
A Comparative Study on Cloud Gaming
performance using Traditional, Containers in
Fog Nodes, and Edge-enabled Shared GPU

architectures

MSc Research Project

Cloud Computing

Sabesan Muralikrishnan
Student ID: x20149581

School of Computing

National College of Ireland

Supervisor: Sean Heeney

www.ncirl.ie



National College of Ireland
Project Submission Sheet

School of Computing

Student Name: Sabesan Muralikrishnan

Student ID: x20149581

Programme: Cloud Computing

Year: 2021

Module: MSc Research Project

Supervisor: Sean Heeney

Submission Due Date: 16/12/2021

Project Title: A Comparative Study on Cloud Gaming performance us-
ing Traditional, Containers in Fog Nodes, and Edge-enabled
Shared GPU architectures

Word Count: 6769

Page Count: 21

I hereby certify that the information contained in this (my submission) is information
pertaining to research I conducted for this project. All information other than my own
contribution will be fully referenced and listed in the relevant bibliography section at the
rear of the project.

ALL internet material must be referenced in the bibliography section. Students are
required to use the Referencing Standard specified in the report template. To use other
author’s written or electronic work is illegal (plagiarism) and may result in disciplinary
action.

Signature: Sabesan Muralikrishnan

Date: 16th December 2021

PLEASE READ THE FOLLOWING INSTRUCTIONS AND CHECKLIST:

Attach a completed copy of this sheet to each project (including multiple copies). □
Attach a Moodle submission receipt of the online project submission, to
each project (including multiple copies).

□

You must ensure that you retain a HARD COPY of the project, both for
your own reference and in case a project is lost or mislaid. It is not sufficient to keep
a copy on computer.

□

Assignments that are submitted to the Programme Coordinator office must be placed
into the assignment box located outside the office.

Office Use Only

Signature:

Date:

Penalty Applied (if applicable):



A Comparative Study on Cloud Gaming performance
using Traditional, Containers in Fog Nodes, and

Edge-enabled Shared GPU architectures

Sabesan Muralikrishnan
x20149581

Abstract

The demand for cloud gaming and the user base for the same has increased
drastically following various advancements in the field. After the introduction of
cloud computing and its continuous evolution, various new technologies like Fog
Computing, Edge computing were developed. These advancements are leveraged to
overcome all fallacies and pitfalls in the traditional cloud gaming solution. Since the
introduction of Edge Computing, major changes happened in the mobile network
region. The new 5G technology allows users to experience a high-speed internet
connection in their mobile devices. While the Edge Nodes are primarily used to
collect raw data and share them with the cloud server for processing, in this research
project, one more implementation for Edge Computing is inspired and proposed as a
cloud gaming model. We have leveraged Edge Computing nodes, powered by virtual
GPU, coupled with WebRTC streaming, in an attempt to improve the Quality of
Experience and Quality of Service. The game commands will be sent to the cloud
server through Edge Node. Once the game video is rendered at the cloud server, it
will be encoded on an Edge Node closer to the user. This encoded video will be then
streamed as real-time video onto the player’s browser. The communication will pass
only through the Edge Node without any additional hops. The evaluation result
proves that the proposed solution maintains a constant frame rate, frame delay
time below 10 ms, jitter rate below 10, and 30% reduced bandwidth consumption,
thus improving the overall QoE and QoS.

1 Introduction

Cloud computing and related services have improved and optimized over various re-
searches done by authors, students, and organizations. All these updates enable cloud
computing providers to improve their service offerings. The world is shifting towards a di-
gitization paradigm where every second of data is being gathered, analyzed, transformed,
and stored. Cloud computing plays a major role in this digitization paradigm shift. Based
on a survey taken during 2020, 541 hyper-scale data centers were registered across the
globe. Many cloud providers leverage this increase in data centers and available resources
to improve their service quality to attract more customers. One of the most profitable
cloud offerings is providing Gaming as a Service. At the beginning of cloud gaming, cloud
resources and infrastructure is provided to deploy game builds. This is later updated with
a stable client-server architecture called the ’Traditional Architecture’.

1



While this approach is simple and straightforward, there are various factors that
affect the quality of game-play experience and service offered by the cloud server (Cai
et al.; 2014). Addressing and solving these factors created more research opportunities for
students, authors, and cloud service providers. Every improvement in cloud computing
and related sub-domains are leveraged and experimented to optimize and improvise the
QoE (Quality of Experience) and QoS (Quality of Service) of a cloud game service.

In this research project, three different cloud gaming architectures are implemented,
compared, and evaluated. The first architecture is Traditional Architecture. In this
method, the game binary is deployed on the cloud server. The user will send game
commands to the cloud server. Upon receiving the game commands, the cloud server will
execute the game logic and render a video output. This video output is later encoded and
streamed back to the player’s console. The second architecture is Fog-enabled cloud game
architecture. This approach leverages the Fog Computing advancements with help of
container images. In this approach, non-gaming tasks like video encoding and streaming
are transferred offloaded to the Fog Node that is closer to the user. This approach reduces
latency and improves QoE.

The third architecture is an experimental architecture proposed in this research pa-
per to improve both Qualities of Experience by reducing the latency, and Quality of
Service by reducing the bandwidth consumption. In this architecture, game commands
will be sent to the internet/ network service provider tower station from the user browser
(Aguilar-Armijo; 2021). Edge computing resources deployed in these tower stations will
be leveraged for video encoding and streaming. The game commands are sent directly
to the cloud server from the Edge node without any Fog Node layer in between. Once
the game scene is rendered by the cloud server, these packets are sent to the Edge node.
The Edge node will use WebRTC protocol to stream the game video back to the user
(Xu et al.; 2018). In addition to that, the Edge Node deployed will be powered by Nvidia
GRID for hardware encoding support. Elimination of Fog Node layer between Edge and
the Cloud server, Enabling virtual GPU for Edge Node video encoding, Reducing the
communication distance from the remote cloud server to the local Edge node, introdu-
cing a peer-to-peer network for real-time video streaming, the proposed architecture is
expected to produce improved QoE and QoS.

The following content of this project report is structured into multiple sections as
follows. Section 2 details some related work and comparison between them and proposed
system. Section 3 explains the project methodology involved in implementing all three
architectures and evaluating them. Section 4 explains the required design specification
to implement this project. Section 5 explains the steps involved in implementing each
architecture along with the workflow overview. Section 6 details on how the assumed
parameters were evaluated with proof and a summary discussion. Section 7 summarises
the project findings and possible future research works.

Research Questions:

What is the difference in QoS, and QoE of Cloud Gaming, hosted using
a Traditional, an Experimental Container in Fog Nodes, and a proposed Ex-
perimental architecture?

Can the QoE and QoS of the cloud gaming service be improved by lever-
aging Edge Computing service, allocating vGPU resources, and streaming

2



game video with a peer-to-peer communication?

2 Related Work

2.1 Traditional Cloud Gaming

Authors (Cai et al.; 2014) conducted a series of experiments with different cloud gaming
services and cloud gaming platforms. In this experiment, they mainly focus on evaluating
the Gaming as a Service paradigm and produce their findings. Based on their experiments
involving games of varied genres and quality, each GaaS service is benchmarked based
on its performance. Also, towards the end, the authors suggested new research ideas and
comparative studies for cloud gaming and related technologies.

An experiment cloud gaming testbed is developed by authors (Huang et al.; 2013).
This solution was developed to primarily test the traditional cloud gaming architecture.
The performance of the cloud gaming infrastructure can be evaluated by deploying this
testbed with sample 2D and 3D games. The project was published open-source for
researchers, students, cloud gaming service providers to implement and evaluate their
novelty idea.

2.2 Fog-enabled Cloud Gaming

In the distributed computing world, maintaining one global server to host the game is
geographically not considered as an optimum solution. In general, the cloud computing
infrastructure is divided into Mobile Cloud, Edge Computers, Fog Nodes, and Cloud
Servers/ Data Centers. With the advancement in this new distributed computing infra-
structure, authors (Lin and Shen; 2015) proposed a fog-enabled cloud gaming system.
This solution will offload certain tasks to the fog node closer to the user location. This
experiment proves to reduce the overall latency of the cloud gaming session. As a result,
the QoE of the game-play was improved with this proposed method.

In addition to that, authors (Lin and Shen; 2016) proposed an improvement to the ex-
isting Cloud Fog solution where the Quality of Service is improved by reducing bandwidth
consumption. The previous version proposed by authors (Lin and Shen; 2015) improved
the Quality of Experience by reducing the latency alone. In this version, super-nodes (fog
networks containing super-nodes) were assigned to each user for game video rendering
and streaming. This process will offload the video render, streaming, and encoding tasks
from the cloud server and help to produce better throughput from the cloud server.

2.3 GPU Virtualization in Cloud Gaming

The performance of cloud gaming depends on the effective allocation of hardware and
software resources to power the computation tasks. Since the introduction of cloud im-
ages for operating systems, software virtualization reduced the duplication of hardware
resources by virtualizing and distributing them as shared resources. After the introduc-
tion of Nvidia GRID, authors (Xu et al.; 2018) conducted an experiment to find the
percentage improvement in QoE by increasing the frame per second rate on cloud media
functions by leveraging Nvidia Grid virtual GPU services.

While the idea of adding more resources (GPU resources in particular) for better
cloud gaming performance is straightforward, the underlying cost and energy consump-

3



tion will increase exponentially. Hence it is important to employ an effective GPU re-
source scheduler that assigns virtual GPUs to cloud nodes that runs the game logic.
Author 10.1145/2632216 proposed an effective GPU resource allocation platform called
VGRIS intended to improve cloud gaming experience and service quality.

2.4 Edge and Cloud Computing

Authors (Chen et al.; 2018) devised an efficient healthcare system by leveraging Edge
Cognitive Computing in addition to the existing cloud computing resources. In the
existing health care system, not all patients get their respective care and individual
resources allocated to them. This proposed system leverages edge computing to improve
the overall Quality of Service by assigning dedicated resources to each patient care unit.
The data collected from these Edge nodes will be later transferred to the cloud server for
analysis and storage.

In another experiment, authors Zhang et al. (2019) proposed a methodology to im-
prove the cloud gaming QoE by enabling Edge Computing capabilities as a part of their
proposed architecture. As a result of this experiment, they proposed the EdgeGame cloud
gaming platform. This platform is proposed to improve the QoE by 20% of cloud gaming
by reducing network latency by 50%

2.5 WebRTC Advancement

In every cloud game solution, user inputs will be transmitted to the cloud server and
the resultant game scene will be streamed back to the user as a game video. With
the advancement in media streaming technology, authors (Chen et al.; 2019) leveraged
WebRTC for game video streaming. This experiment utilizes Google’s STUN and TURN
servers to register an external IP address. This system implements GPU virtualization by
consuming after-market GPU drivers instead of using vGPU services like Nvidia GRID
for cost efficiency.

The increasing need for interactive and real-time cloud gaming experience made many
cloud computing service providers invest more in research regarding this. As a result of
that, Google release its cloud gaming platform in 2019. Author (Carrascosa and Bellalta;
2020) conducted a detailed analysis of Google stadia and its performance. From the
experiment, it is apparent that Google leverages WebRTC for real-time and interactive
web game-play experience.

Table 1: Comparison with previous work done on cloud gaming comparative studies and
optimizations

Approach QoE QoS Edge Enabled WebRTC Support
(Cai et al.; 2014) No No No No
(Lin and Shen; 2016) No Yes No No
(Lin and Shen; 2015) Yes No No No
(Xu et al.; 2018) Yes Yes No Yes
(Chen et al.; 2018) No Yes Yes Yes
Zhang et al. (2019) Yes No Yes Yes
(Chen et al.; 2019) Yes Yes No Yes
Proposed System Yes Yes Yes Yes

4



2.6 QoE and QoS Evaluation

Authors (Peñaherrera-Pulla et al.; 2021) conducted a series of comparative analyses on
various cloud gaming architectures and open-source frameworks. In this experiment,
they have compared cloud gaming platforms that are optimized with GPU resources,
Fog-enabled infrastructures, and Edge computing infrastructures. The research focuses
on the impact of Quality of Experience on any given cloud gaming architecture and
platform. Evaluation metrics and parameters to be considered to compare the video
render and streaming quality were discussed in detail.

Before implementing an existing cloud gaming architecture and the proposed architec-
ture, it is vital to understand a major factor that affects the quality experience. Authors
(Slivar et al.; 2015) conducted a series of experiments to understand the impact on quality
of experience. From their experiments, it is observed that the quality of experience for a
multi-player online game can be improved drastically if the video encoding strategy is op-
timized tailored to each user in the game session. Results obtained from this experiment
are used to implement new QoE optimization strategies in cloud gaming infrastructure.

2.7 Comparing Related Work

In Table 1 the proposed architecture and its optimizations were compared with existing
cloud gaming architectures, comparative analysis methodologies, and gaming test-beds.

3 Methodology

From the beginning of cloud gaming services, there have been various improvements in
underlying architectures. With the raw data gathered while reviewing previous work
done on cloud gaming, and the results obtained after the implementation, a detailed
evaluation is performed. From the evaluation, the Quality of Service (QoS) and Quality
of Experience (QoE) will be determined (Laghari et al.; 2019). In this research project,
three different cloud gaming architectures were implemented and evaluated.

3.1 Traditional Architecture:

The first architecture implemented and evaluated in this project is the traditional cloud
gaming architecture. At the beginning of cloud gaming services, the game engine and
corresponding game logic were deployed onto a centralized server. This server creates
a secured game session that is shared with users across the world. Users interact with
this game session and provide game commands as input to the cloud server. This input
will be processed and corresponding game logic will be executed. The outcome of this
game logic will be encoded as a video and streamed back to the user. The performance
of this game session depends on various criteria. While this traditional cloud gaming
architecture served well for many 2D single-player games, with low graphics settings, new
and modern multiplayer online games were not supported by this architecture. Author
(Shea et al.; 2013) mentioned that 100 ms delay tolerance is acceptable for cloud gaming
users (specifically for First-Person Shooter (FPS) games). Nonetheless, due to a huge
increase in the user base for multiplayer online games, this latency should be further
reduced.

5



3.2 Fog-enabled Architecture:

Author (Lin and Shen; 2016) through a series of experiments and analysis of this Multi-
player Online Game (MOG) understood that the user base for these games is distributed
among various configurations. As a part of this experiment, users were categorized based
on the availability of computation resources on their end, distance from the cloud game
server, and network speed. The game hosted on the cloud server was tested with increas-
ing user load, distributed among these categories. The result revealed that, users who
are far away from the cloud server (geographically distributed) experience more latency
and bandwidth issues which result in bad QoE. The solution proposed by authors, (Lin
and Shen; 2016) addressed this latency issue by offloading the video encoding process to
a Fog Node. This Fog Node will be at the edge of the user’s network thus eliminating
the latency issue due to log-distance data transfer.

In above sections 3.1 and 3.2, two primary cloud gaming architectures were analyzed.
The proposed third architecture in this comparative study is a hybrid architecture.

3.3 Proposed: Hybrid Architecture:

The proposed architecture is a hybrid implementation, combining the advancements
through Fog-enabled cloud gaming and the invention of vGPU (virtual Graphical Pro-
cessing unit). The vGPU solution proposed and provided as a service by (Herrera; 2014)
is leveraged in this hybrid architecture. While the Fog-enabled cloud gaming reduces
the latency by bringing the video encoding node closer to the user, the video encoding
process will consume more computing resources and time. This will include a Fog Node
overhead latency in addition to the existing cloud server overhead latency. This new
overhead latency on the Fog node end can be reduced by assigning a vGPU core for
the Fog node. Once the game scene is rendered as encoded video at the edge node it
will be streamed in real-time to the user. In this proposed architecture, WebRTC (Web
Real-Time Communication) protocol is used to stream game videos to all active users in
a game session. WebRTC, a peer-to-peer real-time communication protocol (Loreto and
Romano; 2014) proven to be most reliable to stream multi-casting video on real-time to
users (peers) in a network (Jansen et al.; 2018). For this proposed architecture, WebRTC
is used for video streaming due to the below-mentioned reasons,

• Being a Peer-to-Peer network, there is no requirement for a central network admin-
istrator. This technology will be more suitable to stream real-time game videos to
a large number of participants.

• Compared to other streaming services, the WebRTC network is easy to set up,
maintain, and better performing.

• Data backup and security are maintained within the network.

• For any personal multi-media application over cloud, peer-to-peer network is proven
to be easy to set up.

During the implementation stage of this proposed architecture, various cloud gaming
open-source platforms were gathered, evaluated. Below are the various stages defined
during the project methodology planning,

6



• Stage 1: A flexible game engine/ platform is selected. In all comparative studies
conducted in the past and reviewed for cloud gaming in section 2.1, the cloud
gaming infrastructure and deployment platform were critically analyzed. In this
research project, the proposed cloud gaming architecture is implemented by creating
a sample 3D and 2D game with custom build WebRTC components to stream
game audio and video. As a result of this stage, in this research project, the
Unity 3D game engine is selected to develop the sample games which will later be
deployed in the proposed architecture. The primary reason for selecting this engine
to experiment with is the percentage of the gaming industry covered by the engine.

• Stage 2: A custom-built WebRTC component that will be a part of the game
development code. This stage will give the flexibility of streaming the audio and
video of the game scene (in Unity terminology, each game scenario/ game-play is
referred to as ’scene’). This custom-build WebRTC component is backed up by the
open-source WebRTC package developed by Google, Ericsson, and supported by a
group of open-source communities (Loreto and Romano; 2014).

• Stage 3: An interactive web-based platform to play the game on any desktop,
mobile, and tablet device browsers. As explained in detail in books (Angel and
Shreiner; 2014) and (Parisi; 2012), the WebGL technology is platform-independent,
built for interactive and dynamic web applications as an improvement over OpenGL.
WebGL commands are accessed through JavaScripts-based programming interfaces.

• Stage 4: As a part of the Unity game development code, the nearest MobiledgeX
(Aguilar-Armijo; 2021) cloudlet pod will be selected. The video encoding job will
be deployed as a container image in this cloudlet. This service is selected as an
Edge Computing layer of this proposed architecture after a detailed comparison
among other open-source and commercial Edge Computing service providers. With
MobiledgeX we can offload the video encoding process to the nearest edge node.
This edge node will be selected based on the nearest network service provider tower
from the user’s location. This node selection logic will be a part of the game
development code itself. Once the game logic is executed on the cloud side, raw
data and image frames are transferred to the identified close edge node. In this edge
node, the game video will be encoded and streamed to the user using WebRTC.

• Stage 5: A virtual GPU processing service offered by Nvidia GRID to accelerate
the video encoding process. With this service, the native GPU hardware can be
divided into sizable virtual graphics cores. This vGPU core can be then assigned
to the container where the video encoding is being performed. While software
encoding increases the video encoding quality, the overall speed of the encoding
can be improved by assigning a dedicated graphical processing unit.

After gathering adequate data on Fog-enabled computing, GPU virtualization, and
WebRTC Protocol through a detailed technical content review on sub-sections under sec-
tion 2.5, a detailed classification of this project methodology is explained in this section.

3.4 Evaluation Methodology:

Author (Slivar et al.; 2016) conducted a detailed evaluation of cloud gaming architectures
and platforms by considering various factors. In addition to that, author (Peñaherrera-
Pulla et al.; 2021) carried out a detailed experiment to compare different cloud gaming

7



platforms and architectures. On a high-level, the performance of the cloud gaming session
is determined by the cloud server resources, distance between user and cloud server, video
encoding and streaming services. To evaluate all above areas of the proposed architecture,
below metrics were selected,

Table 2: Proposed Evaluation Parameters

Evaluation Parameter Description
Frame Rate Average frame rate received by the client

browser
Frame Decoding Rate Number of frames decoded after receiving

by the client browser
Delay Between Frames Average delay between frames

received during each transaction
Jitter Rate Average amount of Jitter occurred

during the video rendering and streaming
Frames Drop Rate Average number of frames dropped as a

with respect to Jitter result of the Jitter
Decoding Time Taken Average time taken to decode the frames.

This is not calculated for frames that are
discarded during the transmission

Bandwidth Consumption Client’s network bandwidth consumed
during the game session

4 Design Specification

4.1 Common Design Requirements:

As a primary requirement, for this experiment, two games should be base-lined, imple-
mented, and evaluated using all three architectures.

• To develop 2D and 3D sample games used throughout this experiment Unity 3D
2019.4.33f1 edition is used.

• Unity WebGL: Library plugin to build the game as WebGL supported HTML ap-
plication.

• Unity Render Streaming: Package to create custom code and configuration that is
used for streaming the game video with WebRTC

4.2 Traditional Architecture:

As discussed in the sub-section 3.1, the design requirements to implement are as follows,

• A Google Cloud Compute Engine is used to deploy the game build. The system
specification are as follows,

– Machine Type: c2-standard-4

8



– Ubuntu Server v18.04

– vCPU 4

– RAM 16 GB

– Storage 50 GM for game and container installation

– GPU: Nvidia P100 (Available in europe-west4-a region inside EU)

– External IP enabled: WebRTC communication requires an external IP to re-
gister with a STUN or TURN server

– Enable UDP ports 8000 to 9000 as the WebRTC uses a range of ports for
peer-to-peer communication and to contact the relay server

• Docker Container is used to deploy the WebGL application built using the Unity
Game Engine.

• coTURN Server package deployed as docker container used to register the GCP
compute engine’s external IP with the STUN and TURN server

• Unity WebClient Package to host the game build as a JavaScript-based web applic-
ation. This application access will be shared through the cloud infrastructure in
this traditional architecture.

To re-create the implemented traditional cloud gaming solution, as a part of this
project artifact, a final docker image will be backed and provided. All above-mentioned
libraries, game build, packages, plugins, and commands will be pre-built in that docker
image. This image can be executed on a container engine that is running as a service
inside the GCP compute instance.

4.3 Fog-enabled Architecture:

As discussed in the sub-section 3.2, the design specifications required to implement Fog-
enabled cloud gaming architecture are,

• A similar GCP Compute instance as specified in 4.2 will be required to deploy and
execute game commands.

• Docker image is built including all required libraries for game video rendering,
encoding, and media streaming.

• The WebRTC Audio and Video streamer components included in the game build
will send audio and video data frames to the selected node to encode as video and
stream to the user.

To re-create the implemented Fog-enabled cloud gaming solution, the docker image
created for traditional architecture will be divided into two-part. The WebRTC encoding
and streaming services will be separated as a new docker image and deployed onto the
Fog node identified. While the actual game logic developed will be backed as a separate
docker image and deployed onto the same GCP compute instance.

9



4.4 Proposed: Hybrid Architecture:

As discussed in the sub-section 3.3, the design specifications required to implement the
proposed architecture should be divided into five stages, as follows,

• Stage 1: As explained in the common design requirements section 4.1 one 2D game
and one 3D game is developed using Unity 3D 2019.4.33f1 edition.

• Stage 2: WebRTC Plugin: This is a Unity Technologies plugin attached with each
game object for audio and video streaming through WebRTC.

• Stage 3: WebGL and Unity Render Streaming: Each Unity game will have multiple
audio sources (for the player, AI characters, and surrounding sound), multiple game
camera objects that capture the game like a scene. This Unity Render Streaming
component will collect data from these audio and video sources to render into
a single data packet. This package is finally built as a WebGL application for
interactive game-play through desktop and mobile browsers.

• Stage 4: MobiledgeX SDK: This is a C based SDK provided by MobiledgeX service
providers. This SDK is used to get all list of cloudlets (Edge Computing nodes)
that are assigned to a subscribed user through C# APIs. Also, the nearest cloudlet
to the target user can be determined by the same SDK. By including this SDK and
logic to select the closed Edge Node to the end-user, the cloud gaming server (in
this case the GCP Instance) will send the game scene to that cloudlet for encoding
and streaming.

• Stage 5: Nvidia GRID drivers: As an optimization to the existing cloud gaming
architecture and to support the proposed hybrid architecture, Nvidia vGPU solution
is leveraged.

5 Implementation

With all data gathered from sections 2 and 3, the required design specification for the
project is planned in section 4. For each architecture implemented in this project, dif-
ferent design specifications and implementation workflow are involved. This section will
explain in detail how all three architectures were implemented based on the methodology
and design specification established. For better understanding, implementation of each
architecture is explained in three different sub-sections 5.2, 4.3, and 5.4.

5.1 Sample Game Implementation:

Before implementing the architectures for our comparative experiment, the game samples
are to be created. In this research project, we evaluate the QoE and QoS in depth by
creating our own game samples. Compared to other comparative studies and evaluation
projects as explained in section 2, we have created our own game samples to have better
flexibility and rigorously analyze the cloud game infrastructure. Below are the steps
involved in implementing the sample games along with a few custom-built components
to support WebGL game-play, and WebRTC game streaming.

10



• Step 1: Before starting to create the sample games to be deployed onto the server,
supporting libraries and packages should be imported to the Unity project. To
support the WebGL build of the game, from the Unity HUB, WebGL Build Support
package should be included in the package. In addition to that, to support WebRTC
video and audio streaming, Unity Render Streaming and Unity WebRTC packages
should be imported to the project.

• Step 2: Once all the game objects were created with corresponding game logic,
custom-built Rendering and Streaming components should be coupled with those
game objects. The WebRTC package will have three streaming custom build librar-
ies. The first one is to stream audio sources. Hence, this library will be included in
the game object that creates sound effects. The second one is to combine multiple
video sources (in Unity terms, cameras) into one video stream. The final component
is a video streamer that will stream the resulting video.

• Step 3: Once the Audio and Video sources are combined using the custom build
library, they will be rendered using the Unity Render Streaming library. As an
output, the rendered video will be streamed using the Unity WebRTC library.

• Step 4: Once all the logic is in place with required libraries, using the WebGL build
support from Unity, the game package will be built into a WebGL project.

• Step 5: As the last step, in this project, we have created a docker image for each
sample game. This docker image will be deployed in the cloud server in each
architecture implementation. This is done to reduce the time taken by the server
to build the game package each time when a new game session is created.

5.2 Traditional Architecture Implementation:

In the traditional cloud gaming architecture, the game logic is deployed on a remote
cloud game server. This server will be placed in a fixed location to which users will
connect through a secured connection. As depicted in figure 1, the implementation of the
traditional cloud gaming architecture will happen as below,

• At the beginning, each user will log into the game session created by the cloud
game server. The game will be provided as a service by the cloud service provider
(Cai et al.; 2014). This game session will take commands from the user through
various protocols. Predominantly, UDP and WebSocket communication are being
used due to their transfer rate. These game controls will be encrypted and sent to
the cloud server. We have implemented a WebGL Interactive session to send game
commands from the user end.

• Upon receiving the user commands, these commands are decrypted and sent as
input to the game package. As explained in the design specification section 4.2, the
Unity game package is used in this implementation.

• After receiving game inputs, Unity binary build will execute corresponding game
logic and generate Audio and Video sources as output. We have implemented a
custom C utility that will collect all audio and video sources and send it to the
rendering module.

11



• These Audio and Video data from each source will be rendered using the Unity
Render Streaming package included in the game binary itself. We have implemented
another custom C utility using the Unity Render Streaming program level interface.
This Utility will render all audio and video sources into a single game scene.

• Once the combined packets are received by the Unity WebRTC Encoder module,
the game video will be encoded into packets of the video stream. This encoding is
accelerated by Software Encoding and Hardware Encoding (using GPU) libraries.
As a result, packets of encoded video are sent to the WebRTC Streamer Module.

• In general, Unity supports three video streaming options. In this experiment, we
have selected WebSocket communication coupled with WebRTC public server. As
WebRTC is a peer-to-peer communication, it is easy to set up and maintain the
entire network. This WebRTC server will register the External IP of the cloud
server to a STUN/ TURN server.

• Finally, the video stream will be received by the WebGL build generated for the
Unity game. This application build will decode the video and display it to the user.
In this WebGL module, we have implemented JS functions to send user commands
to the cloud server and display the WebRTC video stream.

Figure 1: Traditional Cloud Gaming Architecture Workflow

5.3 Fog-enabled Architecture Implementation:

In traditional cloud gaming architecture implementation explained in sub-section 5.2,
there will be two ties. One is the client-side where the game inputs are transferred from
and the game video is streamed to. The other one is the cloud server end where the
actual game logic is executed and the game scene is encoded as a video stream. In this
Fog-enabled architecture, there will be an additional layer in between the client and cloud
game server. The Fog-node layer will take part in encoding the game audio and video
packets into a single game scene. Later, the WebRTC module in the same fog node will

12



Figure 2: Fog-enabled Cloud Gaming Architecture Workflow

stream the game scene back to the user. This implementation is based on the proposal
Lin and Shen (2016) where fog node is selected based on the distance between the user
and the fog node.

To create a Fog cluster of cloud instances, in this experiment, the Google Cloud
Platform is used. As mentioned in the design specification section, 4.3, the docker image
is built with all required libraries for video rendering, encoding, and streaming.

5.4 Proposed: Hybrid Architecture Implementation:

Figure 3: Signalling in proposed architecture

13



Figure 4: Proposed: Hybrid Cloud Gaming Architecture Workflow:

For the proposed hybrid architecture, represented as a workflow in figure 4, two major
changes/ optimizations were implemented. The primary optimization is, in addition to
the second tier implemented in the Fog-enabled cloud gaming architecture, a virtualized
GPU server will be coupled with the second tier. However, implementing the Fog Nodes
for this proposed architecture also has some latency issues. This issue occurs when the Fog
Node is not at the edge of the user’s network. Even though other existing optimization
proposals like Lin and Shen (2016) to select a fog node that is closer to the user game-play
device, the latency issue occurs due to multiple hops. Initially, the game commands from
the user end will go to the Internet/ Network service provider, registering transaction
number one. From there the command will be sent to the Cloud Game server, registering
transaction number two. Once the game scene is rendered on the cloud server, the video
and audio packets will be sent to the identified Fog node to encode the video, registering
transaction number three. Once the video is encoded, the video stream is sent back to
the network/ internet service providers registering transaction number four. Finally, the
video stream reaches the user’s desktop or mobile browser.

To overcome this latency issue created due to multiple network hops, in the proposed
architecture, a mobile edge network will be used as the second tier, replacing the Fog node.
This reduces the number of transactions from five to four. The general idea linking Edge
and Fog computing is, the Fog Node acts as a layer in between the Edge Computing nodes.
This layer unites the Edge Node into one cluster and transfers the raw data collected
by the Edge Nodes (Yousefpour et al.; 2019). The proposed architecture eliminates this
additional layer between the Edge nodes and the cloud computing services. This proposed
idea is inspired by the research experiment conducted for healthcare solutions leveraging
Edge Cognitive Computing Chen et al. (2018). In this approach, the data (game controls)
gathered by the Edge nodes that are set up in the internet and network service providers’

14



end are sent directly to the Cloud Computing servers. In return, the game scene packets
are sent to the Edge Nodes where the game video is encoded and transferred back to the
client end.

To implement both optimizations discussed above, two services were selected after
eliminating a set of similar services. Based on the recent comparative study published by
authors (Rohith et al.; 2021), and based on the evaluation performed on other Edge Com-
puting service providers, for this research experiment, MobiledgeX service and provided
SDK packages are implemented in the game logic Aguilar-Armijo (2021). In addition to
eliminating the Fog Node layer, we have implemented a virtual GPU layer on the same
Edge Computing layer (Herrera; 2014). This will increase the video encoding performance
and reduce the overall latency.

Once the implementation is complete, the communication between the client and the
cloud server through MobiledgeX server will be as represented in the figure 3

6 Evaluation

After implementing three architectures 5 with sample games developed in 5.1, each archi-
tecture were evaluated based on the evaluation methodology described in the sction 3.4.
Below subsections from 6.1 till 6.7, display graphs plotted based on the data received dur-
ing the evaluation of each architectures. For each evaluation parameter defined in section
3.4, three experiments were conducted. The sample game designed using the Unity en-
gine and WebRTC library is used in each experiment. All these three experiments were
performed for traditional, Fog-enabled, and Proposed architectures respectively. Also,
the gameplay session was kept active for 20 minutes. From that, a sample of 1 minute
and 20 seconds of raw data is considered to plot all graphs and derive our findings. In
the following sections, findings from each experiment graph will be explained.

6.1 Frame Rate

Frame Rate is defined by the number of frames received per second during the game
session was active. Before the beginning of the game session, the client was configured
to receive 60 FPS (Frames Per Second) as a baseline for all three experiments. In the
proposed architecture, frame rate data plotted in figure 5, is showing a constant average
of 60 FPS reception. In the Fog-enabled architecture, frame rate data plotted in figure 6,
is showing some frame loss at time stamp 00:25. This frame loss is negated by the
next transaction in 00:25, causing a reduction in overall QoE compared to the proposed
architecture. In the Traditional architecture, frame rate data plotted in figure 7, is
showing 2 occurrences of total frame loss after 00:47 and close to the 01:00 time stamp.
During the game-play session, the game scene lag of 2 seconds was observed during the
same timestamp. This is because, the cloud server was configured in a time zone far
away from the client zone, resulting in packets loss, increased frame decoding time due to
frame rate loss. These factors have impacted the QoE and QoS considerably as compared
to the other two architectures.

6.2 Frame Decoding Rate

The game session, especially, a cloud game session is claimed to have better QoE if there
is no/ not-noticeable amount of streaming lag. Frame Decode Rate plays a vital role

15



Figure 5: Proposed Archi-
tecture Figure 6: Fog-enabled Ar-

chitecture

Figure 7: Traditional Archi-
tecture

in producing a better QoE in cloud gaming. When there is a delay in Frame Rate (the
rate at which frames are received), the Frame Decoding Rate will be affected as well. In
figure 7, at 00:50 time stamp, no frames were received. This registered a similar effect in
the Frame Decoding Rate graph of the traditional architecture experiment in figure 10.
In the proposed architecture, in figure 8, fluctuation in the Frame Decode rate is not
noticeable. It maintains a 60 FPS decoding rate as expected. This is less common in
graph plotted for Fog-enabled architecture, in figure 9. The steady frame decode rate
in the proposed architecture proves that all 60 Frames were received and decoded at
the given time, in turn proving the better QoE and QoS compared to the other two
experiments.

Figure 8: Proposed Archi-
tecture

Figure 9: Fog-enabled Ar-
chitecture

Figure 10: Traditional Ar-
chitecture

6.3 Delay Between Frames (in ms)

The delay between the rate at which the frames are received will act on the smoothness of
the game-play. Any delay in packets reception will prolong the next command input dur-
ation. Cumulatively, a big delay will have a huge effect on the overall QoE. The graphs
plotted in figures 11, 12, and 13 have the time stamp at which the delay occurred in
x-axis and the overall delay in milliseconds in y-axis. This graph is plotted by calculating
the standard deviation of the overall delay population. The deviation plot reveals that
the proposed architecture has a delay ranging from 5 to 10 milliseconds, the Fog-enabled
architecture has a delay ranging from 10 to 15 milliseconds, and the traditional architec-
ture has a peak delay of more than 800 milliseconds. The proposed approach is proven
to have the least, negligible amount of delay with better QoE and QoS.

16



Figure 11: Proposed Archi-
tecture

Figure 12: Fog-enabled Ar-
chitecture

Figure 13: Traditional Ar-
chitecture

6.4 Jitter Rate

Jitters are unexpected fluctuations in the transmission of media files over a communic-
ation protocol. In this evaluation, the jitter rate is calculated in milliseconds. For any
video streaming application, the jitter rate should be less than 30 milliseconds. In a multi-
playing cloud gaming scenario, the jitter rate is expected to be below 15 milliseconds. As
the user commands are transferred to the cloud server to a series of network transactions,
packets are lost/ carried to the next transaction as overhead. In the conducted exper-
iment, the proposed architecture is proven to have an average jitter rate of fewer than
15 milliseconds 14. Whereas, the Fog-enabled architecture and Traditional architecture
resulted in an average jitter rate of 10 and 15 milliseconds. This directly shows that the
proposed architecture results in better QoE with a smoother and negligible amount of
jitters during the video streaming.

Figure 14: Proposed Archi-
tecture

Figure 15: Fog-enabled Ar-
chitecture

Figure 16: Traditional Ar-
chitecture

6.5 Frames Drop Rate With Respect To Jitter

While comparing the rate in which frames are dropped and the rate in which the jitter
occurs, it is observed that, in the Traditional architecture, figure 19, three timestamps
before 00:25, close before 00:50 and close after 00:50, the heavy rate in frame loss is
observed to be the primary reason for the jitter occurred during the video streaming.
The rate of fluctuation in the frame loss and jitter, in the proposed architecture, remains
below the threshold value, where the frames are maintained close to the expected 60 FPS
and the jitter is less than 15 milliseconds. The constant frame rate as configured by the
client ensures better QoS and the lesser jitter rate ensures better QoE.

17



Figure 17: Proposed Archi-
tecture Figure 18: Fog-enabled Ar-

chitecture
Figure 19: Traditional Ar-
chitecture

6.6 Decoding Time Taken

In any cloud gaming architecture, the game scene will be streamed to the end-user as
a video. This video will be encoded in the cloud sever or fog server or edge server
(proposed system). Based on the time taken for packet encoding and the time is taken
for transmission, the proposed architecture is proven to have the least time to decode
the video packets received 20. This is because of the proposed optimizations over the
existing architectures. Replacing the fog server and transmitting data to and from the
edge server reduces the number of transactions and overall time to receive decoded frames.
In figure 21 the time taken to get the decoded frame is maintained close to the proposed
architecture. This is because the encoding is not done from the cloud server end as in
traditional architecture where the average time taken to receive the decoded video frame
is more than the other two architectures 22.

Figure 20: Proposed Archi-
tecture

Figure 21: Fog-enabled Ar-
chitecture

Figure 22: Traditional Ar-
chitecture

6.7 Bandwidth Consumption

Finally, one of the factors considered to evaluate the QoS is the total bandwidth consumed
during the given time. By comparing the graphs in figures 23, 24, and 25, the proposed
and fog-enabled architecture maintains the overall bandwidth consumption below 100
kilobytes. In the traditional architecture, more peak values are observed above 100-kilo
bytes indicating more bandwidth consumption from the client network. This will affect
the overall QoS and increase the cost from the client network end.

18



Figure 23: Proposed Archi-
tecture

Figure 24: Fog-enabled Ar-
chitecture

Figure 25: Traditional Ar-
chitecture

6.8 Discussion

From the detailed experiment and comparison of considered metrics, it is proven that
the proposed architecture resulted in better QoE and QoS compared to traditional and
fog-enabled architectures. Also, the graphs are sampled from a huge timeline of more
than 20 minutes of game-play. If the entire game-play sample is to be considered, the
fog-enabled and traditional architecture will result in a frame loss of more than 40 frames
and bandwidth consumption of more than 60 MB of network data. This amount of
frames loss and bandwidth consumption will reduce the overall QoS and QoE. On the
other hand, the proposed architecture is not having any cumulative effect on the frame
rate, jitter, decode delay, and bandwidth consumption. From the sample considered for
evaluation and overall game-play sample, the proposed architecture is proven to have
better consistency in all the above-mentioned metrics.

7 Conclusion and Future Work

The proposed experiment is to compare three different cloud gaming architectures and
evaluate the resultant QoE and QoS. Also, as a part of this research project, a new system
that leverages Edge Computing, vGPU, and WebRTC is evaluated along with Traditional
and Fog-enabled architectures. After the implementation of all three architectures, they
were tested using sample games developed as a part of this experiment. The result
revealed that the proposed hybrid architecture maintains constant input and decoded
frame rate (at 60 FPS as configured), maintains delay between frames and jitter rate
below 10 ms on average, frame decoding time below 2 ms on an average, and 100 Kilobyte
of bandwidth consumption for a single gameplay session. All above-produced result
improves the QoE and QoS as expected.

Future research work can focus on improving the video encoding library. At present
WebRTC uses H.264 for video encoding and opus for audio encoding. This encoding
format produces low to medium quality video streaming based on the player’s network
bandwidth. To experience better video quality with the same reduced latency, H.265 video
encoding can be integrated with WebRTC protocol. Also, device statistical methods to
calculate QoE and QoS based on the data gathered from the game session.

19



References

Aguilar-Armijo, J. (2021). Multi-access edge computing for adaptive bitrate video stream-
ing, Proceedings of the 12th ACM Multimedia Systems Conference, MMSys ’21, Asso-
ciation for Computing Machinery, New York, NY, USA, p. 378–382.

Angel, E. and Shreiner, D. (2014). Interactive computer graphics with WebGL, Addison-
Wesley Professional.

Cai, W., Chen, M. and Leung, V. C. (2014). Toward gaming as a service, IEEE Internet
Computing 18(3): 12–18.

Carrascosa, M. and Bellalta, B. (2020). Cloud-gaming: Analysis of google stadia traffic,
arXiv preprint arXiv:2009.09786 .

Chen, H., Zhang, X., Xu, Y., Ren, J., Fan, J., Ma, Z. and Zhang, W. (2019). T-
gaming: A cost-efficient cloud gaming system at scale, IEEE Transactions on Parallel
and Distributed Systems 30(12): 2849–2865.

Chen, M., Li, W., Hao, Y., Qian, Y. and Humar, I. (2018). Edge cognitive computing
based smart healthcare system, Future Generation Computer Systems 86: 403–411.

Herrera, A. (2014). Nvidia grid: Graphics accelerated vdi with the visual performance of
a workstation, Nvidia Corp pp. 1–18.

Huang, C.-Y., Chen, D.-Y., Hsu, C.-H. and Chen, K.-T. (2013). Gaminganywhere: an
open-source cloud gaming testbed, Proceedings of the 21st ACM international confer-
ence on Multimedia, pp. 827–830.

Jansen, B., Goodwin, T., Gupta, V., Kuipers, F. and Zussman, G. (2018). Perform-
ance evaluation of webrtc-based video conferencing, ACM SIGMETRICS Performance
Evaluation Review 45(3): 56–68.

Laghari, A., He, H., Ali, K., Laghari, R., Halepoto, I. and Khan, A. (2019). Quality
of experience (qoe) in cloud gaming models: A review, Multiagent and Grid Systems
15: 289–304.

Lin, Y. and Shen, H. (2015). Leveraging fog to extend cloud gaming for thin-client
mmog with high quality of experience, 2015 IEEE 35th International Conference on
Distributed Computing Systems, pp. 734–735.

Lin, Y. and Shen, H. (2016). Cloudfog: Leveraging fog to extend cloud gaming for thin-
client mmog with high quality of service, IEEE Transactions on Parallel and Distributed
Systems 28(2): 431–445.

Loreto, S. and Romano, S. P. (2014). Real-time communication with WebRTC: peer-to-
peer in the browser, ” O’Reilly Media, Inc.”.

Parisi, T. (2012). WebGL: up and running, ” O’Reilly Media, Inc.”.

Peñaherrera-Pulla, O. S., Baena, C., Fortes, S., Baena, E. and Barco, R. (2021). Meas-
uring key quality indicators in cloud gaming: Framework and assessment over wireless
networks, Sensors 21(4): 1387.

20



Rohith, M., Sunil, A. and Mohana (2021). Comparative analysis of edge computing
and edge devices: Key technology in iot and computer vision applications, 2021 In-
ternational Conference on Recent Trends on Electronics, Information, Communication
Technology (RTEICT), pp. 722–727.

Shea, R., Liu, J., Ngai, E. C.-H. and Cui, Y. (2013). Cloud gaming: architecture and
performance, IEEE Network 27(4): 16–21.

Slivar, I., Skorin-Kapov, L. and Suznjevic, M. (2016). Cloud gaming qoe models for
deriving video encoding adaptation strategies, Proceedings of the 7th International
Conference on Multimedia Systems, MMSys ’16, Association for Computing Machinery,
New York, NY, USA.

Slivar, I., Suznjevic, M. and Skorin-Kapov, L. (2015). The impact of video encoding
parameters and game type on qoe for cloud gaming: A case study using the steam
platform, 2015 Seventh International Workshop on Quality of Multimedia Experience
(QoMEX), pp. 1–6.

Xu, Y., Shen, Q., Li, X. and Ma, Z. (2018). A cost-efficient cloud gaming system at scale,
IEEE Network 32(1): 42–47.

Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong,
J. and Jue, J. P. (2019). All one needs to know about fog computing and related edge
computing paradigms: A complete survey, Journal of Systems Architecture 98: 289–
330.

Zhang, X., Chen, H., Zhao, Y., Ma, Z., Xu, Y., Huang, H., Yin, H. and Wu, D. O. (2019).
Improving cloud gaming experience through mobile edge computing, IEEE Wireless
Communications 26(4): 178–183.

21


	Introduction
	Related Work
	Traditional Cloud Gaming
	Fog-enabled Cloud Gaming
	GPU Virtualization in Cloud Gaming
	Edge and Cloud Computing
	WebRTC Advancement
	QoE and QoS Evaluation
	Comparing Related Work

	Methodology
	Traditional Architecture:
	Fog-enabled Architecture:
	Proposed: Hybrid Architecture:
	Evaluation Methodology:

	Design Specification
	Common Design Requirements:
	Traditional Architecture:
	Fog-enabled Architecture:
	Proposed: Hybrid Architecture:

	Implementation
	Sample Game Implementation:
	Traditional Architecture Implementation:
	Fog-enabled Architecture Implementation:
	Proposed: Hybrid Architecture Implementation:

	Evaluation
	Frame Rate
	Frame Decoding Rate
	Delay Between Frames (in ms)
	Jitter Rate
	Frames Drop Rate With Respect To Jitter
	Decoding Time Taken
	Bandwidth Consumption
	Discussion

	Conclusion and Future Work

