1 Jane Doe NSW AU INSERT FALSE 546c1dasc5e...
2 2 Alpha ViC AU INSERT FALSE 562a8a2d053...

Figure 24: Viewing the changing data

17

Results Data Praview

v

Query ID SGQL 194ms 2

& Copy

Row ID MNAME STATE COUNTRY
1 1 Jane Doe NSW AU
2 2 Alpha VIC AU

Figure 25: Validating the data from the customer table

ID INTEGER,
Name STRING,
State STRING,
Country STRING
);

Retrieving data from a stream and inserting it into another table is as simple as
performing a query on the stream itself. As shown ahead, the query selects the
required columns from the stream and inserts them into the customer table. Do
note that we have used a WHERE clause on metadata$action equal to INSERT.
This is to ensure that we only process new data:

INSERT INTO customer

SELECT ID,Name,State,Country

FROM customer_changes

WHERE metadata$action = ’INSERT’;

Let’s select the data from the customer table to validate that the correct data
appears there:

SELECT * FROM customer;

As expected, the two rows that were originally inserted into the staging table appear
here as shown in figure [25¢

Let’s find out what happens to the stream after data has been processed from it.
If we perform SELECT now, there will be zero rows returned since that data has
already been processed:

SELECT * FROM customer_changes;

The output shows zero rows returned (figure [26)):

Let’s update a row in the staging table. We are then going to see in the stream
how that update appears:

UPDATE customer_staging SET name = ’John Smith’ WHERE
ID = 1;

18

SELECT + FROM customer_changes;

Results Data Preview

o

Query ID SQL 132ms 0

& | Copy

Row ID NAME STATE COUNTRY METADATASACTION
Figure 26: Zero rows returned
Results Data Preview
+ Query!D SQL 343ms 2
& Copy
Row I NAME STATE COUNTRY METADATASACTION
1 1 John Smith NSW AU INSERT
2 1 Jane Doe MNSW AU DELETE

6.3

+ Open Histo

Columns ~

METADATASISUPDATE ~ METADATASROW_ID

METADATASISUPDATE
TRUE

TRUE

Figure 27: Selecting the data from the stream

Select the data from the stream:

SELECT * FROM customer_changes;

+= Open Histor

Columns v

METADATASROW_ID

f22afe170dd04491f6...

f22afe170dd04491f6

You will see two records appear in the result set, as shown in figure

An update operation is essentially captured as DELETE followed by INSERT.
Therefore, you will see both INSERT and UPDATE appear in the result. If you
are processing the stream for deletes as well, you will need additional logic in the

consuming code to process DELETE correctly.

Creating snowpipe using task and stream

Let’s start by creating a database and a staging table on which we will create our

stream object. We will be creating a staging table to simulate data arriving from
outside Snowflake and being processed further through a stream object:

CREATE DATABASE stream_demo;
USE DATABASE stream_demo;
CREATE TABLE customer_staging
(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

19

name

database_name schema_name owner comment table_name type stale mode

CUSTOMER_ STREAM_DE PUBLIC SYSADMIN STREAM_DE DELTA false APPEND_ONLY

Figure 28: The created stream

Next, create a stream on the table that captures only the inserts. The insert-only
mode is achieved by setting APPEND_ONLY to TRUE:

CREATE STREAM customer_changes ON TABLE
customer_staging APPEND_ONLY = TRUE;

Let’s describe the stream to see what has been created:
DESC STREAM customer_changes;

As shown in the following output (figure [28), notice that the mode of the stream is
set to APPEND_ONLY, which indicates it will only track inserts:

So, we have created a staging table and a stream on top of it. Now, we are going
to create the actual table into which all the new customer data will be processed:

CREATE TABLE customer
(

ID INTEGER,

Name STRING,

State STRING,

Country STRING

);

Let’s now create a task that we will use to insert any new data that appears in the
stream:

CREATE TASK process_new_customers
WAREHOUSE = COMPUTE_WH

COMMENT = ’Process new data into customer’
AS

INSERT INTO customer

SELECT ID,Name,State,Country

FROM customer_changes

WHERE metadata$action = ’INSERT’;

Let’s schedule this task to run every 1 minutes. We are assuming that new customer
data is getting inserted into the staging table all the time and we need to process
it every 1 minutes. Please note that to resume a task, you will need to run the
command as ACCOUTNADMIN or another role with the appropriate privileges:

20

Results Data Preview

v QueryID SQL 66ms

ID

2

1

Figure 29: Customer table

NAME STATE COUNTRY METADATASACTI METADATAS$ISUP METADATA$ROW
Alpha VIC AU INSERT FALSE €9801d993af...
Jane Doe NSW AU INSERT FALSE 49e84564a18...

Figure 30: Viewing the changing data

ALTER TASK process_new_customers
SET SCHEDULE = ’1 MINUTE’;
ALTER TASK process_new_customers RESUME;

Let’s check that the target table, that is, customer, is empty:
SELECT * FROM customer;

As expected, no rows are present in the customer table as shown in figure 29}

We will now insert some data into the staging table (effectively simulating data
that has arrived into Snowflake from an external source):

INSERT INTO customer_staging VALUES (1,’Jane
Doe’,’NSW’,’AU’);

INSERT INTO customer_staging VALUES
(2,’Alpha’,’VIC’,’AU’);

Now, let’s view how the changing data has been captured through the stream. We
can view the data by adding SELECT from the stream object itself:

SELECT * FROM customer_changes;

The following output (figure shows the data that has been recorded by the
stream. Notice both rows have been recorded with an action code of INSERT:

Retrieving data from a stream and inserting it into another table is as simple as
performing a query on the stream itself. As shown ahead, the query selects the
required columns from the stream and inserts them into the customer table. Do
note that we have used a WHERE clause on metadata$action set to INSERT. This
is to ensure that we only process new data:

21

ID NAME STATE COUNTRY
2 Alpha VIC AU

1 Jane Doe NSW AU

Figure 31: Two rows inserted into the staging table

INSERT INTO customer

SELECT ID,Name,State,Country
FROM customer_changes

WHERE metadata$action = ’INSERT’;

e Let’s select the data from the customer table to validate that the correct data
appears there:

SELECT * FROM customer;

e Asexpected, the two rows that were originally inserted into the staging table appear

here (figure B1)):

e We will now insert some more data into the staging table and let it be processed
by the scheduled task:

INSERT INTO customer_staging VALUES
(3,’Mike’,’ACT’,’AU’);
INSERT INTO customer_staging VALUES
(4,’Tango’,’NT?,’AU’);

e Now, we wait for our scheduled task to run, which will process this staging data into
the target table. You can also keep an eye on the execution and the next scheduled
time by running the following query. Once the scheduled task has executed, the
results will look like what is shown as follows:

SELECT * FROM
TABLE(information_schema.task_history(
task_name => ’PROCESS_NEW_CUSTOMERS’))
ORDER BY SCHEDULED_TIME DESC;

e Once the task has been successfully executed, you will see output similar to the
following screenshot (figure . The task that has been run successfully will have
a QUERY_ID value assigned and a STATE value of SUCCEEDED:

22

QUERY.ID NAME DATABASE_NAN SCHEMA_NAME QUERY_TEXT CONDITION_TE} STATE ERROR.CODE = ERROR_MESSAC

PROCESS_N STREAM_DE PUBLIC NSERT INT NULL SCHEDULED NULL NULL

PROCESS_N... STREAM_DE.. PUBLIC NSERT INT., NULL SUCCEEDED NULL NULL

Figure 32: Processing the staging data into the target table

ID NAME STATE | COUNTRY
4 Tango NT AU
2 Alpha VIC AU

1 Jane Doe NSW AU

3 Mike ACT AU

Figure 33: Validating the rows in the staging table

e Once the task has been successfully executed, select the data from the target table
to validate that the rows in the staging table have been inserted into the target
table:

SELECT * FROM customer;
e You will see two additional records appear in the result set, indicating that the data

from the staging table was processed through a combination of tasks and streams
and inserted into the target table (figure [33)):

7 Access Management:
Figure |35 shows the roles in snowflake application.

The detailed steps for working with each of the roles are documented and present
inside code/Access_management folder (figure [35).

23

Account Admin

T

Security Admin System Admin

-~ I
User Admin

DEV_DBA

F

Public

Figure 34: Role Hierarchy

< Access_management
Back/Forward

Name

ACCOUNTADMIN.txt
Custom roles.txt
SECURITYADMIN.txt
SYSADMIN.txt
USERADMIN.txt

Figure 35: code/Access_management

24

oo
< > Code ® 8
Back/Forward Get Info
Name

Streams
T Tasks
2 Time_Travel

Date Modified

Yesterday at 4:54 PM
Yesterday at 4:55 PM
Yesterday at 4:35 PM
Today at 11:40 PM

Yesterday at 4:57 PM
Today at 11:16 PM

Yesterday at 4:53 PM
Yesterday at 4:51 PM
Yesterday at 4:50 PM

Figure 36: Folder Structure

Size

@ v

Action

Kind

Folder
Folder
Folder
Folder
Folder
Folder
Folder
Folder
Folder

Q

Search

Their are numerous other parts of the implementation as well and they are shared in
the artifacts as shown in figure [36] Also, I would be covering some important tasks in

the demo video as well.

References

Khedekar, V. & Tian, Y. (2020), ‘Multi-tenant big data analytics on aws cloud platform’.

Wan, W., Du, X., Zhao, X. & Yang, Z. (2021), ‘A cloud-enabled collaborative hub for

analysis of geospatial big data’.

Wang, F., Wang, H. & Xue, L. (2021), ‘Research on data security in big data cloud

computing environment’.

Xin, Li, J. & Guo (2019), ‘Research on ship data big data parallel scheduling algorithm
based on cloud computing’, Journal of Coastal Research 94(spl), 535-539.

25

	Overview:
	Accounts:
	Snowflake Trial Account:
	AWS, Azure and GCP Trial Accounts

	Collecting data-sets:
	Uploading Datasets to the cloud:
	AWS:
	Azure:
	GCP:

	Loading data into snowflake:
	Loading Data from cloud into snowflake:

	Creating a snowpipe:
	Creating a task:
	Creating a stream:
	Creating snowpipe using task and stream

	Access Management:

